1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-26 22:42:46 +02:00
llvm-mirror/lib/ProfileData/CoverageMapping.cpp
Justin Bogner 52fcf66c03 llvm-cov: Only combine segments if they overlap exactly
If two coverage segments cover the same area we need to combine them,
as per r218432. OTOH, just because they start at the same place
doesn't mean they cover the same area. This fixes the check to be more
exact about this.

This is pretty hard to test right now. The frontend doesn't currently
emit regions that start at the same place but don't overlap, but some
upcoming work changes this.

llvm-svn: 227017
2015-01-24 20:58:52 +00:00

481 lines
16 KiB
C++

//=-- CoverageMapping.cpp - Code coverage mapping support ---------*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains support for clang's and llvm's instrumentation based
// code coverage.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/CoverageMapping.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ProfileData/CoverageMappingReader.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
using namespace coverage;
#define DEBUG_TYPE "coverage-mapping"
Counter CounterExpressionBuilder::get(const CounterExpression &E) {
auto It = ExpressionIndices.find(E);
if (It != ExpressionIndices.end())
return Counter::getExpression(It->second);
unsigned I = Expressions.size();
Expressions.push_back(E);
ExpressionIndices[E] = I;
return Counter::getExpression(I);
}
void CounterExpressionBuilder::extractTerms(
Counter C, int Sign, SmallVectorImpl<std::pair<unsigned, int>> &Terms) {
switch (C.getKind()) {
case Counter::Zero:
break;
case Counter::CounterValueReference:
Terms.push_back(std::make_pair(C.getCounterID(), Sign));
break;
case Counter::Expression:
const auto &E = Expressions[C.getExpressionID()];
extractTerms(E.LHS, Sign, Terms);
extractTerms(E.RHS, E.Kind == CounterExpression::Subtract ? -Sign : Sign,
Terms);
break;
}
}
Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) {
// Gather constant terms.
llvm::SmallVector<std::pair<unsigned, int>, 32> Terms;
extractTerms(ExpressionTree, +1, Terms);
// If there are no terms, this is just a zero. The algorithm below assumes at
// least one term.
if (Terms.size() == 0)
return Counter::getZero();
// Group the terms by counter ID.
std::sort(Terms.begin(), Terms.end(),
[](const std::pair<unsigned, int> &LHS,
const std::pair<unsigned, int> &RHS) {
return LHS.first < RHS.first;
});
// Combine terms by counter ID to eliminate counters that sum to zero.
auto Prev = Terms.begin();
for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) {
if (I->first == Prev->first) {
Prev->second += I->second;
continue;
}
++Prev;
*Prev = *I;
}
Terms.erase(++Prev, Terms.end());
Counter C;
// Create additions. We do this before subtractions to avoid constructs like
// ((0 - X) + Y), as opposed to (Y - X).
for (auto Term : Terms) {
if (Term.second <= 0)
continue;
for (int I = 0; I < Term.second; ++I)
if (C.isZero())
C = Counter::getCounter(Term.first);
else
C = get(CounterExpression(CounterExpression::Add, C,
Counter::getCounter(Term.first)));
}
// Create subtractions.
for (auto Term : Terms) {
if (Term.second >= 0)
continue;
for (int I = 0; I < -Term.second; ++I)
C = get(CounterExpression(CounterExpression::Subtract, C,
Counter::getCounter(Term.first)));
}
return C;
}
Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS) {
return simplify(get(CounterExpression(CounterExpression::Add, LHS, RHS)));
}
Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS) {
return simplify(
get(CounterExpression(CounterExpression::Subtract, LHS, RHS)));
}
void CounterMappingContext::dump(const Counter &C,
llvm::raw_ostream &OS) const {
switch (C.getKind()) {
case Counter::Zero:
OS << '0';
return;
case Counter::CounterValueReference:
OS << '#' << C.getCounterID();
break;
case Counter::Expression: {
if (C.getExpressionID() >= Expressions.size())
return;
const auto &E = Expressions[C.getExpressionID()];
OS << '(';
dump(E.LHS, OS);
OS << (E.Kind == CounterExpression::Subtract ? " - " : " + ");
dump(E.RHS, OS);
OS << ')';
break;
}
}
if (CounterValues.empty())
return;
ErrorOr<int64_t> Value = evaluate(C);
if (!Value)
return;
OS << '[' << *Value << ']';
}
ErrorOr<int64_t> CounterMappingContext::evaluate(const Counter &C) const {
switch (C.getKind()) {
case Counter::Zero:
return 0;
case Counter::CounterValueReference:
if (C.getCounterID() >= CounterValues.size())
return std::make_error_code(std::errc::argument_out_of_domain);
return CounterValues[C.getCounterID()];
case Counter::Expression: {
if (C.getExpressionID() >= Expressions.size())
return std::make_error_code(std::errc::argument_out_of_domain);
const auto &E = Expressions[C.getExpressionID()];
ErrorOr<int64_t> LHS = evaluate(E.LHS);
if (!LHS)
return LHS;
ErrorOr<int64_t> RHS = evaluate(E.RHS);
if (!RHS)
return RHS;
return E.Kind == CounterExpression::Subtract ? *LHS - *RHS : *LHS + *RHS;
}
}
llvm_unreachable("Unhandled CounterKind");
}
void FunctionRecordIterator::skipOtherFiles() {
while (Current != Records.end() && !Filename.empty() &&
Filename != Current->Filenames[0])
++Current;
if (Current == Records.end())
*this = FunctionRecordIterator();
}
ErrorOr<std::unique_ptr<CoverageMapping>>
CoverageMapping::load(ObjectFileCoverageMappingReader &CoverageReader,
IndexedInstrProfReader &ProfileReader) {
auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
std::vector<uint64_t> Counts;
for (const auto &Record : CoverageReader) {
Counts.clear();
if (std::error_code EC = ProfileReader.getFunctionCounts(
Record.FunctionName, Record.FunctionHash, Counts)) {
if (EC != instrprof_error::hash_mismatch &&
EC != instrprof_error::unknown_function)
return EC;
Coverage->MismatchedFunctionCount++;
continue;
}
assert(Counts.size() != 0 && "Function's counts are empty");
FunctionRecord Function(Record.FunctionName, Record.Filenames,
Counts.front());
CounterMappingContext Ctx(Record.Expressions, Counts);
for (const auto &Region : Record.MappingRegions) {
ErrorOr<int64_t> ExecutionCount = Ctx.evaluate(Region.Count);
if (!ExecutionCount)
break;
Function.CountedRegions.push_back(CountedRegion(Region, *ExecutionCount));
}
if (Function.CountedRegions.size() != Record.MappingRegions.size()) {
Coverage->MismatchedFunctionCount++;
continue;
}
Coverage->Functions.push_back(std::move(Function));
}
return std::move(Coverage);
}
ErrorOr<std::unique_ptr<CoverageMapping>>
CoverageMapping::load(StringRef ObjectFilename, StringRef ProfileFilename) {
auto CounterMappingBuff = MemoryBuffer::getFileOrSTDIN(ObjectFilename);
if (auto EC = CounterMappingBuff.getError())
return EC;
ObjectFileCoverageMappingReader CoverageReader(CounterMappingBuff.get());
if (auto EC = CoverageReader.readHeader())
return EC;
std::unique_ptr<IndexedInstrProfReader> ProfileReader;
if (auto EC = IndexedInstrProfReader::create(ProfileFilename, ProfileReader))
return EC;
return load(CoverageReader, *ProfileReader);
}
namespace {
/// \brief Distributes functions into instantiation sets.
///
/// An instantiation set is a collection of functions that have the same source
/// code, ie, template functions specializations.
class FunctionInstantiationSetCollector {
typedef DenseMap<std::pair<unsigned, unsigned>,
std::vector<const FunctionRecord *>> MapT;
MapT InstantiatedFunctions;
public:
void insert(const FunctionRecord &Function, unsigned FileID) {
auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end();
while (I != E && I->FileID != FileID)
++I;
assert(I != E && "function does not cover the given file");
auto &Functions = InstantiatedFunctions[I->startLoc()];
Functions.push_back(&Function);
}
MapT::iterator begin() { return InstantiatedFunctions.begin(); }
MapT::iterator end() { return InstantiatedFunctions.end(); }
};
class SegmentBuilder {
std::vector<CoverageSegment> Segments;
SmallVector<const CountedRegion *, 8> ActiveRegions;
/// Start a segment with no count specified.
void startSegment(unsigned Line, unsigned Col) {
DEBUG(dbgs() << "Top level segment at " << Line << ":" << Col << "\n");
Segments.emplace_back(Line, Col, /*IsRegionEntry=*/false);
}
/// Start a segment with the given Region's count.
void startSegment(unsigned Line, unsigned Col, bool IsRegionEntry,
const CountedRegion &Region) {
if (Segments.empty())
Segments.emplace_back(Line, Col, IsRegionEntry);
CoverageSegment S = Segments.back();
// Avoid creating empty regions.
if (S.Line != Line || S.Col != Col) {
Segments.emplace_back(Line, Col, IsRegionEntry);
S = Segments.back();
}
DEBUG(dbgs() << "Segment at " << Line << ":" << Col);
// Set this region's count.
if (Region.Kind != coverage::CounterMappingRegion::SkippedRegion) {
DEBUG(dbgs() << " with count " << Region.ExecutionCount);
Segments.back().setCount(Region.ExecutionCount);
}
DEBUG(dbgs() << "\n");
}
/// Start a segment for the given region.
void startSegment(const CountedRegion &Region) {
startSegment(Region.LineStart, Region.ColumnStart, true, Region);
}
/// Pop the top region off of the active stack, starting a new segment with
/// the containing Region's count.
void popRegion() {
const CountedRegion *Active = ActiveRegions.back();
unsigned Line = Active->LineEnd, Col = Active->ColumnEnd;
ActiveRegions.pop_back();
if (ActiveRegions.empty())
startSegment(Line, Col);
else
startSegment(Line, Col, false, *ActiveRegions.back());
}
public:
/// Build a list of CoverageSegments from a sorted list of Regions.
std::vector<CoverageSegment> buildSegments(ArrayRef<CountedRegion> Regions) {
const CountedRegion *PrevRegion = nullptr;
for (const auto &Region : Regions) {
// Pop any regions that end before this one starts.
while (!ActiveRegions.empty() &&
ActiveRegions.back()->endLoc() <= Region.startLoc())
popRegion();
if (PrevRegion && PrevRegion->startLoc() == Region.startLoc() &&
PrevRegion->endLoc() == Region.endLoc()) {
if (Region.Kind != coverage::CounterMappingRegion::SkippedRegion)
Segments.back().addCount(Region.ExecutionCount);
} else {
// Add this region to the stack.
ActiveRegions.push_back(&Region);
startSegment(Region);
}
PrevRegion = &Region;
}
// Pop any regions that are left in the stack.
while (!ActiveRegions.empty())
popRegion();
return Segments;
}
};
}
std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const {
std::vector<StringRef> Filenames;
for (const auto &Function : getCoveredFunctions())
for (const auto &Filename : Function.Filenames)
Filenames.push_back(Filename);
std::sort(Filenames.begin(), Filenames.end());
auto Last = std::unique(Filenames.begin(), Filenames.end());
Filenames.erase(Last, Filenames.end());
return Filenames;
}
static Optional<unsigned> findMainViewFileID(StringRef SourceFile,
const FunctionRecord &Function) {
llvm::SmallVector<bool, 8> IsExpandedFile(Function.Filenames.size(), false);
llvm::SmallVector<bool, 8> FilenameEquivalence(Function.Filenames.size(),
false);
for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
if (SourceFile == Function.Filenames[I])
FilenameEquivalence[I] = true;
for (const auto &CR : Function.CountedRegions)
if (CR.Kind == CounterMappingRegion::ExpansionRegion &&
FilenameEquivalence[CR.FileID])
IsExpandedFile[CR.ExpandedFileID] = true;
for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
if (FilenameEquivalence[I] && !IsExpandedFile[I])
return I;
return None;
}
static Optional<unsigned> findMainViewFileID(const FunctionRecord &Function) {
llvm::SmallVector<bool, 8> IsExpandedFile(Function.Filenames.size(), false);
for (const auto &CR : Function.CountedRegions)
if (CR.Kind == CounterMappingRegion::ExpansionRegion)
IsExpandedFile[CR.ExpandedFileID] = true;
for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
if (!IsExpandedFile[I])
return I;
return None;
}
static SmallSet<unsigned, 8> gatherFileIDs(StringRef SourceFile,
const FunctionRecord &Function) {
SmallSet<unsigned, 8> IDs;
for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
if (SourceFile == Function.Filenames[I])
IDs.insert(I);
return IDs;
}
/// Sort a nested sequence of regions from a single file.
template <class It> static void sortNestedRegions(It First, It Last) {
std::sort(First, Last,
[](const CountedRegion &LHS, const CountedRegion &RHS) {
if (LHS.startLoc() == RHS.startLoc())
// When LHS completely contains RHS, we sort LHS first.
return RHS.endLoc() < LHS.endLoc();
return LHS.startLoc() < RHS.startLoc();
});
}
static bool isExpansion(const CountedRegion &R, unsigned FileID) {
return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID;
}
CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) {
CoverageData FileCoverage(Filename);
std::vector<coverage::CountedRegion> Regions;
for (const auto &Function : Functions) {
auto MainFileID = findMainViewFileID(Filename, Function);
if (!MainFileID)
continue;
auto FileIDs = gatherFileIDs(Filename, Function);
for (const auto &CR : Function.CountedRegions)
if (FileIDs.count(CR.FileID)) {
Regions.push_back(CR);
if (isExpansion(CR, *MainFileID))
FileCoverage.Expansions.emplace_back(CR, Function);
}
}
sortNestedRegions(Regions.begin(), Regions.end());
DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n");
FileCoverage.Segments = SegmentBuilder().buildSegments(Regions);
return FileCoverage;
}
std::vector<const FunctionRecord *>
CoverageMapping::getInstantiations(StringRef Filename) {
FunctionInstantiationSetCollector InstantiationSetCollector;
for (const auto &Function : Functions) {
auto MainFileID = findMainViewFileID(Filename, Function);
if (!MainFileID)
continue;
InstantiationSetCollector.insert(Function, *MainFileID);
}
std::vector<const FunctionRecord *> Result;
for (const auto &InstantiationSet : InstantiationSetCollector) {
if (InstantiationSet.second.size() < 2)
continue;
for (auto Function : InstantiationSet.second)
Result.push_back(Function);
}
return Result;
}
CoverageData
CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) {
auto MainFileID = findMainViewFileID(Function);
if (!MainFileID)
return CoverageData();
CoverageData FunctionCoverage(Function.Filenames[*MainFileID]);
std::vector<coverage::CountedRegion> Regions;
for (const auto &CR : Function.CountedRegions)
if (CR.FileID == *MainFileID) {
Regions.push_back(CR);
if (isExpansion(CR, *MainFileID))
FunctionCoverage.Expansions.emplace_back(CR, Function);
}
sortNestedRegions(Regions.begin(), Regions.end());
DEBUG(dbgs() << "Emitting segments for function: " << Function.Name << "\n");
FunctionCoverage.Segments = SegmentBuilder().buildSegments(Regions);
return FunctionCoverage;
}
CoverageData
CoverageMapping::getCoverageForExpansion(const ExpansionRecord &Expansion) {
CoverageData ExpansionCoverage(
Expansion.Function.Filenames[Expansion.FileID]);
std::vector<coverage::CountedRegion> Regions;
for (const auto &CR : Expansion.Function.CountedRegions)
if (CR.FileID == Expansion.FileID) {
Regions.push_back(CR);
if (isExpansion(CR, Expansion.FileID))
ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function);
}
sortNestedRegions(Regions.begin(), Regions.end());
DEBUG(dbgs() << "Emitting segments for expansion of file " << Expansion.FileID
<< "\n");
ExpansionCoverage.Segments = SegmentBuilder().buildSegments(Regions);
return ExpansionCoverage;
}