mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 19:52:54 +01:00
a70ba1098b
In the NPM, a pass cannot depend on another non-analysis pass. So pin the test that tests that -lowerswitch is run automatically to legacy PM. Reviewed By: sameerds Differential Revision: https://reviews.llvm.org/D89051
355 lines
13 KiB
C++
355 lines
13 KiB
C++
//===- FixIrreducible.cpp - Convert irreducible control-flow into loops ---===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// An irreducible SCC is one which has multiple "header" blocks, i.e., blocks
|
|
// with control-flow edges incident from outside the SCC. This pass converts a
|
|
// irreducible SCC into a natural loop by applying the following transformation:
|
|
//
|
|
// 1. Collect the set of headers H of the SCC.
|
|
// 2. Collect the set of predecessors P of these headers. These may be inside as
|
|
// well as outside the SCC.
|
|
// 3. Create block N and redirect every edge from set P to set H through N.
|
|
//
|
|
// This converts the SCC into a natural loop with N as the header: N is the only
|
|
// block with edges incident from outside the SCC, and all backedges in the SCC
|
|
// are incident on N, i.e., for every backedge, the head now dominates the tail.
|
|
//
|
|
// INPUT CFG: The blocks A and B form an irreducible loop with two headers.
|
|
//
|
|
// Entry
|
|
// / \
|
|
// v v
|
|
// A ----> B
|
|
// ^ /|
|
|
// `----' |
|
|
// v
|
|
// Exit
|
|
//
|
|
// OUTPUT CFG: Edges incident on A and B are now redirected through a
|
|
// new block N, forming a natural loop consisting of N, A and B.
|
|
//
|
|
// Entry
|
|
// |
|
|
// v
|
|
// .---> N <---.
|
|
// / / \ \
|
|
// | / \ |
|
|
// \ v v /
|
|
// `-- A B --'
|
|
// |
|
|
// v
|
|
// Exit
|
|
//
|
|
// The transformation is applied to every maximal SCC that is not already
|
|
// recognized as a loop. The pass operates on all maximal SCCs found in the
|
|
// function body outside of any loop, as well as those found inside each loop,
|
|
// including inside any newly created loops. This ensures that any SCC hidden
|
|
// inside a maximal SCC is also transformed.
|
|
//
|
|
// The actual transformation is handled by function CreateControlFlowHub, which
|
|
// takes a set of incoming blocks (the predecessors) and outgoing blocks (the
|
|
// headers). The function also moves every PHINode in an outgoing block to the
|
|
// hub. Since the hub dominates all the outgoing blocks, each such PHINode
|
|
// continues to dominate its uses. Since every header in an SCC has at least two
|
|
// predecessors, every value used in the header (or later) but defined in a
|
|
// predecessor (or earlier) is represented by a PHINode in a header. Hence the
|
|
// above handling of PHINodes is sufficient and no further processing is
|
|
// required to restore SSA.
|
|
//
|
|
// Limitation: The pass cannot handle switch statements and indirect
|
|
// branches. Both must be lowered to plain branches first.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/FixIrreducible.h"
|
|
#include "llvm/ADT/SCCIterator.h"
|
|
#include "llvm/Analysis/LoopIterator.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Transforms/Utils.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
|
|
#define DEBUG_TYPE "fix-irreducible"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
struct FixIrreducible : public FunctionPass {
|
|
static char ID;
|
|
FixIrreducible() : FunctionPass(ID) {
|
|
initializeFixIrreduciblePass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequiredID(LowerSwitchID);
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.addPreservedID(LowerSwitchID);
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<LoopInfoWrapperPass>();
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
};
|
|
} // namespace
|
|
|
|
char FixIrreducible::ID = 0;
|
|
|
|
FunctionPass *llvm::createFixIrreduciblePass() { return new FixIrreducible(); }
|
|
|
|
INITIALIZE_PASS_BEGIN(FixIrreducible, "fix-irreducible",
|
|
"Convert irreducible control-flow into natural loops",
|
|
false /* Only looks at CFG */, false /* Analysis Pass */)
|
|
INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
|
INITIALIZE_PASS_END(FixIrreducible, "fix-irreducible",
|
|
"Convert irreducible control-flow into natural loops",
|
|
false /* Only looks at CFG */, false /* Analysis Pass */)
|
|
|
|
// When a new loop is created, existing children of the parent loop may now be
|
|
// fully inside the new loop. Reconnect these as children of the new loop.
|
|
static void reconnectChildLoops(LoopInfo &LI, Loop *ParentLoop, Loop *NewLoop,
|
|
SetVector<BasicBlock *> &Blocks,
|
|
SetVector<BasicBlock *> &Headers) {
|
|
auto &CandidateLoops = ParentLoop ? ParentLoop->getSubLoopsVector()
|
|
: LI.getTopLevelLoopsVector();
|
|
// The new loop cannot be its own child, and any candidate is a
|
|
// child iff its header is owned by the new loop. Move all the
|
|
// children to a new vector.
|
|
auto FirstChild = std::partition(
|
|
CandidateLoops.begin(), CandidateLoops.end(), [&](Loop *L) {
|
|
return L == NewLoop || Blocks.count(L->getHeader()) == 0;
|
|
});
|
|
SmallVector<Loop *, 8> ChildLoops(FirstChild, CandidateLoops.end());
|
|
CandidateLoops.erase(FirstChild, CandidateLoops.end());
|
|
|
|
for (auto II = ChildLoops.begin(), IE = ChildLoops.end(); II != IE; ++II) {
|
|
auto Child = *II;
|
|
LLVM_DEBUG(dbgs() << "child loop: " << Child->getHeader()->getName()
|
|
<< "\n");
|
|
// TODO: A child loop whose header is also a header in the current
|
|
// SCC gets destroyed since its backedges are removed. That may
|
|
// not be necessary if we can retain such backedges.
|
|
if (Headers.count(Child->getHeader())) {
|
|
for (auto BB : Child->blocks()) {
|
|
LI.changeLoopFor(BB, NewLoop);
|
|
LLVM_DEBUG(dbgs() << "moved block from child: " << BB->getName()
|
|
<< "\n");
|
|
}
|
|
LI.destroy(Child);
|
|
LLVM_DEBUG(dbgs() << "subsumed child loop (common header)\n");
|
|
continue;
|
|
}
|
|
|
|
Child->setParentLoop(nullptr);
|
|
NewLoop->addChildLoop(Child);
|
|
LLVM_DEBUG(dbgs() << "added child loop to new loop\n");
|
|
}
|
|
}
|
|
|
|
// Given a set of blocks and headers in an irreducible SCC, convert it into a
|
|
// natural loop. Also insert this new loop at its appropriate place in the
|
|
// hierarchy of loops.
|
|
static void createNaturalLoopInternal(LoopInfo &LI, DominatorTree &DT,
|
|
Loop *ParentLoop,
|
|
SetVector<BasicBlock *> &Blocks,
|
|
SetVector<BasicBlock *> &Headers) {
|
|
#ifndef NDEBUG
|
|
// All headers are part of the SCC
|
|
for (auto H : Headers) {
|
|
assert(Blocks.count(H));
|
|
}
|
|
#endif
|
|
|
|
SetVector<BasicBlock *> Predecessors;
|
|
for (auto H : Headers) {
|
|
for (auto P : predecessors(H)) {
|
|
Predecessors.insert(P);
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "Found predecessors:";
|
|
for (auto P : Predecessors) {
|
|
dbgs() << " " << P->getName();
|
|
}
|
|
dbgs() << "\n");
|
|
|
|
// Redirect all the backedges through a "hub" consisting of a series
|
|
// of guard blocks that manage the flow of control from the
|
|
// predecessors to the headers.
|
|
SmallVector<BasicBlock *, 8> GuardBlocks;
|
|
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
|
|
CreateControlFlowHub(&DTU, GuardBlocks, Predecessors, Headers, "irr");
|
|
#if defined(EXPENSIVE_CHECKS)
|
|
assert(DT.verify(DominatorTree::VerificationLevel::Full));
|
|
#else
|
|
assert(DT.verify(DominatorTree::VerificationLevel::Fast));
|
|
#endif
|
|
|
|
// Create a new loop from the now-transformed cycle
|
|
auto NewLoop = LI.AllocateLoop();
|
|
if (ParentLoop) {
|
|
ParentLoop->addChildLoop(NewLoop);
|
|
} else {
|
|
LI.addTopLevelLoop(NewLoop);
|
|
}
|
|
|
|
// Add the guard blocks to the new loop. The first guard block is
|
|
// the head of all the backedges, and it is the first to be inserted
|
|
// in the loop. This ensures that it is recognized as the
|
|
// header. Since the new loop is already in LoopInfo, the new blocks
|
|
// are also propagated up the chain of parent loops.
|
|
for (auto G : GuardBlocks) {
|
|
LLVM_DEBUG(dbgs() << "added guard block: " << G->getName() << "\n");
|
|
NewLoop->addBasicBlockToLoop(G, LI);
|
|
}
|
|
|
|
// Add the SCC blocks to the new loop.
|
|
for (auto BB : Blocks) {
|
|
NewLoop->addBlockEntry(BB);
|
|
if (LI.getLoopFor(BB) == ParentLoop) {
|
|
LLVM_DEBUG(dbgs() << "moved block from parent: " << BB->getName()
|
|
<< "\n");
|
|
LI.changeLoopFor(BB, NewLoop);
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "added block from child: " << BB->getName() << "\n");
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << "header for new loop: "
|
|
<< NewLoop->getHeader()->getName() << "\n");
|
|
|
|
reconnectChildLoops(LI, ParentLoop, NewLoop, Blocks, Headers);
|
|
|
|
NewLoop->verifyLoop();
|
|
if (ParentLoop) {
|
|
ParentLoop->verifyLoop();
|
|
}
|
|
#if defined(EXPENSIVE_CHECKS)
|
|
LI.verify(DT);
|
|
#endif // EXPENSIVE_CHECKS
|
|
}
|
|
|
|
namespace llvm {
|
|
// Enable the graph traits required for traversing a Loop body.
|
|
template <> struct GraphTraits<Loop> : LoopBodyTraits {};
|
|
} // namespace llvm
|
|
|
|
// Overloaded wrappers to go with the function template below.
|
|
static BasicBlock *unwrapBlock(BasicBlock *B) { return B; }
|
|
static BasicBlock *unwrapBlock(LoopBodyTraits::NodeRef &N) { return N.second; }
|
|
|
|
static void createNaturalLoop(LoopInfo &LI, DominatorTree &DT, Function *F,
|
|
SetVector<BasicBlock *> &Blocks,
|
|
SetVector<BasicBlock *> &Headers) {
|
|
createNaturalLoopInternal(LI, DT, nullptr, Blocks, Headers);
|
|
}
|
|
|
|
static void createNaturalLoop(LoopInfo &LI, DominatorTree &DT, Loop &L,
|
|
SetVector<BasicBlock *> &Blocks,
|
|
SetVector<BasicBlock *> &Headers) {
|
|
createNaturalLoopInternal(LI, DT, &L, Blocks, Headers);
|
|
}
|
|
|
|
// Convert irreducible SCCs; Graph G may be a Function* or a Loop&.
|
|
template <class Graph>
|
|
static bool makeReducible(LoopInfo &LI, DominatorTree &DT, Graph &&G) {
|
|
bool Changed = false;
|
|
for (auto Scc = scc_begin(G); !Scc.isAtEnd(); ++Scc) {
|
|
if (Scc->size() < 2)
|
|
continue;
|
|
SetVector<BasicBlock *> Blocks;
|
|
LLVM_DEBUG(dbgs() << "Found SCC:");
|
|
for (auto N : *Scc) {
|
|
auto BB = unwrapBlock(N);
|
|
LLVM_DEBUG(dbgs() << " " << BB->getName());
|
|
Blocks.insert(BB);
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
|
|
// Minor optimization: The SCC blocks are usually discovered in an order
|
|
// that is the opposite of the order in which these blocks appear as branch
|
|
// targets. This results in a lot of condition inversions in the control
|
|
// flow out of the new ControlFlowHub, which can be mitigated if the orders
|
|
// match. So we discover the headers using the reverse of the block order.
|
|
SetVector<BasicBlock *> Headers;
|
|
LLVM_DEBUG(dbgs() << "Found headers:");
|
|
for (auto BB : reverse(Blocks)) {
|
|
for (const auto P : predecessors(BB)) {
|
|
// Skip unreachable predecessors.
|
|
if (!DT.isReachableFromEntry(P))
|
|
continue;
|
|
if (!Blocks.count(P)) {
|
|
LLVM_DEBUG(dbgs() << " " << BB->getName());
|
|
Headers.insert(BB);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
|
|
if (Headers.size() == 1) {
|
|
assert(LI.isLoopHeader(Headers.front()));
|
|
LLVM_DEBUG(dbgs() << "Natural loop with a single header: skipped\n");
|
|
continue;
|
|
}
|
|
createNaturalLoop(LI, DT, G, Blocks, Headers);
|
|
Changed = true;
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
static bool FixIrreducibleImpl(Function &F, LoopInfo &LI, DominatorTree &DT) {
|
|
LLVM_DEBUG(dbgs() << "===== Fix irreducible control-flow in function: "
|
|
<< F.getName() << "\n");
|
|
|
|
bool Changed = false;
|
|
SmallVector<Loop *, 8> WorkList;
|
|
|
|
LLVM_DEBUG(dbgs() << "visiting top-level\n");
|
|
Changed |= makeReducible(LI, DT, &F);
|
|
|
|
// Any SCCs reduced are now already in the list of top-level loops, so simply
|
|
// add them all to the worklist.
|
|
for (auto L : LI) {
|
|
WorkList.push_back(L);
|
|
}
|
|
|
|
while (!WorkList.empty()) {
|
|
auto L = WorkList.back();
|
|
WorkList.pop_back();
|
|
LLVM_DEBUG(dbgs() << "visiting loop with header "
|
|
<< L->getHeader()->getName() << "\n");
|
|
Changed |= makeReducible(LI, DT, *L);
|
|
// Any SCCs reduced are now already in the list of child loops, so simply
|
|
// add them all to the worklist.
|
|
WorkList.append(L->begin(), L->end());
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool FixIrreducible::runOnFunction(Function &F) {
|
|
auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
return FixIrreducibleImpl(F, LI, DT);
|
|
}
|
|
|
|
PreservedAnalyses FixIrreduciblePass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
auto &LI = AM.getResult<LoopAnalysis>(F);
|
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
if (!FixIrreducibleImpl(F, LI, DT))
|
|
return PreservedAnalyses::all();
|
|
PreservedAnalyses PA;
|
|
PA.preserve<LoopAnalysis>();
|
|
PA.preserve<DominatorTreeAnalysis>();
|
|
return PA;
|
|
}
|