1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00
llvm-mirror/lib/IR/LLVMContextImpl.cpp
Adam Nemet cb89dd6834 [OptRemark,LDist] RFC: Add hotness attribute
Summary:
This is the first set of changes implementing the RFC from
http://thread.gmane.org/gmane.comp.compilers.llvm.devel/98334

This is a cross-sectional patch; rather than implementing the hotness
attribute for all optimization remarks and all passes in a patch set, it
implements it for the 'missed-optimization' remark for Loop
Distribution.  My goal is to shake out the design issues before scaling
it up to other types and passes.

Hotness is computed as an integer as the multiplication of the block
frequency with the function entry count.  It's only printed in opt
currently since clang prints the diagnostic fields directly.  E.g.:

  remark: /tmp/t.c:3:3: loop not distributed: use -Rpass-analysis=loop-distribute for more info (hotness: 300)

A new API added is similar to emitOptimizationRemarkMissed.  The
difference is that it additionally takes a code region that the
diagnostic corresponds to.  From this, hotness is computed using BFI.
The new API is exposed via an analysis pass so that it can be made
dependent on LazyBFI.  (Thanks to Hal for the analysis pass idea.)

This feature can all be enabled by setDiagnosticHotnessRequested in the
LLVM context.  If this is off, LazyBFI is not calculated (D22141) so
there should be no overhead.

A new command-line option is added to turn this on in opt.

My plan is to switch all user of emitOptimizationRemark* to use this
module instead.

Reviewers: hfinkel

Subscribers: rcox2, mzolotukhin, llvm-commits

Differential Revision: http://reviews.llvm.org/D21771

llvm-svn: 275583
2016-07-15 17:23:20 +00:00

253 lines
7.8 KiB
C++

//===-- LLVMContextImpl.cpp - Implement LLVMContextImpl -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the opaque LLVMContextImpl.
//
//===----------------------------------------------------------------------===//
#include "LLVMContextImpl.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/OptBisect.h"
#include "llvm/Support/ManagedStatic.h"
#include <algorithm>
using namespace llvm;
LLVMContextImpl::LLVMContextImpl(LLVMContext &C)
: TheTrueVal(nullptr), TheFalseVal(nullptr),
VoidTy(C, Type::VoidTyID),
LabelTy(C, Type::LabelTyID),
HalfTy(C, Type::HalfTyID),
FloatTy(C, Type::FloatTyID),
DoubleTy(C, Type::DoubleTyID),
MetadataTy(C, Type::MetadataTyID),
TokenTy(C, Type::TokenTyID),
X86_FP80Ty(C, Type::X86_FP80TyID),
FP128Ty(C, Type::FP128TyID),
PPC_FP128Ty(C, Type::PPC_FP128TyID),
X86_MMXTy(C, Type::X86_MMXTyID),
Int1Ty(C, 1),
Int8Ty(C, 8),
Int16Ty(C, 16),
Int32Ty(C, 32),
Int64Ty(C, 64),
Int128Ty(C, 128) {
InlineAsmDiagHandler = nullptr;
InlineAsmDiagContext = nullptr;
DiagnosticHandler = nullptr;
DiagnosticContext = nullptr;
RespectDiagnosticFilters = false;
DiagnosticHotnessRequested = false;
YieldCallback = nullptr;
YieldOpaqueHandle = nullptr;
NamedStructTypesUniqueID = 0;
}
LLVMContextImpl::~LLVMContextImpl() {
// NOTE: We need to delete the contents of OwnedModules, but Module's dtor
// will call LLVMContextImpl::removeModule, thus invalidating iterators into
// the container. Avoid iterators during this operation:
while (!OwnedModules.empty())
delete *OwnedModules.begin();
// Drop references for MDNodes. Do this before Values get deleted to avoid
// unnecessary RAUW when nodes are still unresolved.
for (auto *I : DistinctMDNodes)
I->dropAllReferences();
#define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
for (auto *I : CLASS##s) \
I->dropAllReferences();
#include "llvm/IR/Metadata.def"
// Also drop references that come from the Value bridges.
for (auto &Pair : ValuesAsMetadata)
Pair.second->dropUsers();
for (auto &Pair : MetadataAsValues)
Pair.second->dropUse();
// Destroy MDNodes.
for (MDNode *I : DistinctMDNodes)
I->deleteAsSubclass();
#define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
for (CLASS * I : CLASS##s) \
delete I;
#include "llvm/IR/Metadata.def"
// Free the constants.
for (auto *I : ExprConstants)
I->dropAllReferences();
for (auto *I : ArrayConstants)
I->dropAllReferences();
for (auto *I : StructConstants)
I->dropAllReferences();
for (auto *I : VectorConstants)
I->dropAllReferences();
ExprConstants.freeConstants();
ArrayConstants.freeConstants();
StructConstants.freeConstants();
VectorConstants.freeConstants();
DeleteContainerSeconds(CAZConstants);
DeleteContainerSeconds(CPNConstants);
DeleteContainerSeconds(UVConstants);
InlineAsms.freeConstants();
DeleteContainerSeconds(IntConstants);
DeleteContainerSeconds(FPConstants);
for (auto &CDSConstant : CDSConstants)
delete CDSConstant.second;
CDSConstants.clear();
// Destroy attributes.
for (FoldingSetIterator<AttributeImpl> I = AttrsSet.begin(),
E = AttrsSet.end(); I != E; ) {
FoldingSetIterator<AttributeImpl> Elem = I++;
delete &*Elem;
}
// Destroy attribute lists.
for (FoldingSetIterator<AttributeSetImpl> I = AttrsLists.begin(),
E = AttrsLists.end(); I != E; ) {
FoldingSetIterator<AttributeSetImpl> Elem = I++;
delete &*Elem;
}
// Destroy attribute node lists.
for (FoldingSetIterator<AttributeSetNode> I = AttrsSetNodes.begin(),
E = AttrsSetNodes.end(); I != E; ) {
FoldingSetIterator<AttributeSetNode> Elem = I++;
delete &*Elem;
}
// Destroy MetadataAsValues.
{
SmallVector<MetadataAsValue *, 8> MDVs;
MDVs.reserve(MetadataAsValues.size());
for (auto &Pair : MetadataAsValues)
MDVs.push_back(Pair.second);
MetadataAsValues.clear();
for (auto *V : MDVs)
delete V;
}
// Destroy ValuesAsMetadata.
for (auto &Pair : ValuesAsMetadata)
delete Pair.second;
}
void LLVMContextImpl::dropTriviallyDeadConstantArrays() {
bool Changed;
do {
Changed = false;
for (auto I = ArrayConstants.begin(), E = ArrayConstants.end(); I != E;) {
auto *C = *I++;
if (C->use_empty()) {
Changed = true;
C->destroyConstant();
}
}
} while (Changed);
}
void Module::dropTriviallyDeadConstantArrays() {
Context.pImpl->dropTriviallyDeadConstantArrays();
}
namespace llvm {
/// \brief Make MDOperand transparent for hashing.
///
/// This overload of an implementation detail of the hashing library makes
/// MDOperand hash to the same value as a \a Metadata pointer.
///
/// Note that overloading \a hash_value() as follows:
///
/// \code
/// size_t hash_value(const MDOperand &X) { return hash_value(X.get()); }
/// \endcode
///
/// does not cause MDOperand to be transparent. In particular, a bare pointer
/// doesn't get hashed before it's combined, whereas \a MDOperand would.
static const Metadata *get_hashable_data(const MDOperand &X) { return X.get(); }
}
unsigned MDNodeOpsKey::calculateHash(MDNode *N, unsigned Offset) {
unsigned Hash = hash_combine_range(N->op_begin() + Offset, N->op_end());
#ifndef NDEBUG
{
SmallVector<Metadata *, 8> MDs(N->op_begin() + Offset, N->op_end());
unsigned RawHash = calculateHash(MDs);
assert(Hash == RawHash &&
"Expected hash of MDOperand to equal hash of Metadata*");
}
#endif
return Hash;
}
unsigned MDNodeOpsKey::calculateHash(ArrayRef<Metadata *> Ops) {
return hash_combine_range(Ops.begin(), Ops.end());
}
StringMapEntry<uint32_t> *LLVMContextImpl::getOrInsertBundleTag(StringRef Tag) {
uint32_t NewIdx = BundleTagCache.size();
return &*(BundleTagCache.insert(std::make_pair(Tag, NewIdx)).first);
}
void LLVMContextImpl::getOperandBundleTags(SmallVectorImpl<StringRef> &Tags) const {
Tags.resize(BundleTagCache.size());
for (const auto &T : BundleTagCache)
Tags[T.second] = T.first();
}
uint32_t LLVMContextImpl::getOperandBundleTagID(StringRef Tag) const {
auto I = BundleTagCache.find(Tag);
assert(I != BundleTagCache.end() && "Unknown tag!");
return I->second;
}
// ConstantsContext anchors
void UnaryConstantExpr::anchor() { }
void BinaryConstantExpr::anchor() { }
void SelectConstantExpr::anchor() { }
void ExtractElementConstantExpr::anchor() { }
void InsertElementConstantExpr::anchor() { }
void ShuffleVectorConstantExpr::anchor() { }
void ExtractValueConstantExpr::anchor() { }
void InsertValueConstantExpr::anchor() { }
void GetElementPtrConstantExpr::anchor() { }
void CompareConstantExpr::anchor() { }
/// Singleton instance of the OptBisect class.
///
/// This singleton is accessed via the LLVMContext::getOptBisect() function. It
/// provides a mechanism to disable passes and individual optimizations at
/// compile time based on a command line option (-opt-bisect-limit) in order to
/// perform a bisecting search for optimization-related problems.
///
/// Even if multiple LLVMContext objects are created, they will all return the
/// same instance of OptBisect in order to provide a single bisect count. Any
/// code that uses the OptBisect object should be serialized when bisection is
/// enabled in order to enable a consistent bisect count.
static ManagedStatic<OptBisect> OptBisector;
OptBisect &LLVMContextImpl::getOptBisect() {
return *OptBisector;
}