mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 12:12:47 +01:00
c8dff72621
There are probably more instances of this floating around. llvm-svn: 130474
2586 lines
85 KiB
C++
2586 lines
85 KiB
C++
//===- ARMBaseInstrInfo.cpp - ARM Instruction Information -------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the Base ARM implementation of the TargetInstrInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARMBaseInstrInfo.h"
|
|
#include "ARM.h"
|
|
#include "ARMAddressingModes.h"
|
|
#include "ARMConstantPoolValue.h"
|
|
#include "ARMHazardRecognizer.h"
|
|
#include "ARMMachineFunctionInfo.h"
|
|
#include "ARMRegisterInfo.h"
|
|
#include "ARMGenInstrInfo.inc"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalValue.h"
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool>
|
|
EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
|
|
cl::desc("Enable ARM 2-addr to 3-addr conv"));
|
|
|
|
/// ARM_MLxEntry - Record information about MLA / MLS instructions.
|
|
struct ARM_MLxEntry {
|
|
unsigned MLxOpc; // MLA / MLS opcode
|
|
unsigned MulOpc; // Expanded multiplication opcode
|
|
unsigned AddSubOpc; // Expanded add / sub opcode
|
|
bool NegAcc; // True if the acc is negated before the add / sub.
|
|
bool HasLane; // True if instruction has an extra "lane" operand.
|
|
};
|
|
|
|
static const ARM_MLxEntry ARM_MLxTable[] = {
|
|
// MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane
|
|
// fp scalar ops
|
|
{ ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false },
|
|
{ ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false },
|
|
{ ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false },
|
|
{ ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false },
|
|
{ ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false },
|
|
{ ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false },
|
|
{ ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false },
|
|
{ ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false },
|
|
|
|
// fp SIMD ops
|
|
{ ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false },
|
|
{ ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false },
|
|
{ ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false },
|
|
{ ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false },
|
|
{ ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true },
|
|
{ ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true },
|
|
{ ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true },
|
|
{ ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true },
|
|
};
|
|
|
|
ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
|
|
: TargetInstrInfoImpl(ARMInsts, array_lengthof(ARMInsts)),
|
|
Subtarget(STI) {
|
|
for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
|
|
if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
|
|
assert(false && "Duplicated entries?");
|
|
MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
|
|
MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
|
|
}
|
|
}
|
|
|
|
// Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
|
|
// currently defaults to no prepass hazard recognizer.
|
|
ScheduleHazardRecognizer *ARMBaseInstrInfo::
|
|
CreateTargetHazardRecognizer(const TargetMachine *TM,
|
|
const ScheduleDAG *DAG) const {
|
|
if (usePreRAHazardRecognizer()) {
|
|
const InstrItineraryData *II = TM->getInstrItineraryData();
|
|
return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
|
|
}
|
|
return TargetInstrInfoImpl::CreateTargetHazardRecognizer(TM, DAG);
|
|
}
|
|
|
|
ScheduleHazardRecognizer *ARMBaseInstrInfo::
|
|
CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
|
|
const ScheduleDAG *DAG) const {
|
|
if (Subtarget.isThumb2() || Subtarget.hasVFP2())
|
|
return (ScheduleHazardRecognizer *)
|
|
new ARMHazardRecognizer(II, *this, getRegisterInfo(), Subtarget, DAG);
|
|
return TargetInstrInfoImpl::CreateTargetPostRAHazardRecognizer(II, DAG);
|
|
}
|
|
|
|
MachineInstr *
|
|
ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
|
|
MachineBasicBlock::iterator &MBBI,
|
|
LiveVariables *LV) const {
|
|
// FIXME: Thumb2 support.
|
|
|
|
if (!EnableARM3Addr)
|
|
return NULL;
|
|
|
|
MachineInstr *MI = MBBI;
|
|
MachineFunction &MF = *MI->getParent()->getParent();
|
|
uint64_t TSFlags = MI->getDesc().TSFlags;
|
|
bool isPre = false;
|
|
switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
|
|
default: return NULL;
|
|
case ARMII::IndexModePre:
|
|
isPre = true;
|
|
break;
|
|
case ARMII::IndexModePost:
|
|
break;
|
|
}
|
|
|
|
// Try splitting an indexed load/store to an un-indexed one plus an add/sub
|
|
// operation.
|
|
unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
|
|
if (MemOpc == 0)
|
|
return NULL;
|
|
|
|
MachineInstr *UpdateMI = NULL;
|
|
MachineInstr *MemMI = NULL;
|
|
unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
unsigned NumOps = TID.getNumOperands();
|
|
bool isLoad = !TID.mayStore();
|
|
const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
|
|
const MachineOperand &Base = MI->getOperand(2);
|
|
const MachineOperand &Offset = MI->getOperand(NumOps-3);
|
|
unsigned WBReg = WB.getReg();
|
|
unsigned BaseReg = Base.getReg();
|
|
unsigned OffReg = Offset.getReg();
|
|
unsigned OffImm = MI->getOperand(NumOps-2).getImm();
|
|
ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
|
|
switch (AddrMode) {
|
|
default:
|
|
assert(false && "Unknown indexed op!");
|
|
return NULL;
|
|
case ARMII::AddrMode2: {
|
|
bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
|
|
unsigned Amt = ARM_AM::getAM2Offset(OffImm);
|
|
if (OffReg == 0) {
|
|
if (ARM_AM::getSOImmVal(Amt) == -1)
|
|
// Can't encode it in a so_imm operand. This transformation will
|
|
// add more than 1 instruction. Abandon!
|
|
return NULL;
|
|
UpdateMI = BuildMI(MF, MI->getDebugLoc(),
|
|
get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
|
|
.addReg(BaseReg).addImm(Amt)
|
|
.addImm(Pred).addReg(0).addReg(0);
|
|
} else if (Amt != 0) {
|
|
ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
|
|
unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
|
|
UpdateMI = BuildMI(MF, MI->getDebugLoc(),
|
|
get(isSub ? ARM::SUBrs : ARM::ADDrs), WBReg)
|
|
.addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
|
|
.addImm(Pred).addReg(0).addReg(0);
|
|
} else
|
|
UpdateMI = BuildMI(MF, MI->getDebugLoc(),
|
|
get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
|
|
.addReg(BaseReg).addReg(OffReg)
|
|
.addImm(Pred).addReg(0).addReg(0);
|
|
break;
|
|
}
|
|
case ARMII::AddrMode3 : {
|
|
bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
|
|
unsigned Amt = ARM_AM::getAM3Offset(OffImm);
|
|
if (OffReg == 0)
|
|
// Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
|
|
UpdateMI = BuildMI(MF, MI->getDebugLoc(),
|
|
get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
|
|
.addReg(BaseReg).addImm(Amt)
|
|
.addImm(Pred).addReg(0).addReg(0);
|
|
else
|
|
UpdateMI = BuildMI(MF, MI->getDebugLoc(),
|
|
get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
|
|
.addReg(BaseReg).addReg(OffReg)
|
|
.addImm(Pred).addReg(0).addReg(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
std::vector<MachineInstr*> NewMIs;
|
|
if (isPre) {
|
|
if (isLoad)
|
|
MemMI = BuildMI(MF, MI->getDebugLoc(),
|
|
get(MemOpc), MI->getOperand(0).getReg())
|
|
.addReg(WBReg).addImm(0).addImm(Pred);
|
|
else
|
|
MemMI = BuildMI(MF, MI->getDebugLoc(),
|
|
get(MemOpc)).addReg(MI->getOperand(1).getReg())
|
|
.addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
|
|
NewMIs.push_back(MemMI);
|
|
NewMIs.push_back(UpdateMI);
|
|
} else {
|
|
if (isLoad)
|
|
MemMI = BuildMI(MF, MI->getDebugLoc(),
|
|
get(MemOpc), MI->getOperand(0).getReg())
|
|
.addReg(BaseReg).addImm(0).addImm(Pred);
|
|
else
|
|
MemMI = BuildMI(MF, MI->getDebugLoc(),
|
|
get(MemOpc)).addReg(MI->getOperand(1).getReg())
|
|
.addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
|
|
if (WB.isDead())
|
|
UpdateMI->getOperand(0).setIsDead();
|
|
NewMIs.push_back(UpdateMI);
|
|
NewMIs.push_back(MemMI);
|
|
}
|
|
|
|
// Transfer LiveVariables states, kill / dead info.
|
|
if (LV) {
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
|
|
unsigned Reg = MO.getReg();
|
|
|
|
LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
|
|
if (MO.isDef()) {
|
|
MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
|
|
if (MO.isDead())
|
|
LV->addVirtualRegisterDead(Reg, NewMI);
|
|
}
|
|
if (MO.isUse() && MO.isKill()) {
|
|
for (unsigned j = 0; j < 2; ++j) {
|
|
// Look at the two new MI's in reverse order.
|
|
MachineInstr *NewMI = NewMIs[j];
|
|
if (!NewMI->readsRegister(Reg))
|
|
continue;
|
|
LV->addVirtualRegisterKilled(Reg, NewMI);
|
|
if (VI.removeKill(MI))
|
|
VI.Kills.push_back(NewMI);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
MFI->insert(MBBI, NewMIs[1]);
|
|
MFI->insert(MBBI, NewMIs[0]);
|
|
return NewMIs[0];
|
|
}
|
|
|
|
// Branch analysis.
|
|
bool
|
|
ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const {
|
|
// If the block has no terminators, it just falls into the block after it.
|
|
MachineBasicBlock::iterator I = MBB.end();
|
|
if (I == MBB.begin())
|
|
return false;
|
|
--I;
|
|
while (I->isDebugValue()) {
|
|
if (I == MBB.begin())
|
|
return false;
|
|
--I;
|
|
}
|
|
if (!isUnpredicatedTerminator(I))
|
|
return false;
|
|
|
|
// Get the last instruction in the block.
|
|
MachineInstr *LastInst = I;
|
|
|
|
// If there is only one terminator instruction, process it.
|
|
unsigned LastOpc = LastInst->getOpcode();
|
|
if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
|
|
if (isUncondBranchOpcode(LastOpc)) {
|
|
TBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
}
|
|
if (isCondBranchOpcode(LastOpc)) {
|
|
// Block ends with fall-through condbranch.
|
|
TBB = LastInst->getOperand(0).getMBB();
|
|
Cond.push_back(LastInst->getOperand(1));
|
|
Cond.push_back(LastInst->getOperand(2));
|
|
return false;
|
|
}
|
|
return true; // Can't handle indirect branch.
|
|
}
|
|
|
|
// Get the instruction before it if it is a terminator.
|
|
MachineInstr *SecondLastInst = I;
|
|
unsigned SecondLastOpc = SecondLastInst->getOpcode();
|
|
|
|
// If AllowModify is true and the block ends with two or more unconditional
|
|
// branches, delete all but the first unconditional branch.
|
|
if (AllowModify && isUncondBranchOpcode(LastOpc)) {
|
|
while (isUncondBranchOpcode(SecondLastOpc)) {
|
|
LastInst->eraseFromParent();
|
|
LastInst = SecondLastInst;
|
|
LastOpc = LastInst->getOpcode();
|
|
if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
|
|
// Return now the only terminator is an unconditional branch.
|
|
TBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
} else {
|
|
SecondLastInst = I;
|
|
SecondLastOpc = SecondLastInst->getOpcode();
|
|
}
|
|
}
|
|
}
|
|
|
|
// If there are three terminators, we don't know what sort of block this is.
|
|
if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
|
|
return true;
|
|
|
|
// If the block ends with a B and a Bcc, handle it.
|
|
if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
|
|
TBB = SecondLastInst->getOperand(0).getMBB();
|
|
Cond.push_back(SecondLastInst->getOperand(1));
|
|
Cond.push_back(SecondLastInst->getOperand(2));
|
|
FBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
}
|
|
|
|
// If the block ends with two unconditional branches, handle it. The second
|
|
// one is not executed, so remove it.
|
|
if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
|
|
TBB = SecondLastInst->getOperand(0).getMBB();
|
|
I = LastInst;
|
|
if (AllowModify)
|
|
I->eraseFromParent();
|
|
return false;
|
|
}
|
|
|
|
// ...likewise if it ends with a branch table followed by an unconditional
|
|
// branch. The branch folder can create these, and we must get rid of them for
|
|
// correctness of Thumb constant islands.
|
|
if ((isJumpTableBranchOpcode(SecondLastOpc) ||
|
|
isIndirectBranchOpcode(SecondLastOpc)) &&
|
|
isUncondBranchOpcode(LastOpc)) {
|
|
I = LastInst;
|
|
if (AllowModify)
|
|
I->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, can't handle this.
|
|
return true;
|
|
}
|
|
|
|
|
|
unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
|
|
MachineBasicBlock::iterator I = MBB.end();
|
|
if (I == MBB.begin()) return 0;
|
|
--I;
|
|
while (I->isDebugValue()) {
|
|
if (I == MBB.begin())
|
|
return 0;
|
|
--I;
|
|
}
|
|
if (!isUncondBranchOpcode(I->getOpcode()) &&
|
|
!isCondBranchOpcode(I->getOpcode()))
|
|
return 0;
|
|
|
|
// Remove the branch.
|
|
I->eraseFromParent();
|
|
|
|
I = MBB.end();
|
|
|
|
if (I == MBB.begin()) return 1;
|
|
--I;
|
|
if (!isCondBranchOpcode(I->getOpcode()))
|
|
return 1;
|
|
|
|
// Remove the branch.
|
|
I->eraseFromParent();
|
|
return 2;
|
|
}
|
|
|
|
unsigned
|
|
ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
|
|
MachineBasicBlock *FBB,
|
|
const SmallVectorImpl<MachineOperand> &Cond,
|
|
DebugLoc DL) const {
|
|
ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
|
|
int BOpc = !AFI->isThumbFunction()
|
|
? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
|
|
int BccOpc = !AFI->isThumbFunction()
|
|
? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
|
|
|
|
// Shouldn't be a fall through.
|
|
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
|
|
assert((Cond.size() == 2 || Cond.size() == 0) &&
|
|
"ARM branch conditions have two components!");
|
|
|
|
if (FBB == 0) {
|
|
if (Cond.empty()) // Unconditional branch?
|
|
BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
|
|
else
|
|
BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
|
|
.addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
|
|
return 1;
|
|
}
|
|
|
|
// Two-way conditional branch.
|
|
BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
|
|
.addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
|
|
BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
|
|
return 2;
|
|
}
|
|
|
|
bool ARMBaseInstrInfo::
|
|
ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
|
|
ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
|
|
Cond[0].setImm(ARMCC::getOppositeCondition(CC));
|
|
return false;
|
|
}
|
|
|
|
bool ARMBaseInstrInfo::
|
|
PredicateInstruction(MachineInstr *MI,
|
|
const SmallVectorImpl<MachineOperand> &Pred) const {
|
|
unsigned Opc = MI->getOpcode();
|
|
if (isUncondBranchOpcode(Opc)) {
|
|
MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
|
|
MI->addOperand(MachineOperand::CreateImm(Pred[0].getImm()));
|
|
MI->addOperand(MachineOperand::CreateReg(Pred[1].getReg(), false));
|
|
return true;
|
|
}
|
|
|
|
int PIdx = MI->findFirstPredOperandIdx();
|
|
if (PIdx != -1) {
|
|
MachineOperand &PMO = MI->getOperand(PIdx);
|
|
PMO.setImm(Pred[0].getImm());
|
|
MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool ARMBaseInstrInfo::
|
|
SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
|
|
const SmallVectorImpl<MachineOperand> &Pred2) const {
|
|
if (Pred1.size() > 2 || Pred2.size() > 2)
|
|
return false;
|
|
|
|
ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
|
|
ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
|
|
if (CC1 == CC2)
|
|
return true;
|
|
|
|
switch (CC1) {
|
|
default:
|
|
return false;
|
|
case ARMCC::AL:
|
|
return true;
|
|
case ARMCC::HS:
|
|
return CC2 == ARMCC::HI;
|
|
case ARMCC::LS:
|
|
return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
|
|
case ARMCC::GE:
|
|
return CC2 == ARMCC::GT;
|
|
case ARMCC::LE:
|
|
return CC2 == ARMCC::LT;
|
|
}
|
|
}
|
|
|
|
bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
|
|
std::vector<MachineOperand> &Pred) const {
|
|
// FIXME: This confuses implicit_def with optional CPSR def.
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
if (!TID.getImplicitDefs() && !TID.hasOptionalDef())
|
|
return false;
|
|
|
|
bool Found = false;
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isReg() && MO.getReg() == ARM::CPSR) {
|
|
Pred.push_back(MO);
|
|
Found = true;
|
|
}
|
|
}
|
|
|
|
return Found;
|
|
}
|
|
|
|
/// isPredicable - Return true if the specified instruction can be predicated.
|
|
/// By default, this returns true for every instruction with a
|
|
/// PredicateOperand.
|
|
bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
if (!TID.isPredicable())
|
|
return false;
|
|
|
|
if ((TID.TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) {
|
|
ARMFunctionInfo *AFI =
|
|
MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
|
|
return AFI->isThumb2Function();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// FIXME: Works around a gcc miscompilation with -fstrict-aliasing.
|
|
LLVM_ATTRIBUTE_NOINLINE
|
|
static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
|
|
unsigned JTI);
|
|
static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
|
|
unsigned JTI) {
|
|
assert(JTI < JT.size());
|
|
return JT[JTI].MBBs.size();
|
|
}
|
|
|
|
/// GetInstSize - Return the size of the specified MachineInstr.
|
|
///
|
|
unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
|
|
const MachineBasicBlock &MBB = *MI->getParent();
|
|
const MachineFunction *MF = MBB.getParent();
|
|
const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
|
|
|
|
// Basic size info comes from the TSFlags field.
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
uint64_t TSFlags = TID.TSFlags;
|
|
|
|
unsigned Opc = MI->getOpcode();
|
|
switch ((TSFlags & ARMII::SizeMask) >> ARMII::SizeShift) {
|
|
default: {
|
|
// If this machine instr is an inline asm, measure it.
|
|
if (MI->getOpcode() == ARM::INLINEASM)
|
|
return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
|
|
if (MI->isLabel())
|
|
return 0;
|
|
switch (Opc) {
|
|
default:
|
|
llvm_unreachable("Unknown or unset size field for instr!");
|
|
case TargetOpcode::IMPLICIT_DEF:
|
|
case TargetOpcode::KILL:
|
|
case TargetOpcode::PROLOG_LABEL:
|
|
case TargetOpcode::EH_LABEL:
|
|
case TargetOpcode::DBG_VALUE:
|
|
return 0;
|
|
}
|
|
break;
|
|
}
|
|
case ARMII::Size8Bytes: return 8; // ARM instruction x 2.
|
|
case ARMII::Size4Bytes: return 4; // ARM / Thumb2 instruction.
|
|
case ARMII::Size2Bytes: return 2; // Thumb1 instruction.
|
|
case ARMII::SizeSpecial: {
|
|
switch (Opc) {
|
|
case ARM::MOVi16_ga_pcrel:
|
|
case ARM::MOVTi16_ga_pcrel:
|
|
case ARM::t2MOVi16_ga_pcrel:
|
|
case ARM::t2MOVTi16_ga_pcrel:
|
|
return 4;
|
|
case ARM::MOVi32imm:
|
|
case ARM::t2MOVi32imm:
|
|
return 8;
|
|
case ARM::CONSTPOOL_ENTRY:
|
|
// If this machine instr is a constant pool entry, its size is recorded as
|
|
// operand #2.
|
|
return MI->getOperand(2).getImm();
|
|
case ARM::Int_eh_sjlj_longjmp:
|
|
return 16;
|
|
case ARM::tInt_eh_sjlj_longjmp:
|
|
return 10;
|
|
case ARM::Int_eh_sjlj_setjmp:
|
|
case ARM::Int_eh_sjlj_setjmp_nofp:
|
|
return 20;
|
|
case ARM::tInt_eh_sjlj_setjmp:
|
|
case ARM::t2Int_eh_sjlj_setjmp:
|
|
case ARM::t2Int_eh_sjlj_setjmp_nofp:
|
|
return 12;
|
|
case ARM::BR_JTr:
|
|
case ARM::BR_JTm:
|
|
case ARM::BR_JTadd:
|
|
case ARM::tBR_JTr:
|
|
case ARM::t2BR_JT:
|
|
case ARM::t2TBB_JT:
|
|
case ARM::t2TBH_JT: {
|
|
// These are jumptable branches, i.e. a branch followed by an inlined
|
|
// jumptable. The size is 4 + 4 * number of entries. For TBB, each
|
|
// entry is one byte; TBH two byte each.
|
|
unsigned EntrySize = (Opc == ARM::t2TBB_JT)
|
|
? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4);
|
|
unsigned NumOps = TID.getNumOperands();
|
|
MachineOperand JTOP =
|
|
MI->getOperand(NumOps - (TID.isPredicable() ? 3 : 2));
|
|
unsigned JTI = JTOP.getIndex();
|
|
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
|
|
assert(MJTI != 0);
|
|
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
|
|
assert(JTI < JT.size());
|
|
// Thumb instructions are 2 byte aligned, but JT entries are 4 byte
|
|
// 4 aligned. The assembler / linker may add 2 byte padding just before
|
|
// the JT entries. The size does not include this padding; the
|
|
// constant islands pass does separate bookkeeping for it.
|
|
// FIXME: If we know the size of the function is less than (1 << 16) *2
|
|
// bytes, we can use 16-bit entries instead. Then there won't be an
|
|
// alignment issue.
|
|
unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
|
|
unsigned NumEntries = getNumJTEntries(JT, JTI);
|
|
if (Opc == ARM::t2TBB_JT && (NumEntries & 1))
|
|
// Make sure the instruction that follows TBB is 2-byte aligned.
|
|
// FIXME: Constant island pass should insert an "ALIGN" instruction
|
|
// instead.
|
|
++NumEntries;
|
|
return NumEntries * EntrySize + InstSize;
|
|
}
|
|
default:
|
|
// Otherwise, pseudo-instruction sizes are zero.
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
return 0; // Not reached
|
|
}
|
|
|
|
void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I, DebugLoc DL,
|
|
unsigned DestReg, unsigned SrcReg,
|
|
bool KillSrc) const {
|
|
bool GPRDest = ARM::GPRRegClass.contains(DestReg);
|
|
bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
|
|
|
|
if (GPRDest && GPRSrc) {
|
|
AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc))));
|
|
return;
|
|
}
|
|
|
|
bool SPRDest = ARM::SPRRegClass.contains(DestReg);
|
|
bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
|
|
|
|
unsigned Opc;
|
|
if (SPRDest && SPRSrc)
|
|
Opc = ARM::VMOVS;
|
|
else if (GPRDest && SPRSrc)
|
|
Opc = ARM::VMOVRS;
|
|
else if (SPRDest && GPRSrc)
|
|
Opc = ARM::VMOVSR;
|
|
else if (ARM::DPRRegClass.contains(DestReg, SrcReg))
|
|
Opc = ARM::VMOVD;
|
|
else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
|
|
Opc = ARM::VMOVQ;
|
|
else if (ARM::QQPRRegClass.contains(DestReg, SrcReg))
|
|
Opc = ARM::VMOVQQ;
|
|
else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg))
|
|
Opc = ARM::VMOVQQQQ;
|
|
else
|
|
llvm_unreachable("Impossible reg-to-reg copy");
|
|
|
|
MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
|
|
MIB.addReg(SrcReg, getKillRegState(KillSrc));
|
|
if (Opc != ARM::VMOVQQ && Opc != ARM::VMOVQQQQ)
|
|
AddDefaultPred(MIB);
|
|
}
|
|
|
|
static const
|
|
MachineInstrBuilder &AddDReg(MachineInstrBuilder &MIB,
|
|
unsigned Reg, unsigned SubIdx, unsigned State,
|
|
const TargetRegisterInfo *TRI) {
|
|
if (!SubIdx)
|
|
return MIB.addReg(Reg, State);
|
|
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg))
|
|
return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
|
|
return MIB.addReg(Reg, State, SubIdx);
|
|
}
|
|
|
|
void ARMBaseInstrInfo::
|
|
storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
|
|
unsigned SrcReg, bool isKill, int FI,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
DebugLoc DL;
|
|
if (I != MBB.end()) DL = I->getDebugLoc();
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineFrameInfo &MFI = *MF.getFrameInfo();
|
|
unsigned Align = MFI.getObjectAlignment(FI);
|
|
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(MachinePointerInfo(
|
|
PseudoSourceValue::getFixedStack(FI)),
|
|
MachineMemOperand::MOStore,
|
|
MFI.getObjectSize(FI),
|
|
Align);
|
|
|
|
// tGPR is used sometimes in ARM instructions that need to avoid using
|
|
// certain registers. Just treat it as GPR here. Likewise, rGPR.
|
|
if (RC == ARM::tGPRRegisterClass || RC == ARM::tcGPRRegisterClass
|
|
|| RC == ARM::rGPRRegisterClass)
|
|
RC = ARM::GPRRegisterClass;
|
|
|
|
switch (RC->getID()) {
|
|
case ARM::GPRRegClassID:
|
|
AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
|
|
.addReg(SrcReg, getKillRegState(isKill))
|
|
.addFrameIndex(FI).addImm(0).addMemOperand(MMO));
|
|
break;
|
|
case ARM::SPRRegClassID:
|
|
AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
|
|
.addReg(SrcReg, getKillRegState(isKill))
|
|
.addFrameIndex(FI).addImm(0).addMemOperand(MMO));
|
|
break;
|
|
case ARM::DPRRegClassID:
|
|
case ARM::DPR_VFP2RegClassID:
|
|
case ARM::DPR_8RegClassID:
|
|
AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
|
|
.addReg(SrcReg, getKillRegState(isKill))
|
|
.addFrameIndex(FI).addImm(0).addMemOperand(MMO));
|
|
break;
|
|
case ARM::QPRRegClassID:
|
|
case ARM::QPR_VFP2RegClassID:
|
|
case ARM::QPR_8RegClassID:
|
|
if (Align >= 16 && getRegisterInfo().needsStackRealignment(MF)) {
|
|
AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64Pseudo))
|
|
.addFrameIndex(FI).addImm(16)
|
|
.addReg(SrcReg, getKillRegState(isKill))
|
|
.addMemOperand(MMO));
|
|
} else {
|
|
AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
|
|
.addReg(SrcReg, getKillRegState(isKill))
|
|
.addFrameIndex(FI)
|
|
.addMemOperand(MMO));
|
|
}
|
|
break;
|
|
case ARM::QQPRRegClassID:
|
|
case ARM::QQPR_VFP2RegClassID:
|
|
if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
|
|
// FIXME: It's possible to only store part of the QQ register if the
|
|
// spilled def has a sub-register index.
|
|
AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
|
|
.addFrameIndex(FI).addImm(16)
|
|
.addReg(SrcReg, getKillRegState(isKill))
|
|
.addMemOperand(MMO));
|
|
} else {
|
|
MachineInstrBuilder MIB =
|
|
AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
|
|
.addFrameIndex(FI))
|
|
.addMemOperand(MMO);
|
|
MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
|
|
MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
|
|
MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
|
|
AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
|
|
}
|
|
break;
|
|
case ARM::QQQQPRRegClassID: {
|
|
MachineInstrBuilder MIB =
|
|
AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
|
|
.addFrameIndex(FI))
|
|
.addMemOperand(MMO);
|
|
MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
|
|
MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
|
|
MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
|
|
MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
|
|
MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
|
|
MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
|
|
MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
|
|
AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
|
|
break;
|
|
}
|
|
default:
|
|
llvm_unreachable("Unknown regclass!");
|
|
}
|
|
}
|
|
|
|
unsigned
|
|
ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
|
|
int &FrameIndex) const {
|
|
switch (MI->getOpcode()) {
|
|
default: break;
|
|
case ARM::STRrs:
|
|
case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
|
|
if (MI->getOperand(1).isFI() &&
|
|
MI->getOperand(2).isReg() &&
|
|
MI->getOperand(3).isImm() &&
|
|
MI->getOperand(2).getReg() == 0 &&
|
|
MI->getOperand(3).getImm() == 0) {
|
|
FrameIndex = MI->getOperand(1).getIndex();
|
|
return MI->getOperand(0).getReg();
|
|
}
|
|
break;
|
|
case ARM::STRi12:
|
|
case ARM::t2STRi12:
|
|
case ARM::tSpill:
|
|
case ARM::VSTRD:
|
|
case ARM::VSTRS:
|
|
if (MI->getOperand(1).isFI() &&
|
|
MI->getOperand(2).isImm() &&
|
|
MI->getOperand(2).getImm() == 0) {
|
|
FrameIndex = MI->getOperand(1).getIndex();
|
|
return MI->getOperand(0).getReg();
|
|
}
|
|
break;
|
|
case ARM::VST1q64Pseudo:
|
|
if (MI->getOperand(0).isFI() &&
|
|
MI->getOperand(2).getSubReg() == 0) {
|
|
FrameIndex = MI->getOperand(0).getIndex();
|
|
return MI->getOperand(2).getReg();
|
|
}
|
|
break;
|
|
case ARM::VSTMQIA:
|
|
if (MI->getOperand(1).isFI() &&
|
|
MI->getOperand(0).getSubReg() == 0) {
|
|
FrameIndex = MI->getOperand(1).getIndex();
|
|
return MI->getOperand(0).getReg();
|
|
}
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ARMBaseInstrInfo::
|
|
loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
|
|
unsigned DestReg, int FI,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
DebugLoc DL;
|
|
if (I != MBB.end()) DL = I->getDebugLoc();
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineFrameInfo &MFI = *MF.getFrameInfo();
|
|
unsigned Align = MFI.getObjectAlignment(FI);
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(
|
|
MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
|
|
MachineMemOperand::MOLoad,
|
|
MFI.getObjectSize(FI),
|
|
Align);
|
|
|
|
// tGPR is used sometimes in ARM instructions that need to avoid using
|
|
// certain registers. Just treat it as GPR here.
|
|
if (RC == ARM::tGPRRegisterClass || RC == ARM::tcGPRRegisterClass
|
|
|| RC == ARM::rGPRRegisterClass)
|
|
RC = ARM::GPRRegisterClass;
|
|
|
|
switch (RC->getID()) {
|
|
case ARM::GPRRegClassID:
|
|
AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
|
|
.addFrameIndex(FI).addImm(0).addMemOperand(MMO));
|
|
break;
|
|
case ARM::SPRRegClassID:
|
|
AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
|
|
.addFrameIndex(FI).addImm(0).addMemOperand(MMO));
|
|
break;
|
|
case ARM::DPRRegClassID:
|
|
case ARM::DPR_VFP2RegClassID:
|
|
case ARM::DPR_8RegClassID:
|
|
AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
|
|
.addFrameIndex(FI).addImm(0).addMemOperand(MMO));
|
|
break;
|
|
case ARM::QPRRegClassID:
|
|
case ARM::QPR_VFP2RegClassID:
|
|
case ARM::QPR_8RegClassID:
|
|
if (Align >= 16 && getRegisterInfo().needsStackRealignment(MF)) {
|
|
AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64Pseudo), DestReg)
|
|
.addFrameIndex(FI).addImm(16)
|
|
.addMemOperand(MMO));
|
|
} else {
|
|
AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
|
|
.addFrameIndex(FI)
|
|
.addMemOperand(MMO));
|
|
}
|
|
break;
|
|
case ARM::QQPRRegClassID:
|
|
case ARM::QQPR_VFP2RegClassID:
|
|
if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
|
|
AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
|
|
.addFrameIndex(FI).addImm(16)
|
|
.addMemOperand(MMO));
|
|
} else {
|
|
MachineInstrBuilder MIB =
|
|
AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
|
|
.addFrameIndex(FI))
|
|
.addMemOperand(MMO);
|
|
MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::Define, TRI);
|
|
MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::Define, TRI);
|
|
MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::Define, TRI);
|
|
AddDReg(MIB, DestReg, ARM::dsub_3, RegState::Define, TRI);
|
|
}
|
|
break;
|
|
case ARM::QQQQPRRegClassID: {
|
|
MachineInstrBuilder MIB =
|
|
AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
|
|
.addFrameIndex(FI))
|
|
.addMemOperand(MMO);
|
|
MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::Define, TRI);
|
|
MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::Define, TRI);
|
|
MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::Define, TRI);
|
|
MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::Define, TRI);
|
|
MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::Define, TRI);
|
|
MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::Define, TRI);
|
|
MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::Define, TRI);
|
|
AddDReg(MIB, DestReg, ARM::dsub_7, RegState::Define, TRI);
|
|
break;
|
|
}
|
|
default:
|
|
llvm_unreachable("Unknown regclass!");
|
|
}
|
|
}
|
|
|
|
unsigned
|
|
ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
|
|
int &FrameIndex) const {
|
|
switch (MI->getOpcode()) {
|
|
default: break;
|
|
case ARM::LDRrs:
|
|
case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame.
|
|
if (MI->getOperand(1).isFI() &&
|
|
MI->getOperand(2).isReg() &&
|
|
MI->getOperand(3).isImm() &&
|
|
MI->getOperand(2).getReg() == 0 &&
|
|
MI->getOperand(3).getImm() == 0) {
|
|
FrameIndex = MI->getOperand(1).getIndex();
|
|
return MI->getOperand(0).getReg();
|
|
}
|
|
break;
|
|
case ARM::LDRi12:
|
|
case ARM::t2LDRi12:
|
|
case ARM::tRestore:
|
|
case ARM::VLDRD:
|
|
case ARM::VLDRS:
|
|
if (MI->getOperand(1).isFI() &&
|
|
MI->getOperand(2).isImm() &&
|
|
MI->getOperand(2).getImm() == 0) {
|
|
FrameIndex = MI->getOperand(1).getIndex();
|
|
return MI->getOperand(0).getReg();
|
|
}
|
|
break;
|
|
case ARM::VLD1q64Pseudo:
|
|
if (MI->getOperand(1).isFI() &&
|
|
MI->getOperand(0).getSubReg() == 0) {
|
|
FrameIndex = MI->getOperand(1).getIndex();
|
|
return MI->getOperand(0).getReg();
|
|
}
|
|
break;
|
|
case ARM::VLDMQIA:
|
|
if (MI->getOperand(1).isFI() &&
|
|
MI->getOperand(0).getSubReg() == 0) {
|
|
FrameIndex = MI->getOperand(1).getIndex();
|
|
return MI->getOperand(0).getReg();
|
|
}
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
MachineInstr*
|
|
ARMBaseInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
|
|
int FrameIx, uint64_t Offset,
|
|
const MDNode *MDPtr,
|
|
DebugLoc DL) const {
|
|
MachineInstrBuilder MIB = BuildMI(MF, DL, get(ARM::DBG_VALUE))
|
|
.addFrameIndex(FrameIx).addImm(0).addImm(Offset).addMetadata(MDPtr);
|
|
return &*MIB;
|
|
}
|
|
|
|
/// Create a copy of a const pool value. Update CPI to the new index and return
|
|
/// the label UID.
|
|
static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
|
|
MachineConstantPool *MCP = MF.getConstantPool();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
|
|
const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
|
|
assert(MCPE.isMachineConstantPoolEntry() &&
|
|
"Expecting a machine constantpool entry!");
|
|
ARMConstantPoolValue *ACPV =
|
|
static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
|
|
|
|
unsigned PCLabelId = AFI->createPICLabelUId();
|
|
ARMConstantPoolValue *NewCPV = 0;
|
|
// FIXME: The below assumes PIC relocation model and that the function
|
|
// is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
|
|
// zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
|
|
// instructions, so that's probably OK, but is PIC always correct when
|
|
// we get here?
|
|
if (ACPV->isGlobalValue())
|
|
NewCPV = new ARMConstantPoolValue(ACPV->getGV(), PCLabelId,
|
|
ARMCP::CPValue, 4);
|
|
else if (ACPV->isExtSymbol())
|
|
NewCPV = new ARMConstantPoolValue(MF.getFunction()->getContext(),
|
|
ACPV->getSymbol(), PCLabelId, 4);
|
|
else if (ACPV->isBlockAddress())
|
|
NewCPV = new ARMConstantPoolValue(ACPV->getBlockAddress(), PCLabelId,
|
|
ARMCP::CPBlockAddress, 4);
|
|
else if (ACPV->isLSDA())
|
|
NewCPV = new ARMConstantPoolValue(MF.getFunction(), PCLabelId,
|
|
ARMCP::CPLSDA, 4);
|
|
else
|
|
llvm_unreachable("Unexpected ARM constantpool value type!!");
|
|
CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
|
|
return PCLabelId;
|
|
}
|
|
|
|
void ARMBaseInstrInfo::
|
|
reMaterialize(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
unsigned DestReg, unsigned SubIdx,
|
|
const MachineInstr *Orig,
|
|
const TargetRegisterInfo &TRI) const {
|
|
unsigned Opcode = Orig->getOpcode();
|
|
switch (Opcode) {
|
|
default: {
|
|
MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
|
|
MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
|
|
MBB.insert(I, MI);
|
|
break;
|
|
}
|
|
case ARM::tLDRpci_pic:
|
|
case ARM::t2LDRpci_pic: {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
unsigned CPI = Orig->getOperand(1).getIndex();
|
|
unsigned PCLabelId = duplicateCPV(MF, CPI);
|
|
MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
|
|
DestReg)
|
|
.addConstantPoolIndex(CPI).addImm(PCLabelId);
|
|
MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end());
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
MachineInstr *
|
|
ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
|
|
MachineInstr *MI = TargetInstrInfoImpl::duplicate(Orig, MF);
|
|
switch(Orig->getOpcode()) {
|
|
case ARM::tLDRpci_pic:
|
|
case ARM::t2LDRpci_pic: {
|
|
unsigned CPI = Orig->getOperand(1).getIndex();
|
|
unsigned PCLabelId = duplicateCPV(MF, CPI);
|
|
Orig->getOperand(1).setIndex(CPI);
|
|
Orig->getOperand(2).setImm(PCLabelId);
|
|
break;
|
|
}
|
|
}
|
|
return MI;
|
|
}
|
|
|
|
bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
|
|
const MachineInstr *MI1,
|
|
const MachineRegisterInfo *MRI) const {
|
|
int Opcode = MI0->getOpcode();
|
|
if (Opcode == ARM::t2LDRpci ||
|
|
Opcode == ARM::t2LDRpci_pic ||
|
|
Opcode == ARM::tLDRpci ||
|
|
Opcode == ARM::tLDRpci_pic ||
|
|
Opcode == ARM::MOV_ga_dyn ||
|
|
Opcode == ARM::MOV_ga_pcrel ||
|
|
Opcode == ARM::MOV_ga_pcrel_ldr ||
|
|
Opcode == ARM::t2MOV_ga_dyn ||
|
|
Opcode == ARM::t2MOV_ga_pcrel) {
|
|
if (MI1->getOpcode() != Opcode)
|
|
return false;
|
|
if (MI0->getNumOperands() != MI1->getNumOperands())
|
|
return false;
|
|
|
|
const MachineOperand &MO0 = MI0->getOperand(1);
|
|
const MachineOperand &MO1 = MI1->getOperand(1);
|
|
if (MO0.getOffset() != MO1.getOffset())
|
|
return false;
|
|
|
|
if (Opcode == ARM::MOV_ga_dyn ||
|
|
Opcode == ARM::MOV_ga_pcrel ||
|
|
Opcode == ARM::MOV_ga_pcrel_ldr ||
|
|
Opcode == ARM::t2MOV_ga_dyn ||
|
|
Opcode == ARM::t2MOV_ga_pcrel)
|
|
// Ignore the PC labels.
|
|
return MO0.getGlobal() == MO1.getGlobal();
|
|
|
|
const MachineFunction *MF = MI0->getParent()->getParent();
|
|
const MachineConstantPool *MCP = MF->getConstantPool();
|
|
int CPI0 = MO0.getIndex();
|
|
int CPI1 = MO1.getIndex();
|
|
const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
|
|
const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
|
|
bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
|
|
bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
|
|
if (isARMCP0 && isARMCP1) {
|
|
ARMConstantPoolValue *ACPV0 =
|
|
static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
|
|
ARMConstantPoolValue *ACPV1 =
|
|
static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
|
|
return ACPV0->hasSameValue(ACPV1);
|
|
} else if (!isARMCP0 && !isARMCP1) {
|
|
return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
|
|
}
|
|
return false;
|
|
} else if (Opcode == ARM::PICLDR) {
|
|
if (MI1->getOpcode() != Opcode)
|
|
return false;
|
|
if (MI0->getNumOperands() != MI1->getNumOperands())
|
|
return false;
|
|
|
|
unsigned Addr0 = MI0->getOperand(1).getReg();
|
|
unsigned Addr1 = MI1->getOperand(1).getReg();
|
|
if (Addr0 != Addr1) {
|
|
if (!MRI ||
|
|
!TargetRegisterInfo::isVirtualRegister(Addr0) ||
|
|
!TargetRegisterInfo::isVirtualRegister(Addr1))
|
|
return false;
|
|
|
|
// This assumes SSA form.
|
|
MachineInstr *Def0 = MRI->getVRegDef(Addr0);
|
|
MachineInstr *Def1 = MRI->getVRegDef(Addr1);
|
|
// Check if the loaded value, e.g. a constantpool of a global address, are
|
|
// the same.
|
|
if (!produceSameValue(Def0, Def1, MRI))
|
|
return false;
|
|
}
|
|
|
|
for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) {
|
|
// %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
|
|
const MachineOperand &MO0 = MI0->getOperand(i);
|
|
const MachineOperand &MO1 = MI1->getOperand(i);
|
|
if (!MO0.isIdenticalTo(MO1))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
|
|
}
|
|
|
|
/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
|
|
/// determine if two loads are loading from the same base address. It should
|
|
/// only return true if the base pointers are the same and the only differences
|
|
/// between the two addresses is the offset. It also returns the offsets by
|
|
/// reference.
|
|
bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
|
|
int64_t &Offset1,
|
|
int64_t &Offset2) const {
|
|
// Don't worry about Thumb: just ARM and Thumb2.
|
|
if (Subtarget.isThumb1Only()) return false;
|
|
|
|
if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
|
|
return false;
|
|
|
|
switch (Load1->getMachineOpcode()) {
|
|
default:
|
|
return false;
|
|
case ARM::LDRi12:
|
|
case ARM::LDRBi12:
|
|
case ARM::LDRD:
|
|
case ARM::LDRH:
|
|
case ARM::LDRSB:
|
|
case ARM::LDRSH:
|
|
case ARM::VLDRD:
|
|
case ARM::VLDRS:
|
|
case ARM::t2LDRi8:
|
|
case ARM::t2LDRDi8:
|
|
case ARM::t2LDRSHi8:
|
|
case ARM::t2LDRi12:
|
|
case ARM::t2LDRSHi12:
|
|
break;
|
|
}
|
|
|
|
switch (Load2->getMachineOpcode()) {
|
|
default:
|
|
return false;
|
|
case ARM::LDRi12:
|
|
case ARM::LDRBi12:
|
|
case ARM::LDRD:
|
|
case ARM::LDRH:
|
|
case ARM::LDRSB:
|
|
case ARM::LDRSH:
|
|
case ARM::VLDRD:
|
|
case ARM::VLDRS:
|
|
case ARM::t2LDRi8:
|
|
case ARM::t2LDRDi8:
|
|
case ARM::t2LDRSHi8:
|
|
case ARM::t2LDRi12:
|
|
case ARM::t2LDRSHi12:
|
|
break;
|
|
}
|
|
|
|
// Check if base addresses and chain operands match.
|
|
if (Load1->getOperand(0) != Load2->getOperand(0) ||
|
|
Load1->getOperand(4) != Load2->getOperand(4))
|
|
return false;
|
|
|
|
// Index should be Reg0.
|
|
if (Load1->getOperand(3) != Load2->getOperand(3))
|
|
return false;
|
|
|
|
// Determine the offsets.
|
|
if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
|
|
isa<ConstantSDNode>(Load2->getOperand(1))) {
|
|
Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
|
|
Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
|
|
/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
|
|
/// be scheduled togther. On some targets if two loads are loading from
|
|
/// addresses in the same cache line, it's better if they are scheduled
|
|
/// together. This function takes two integers that represent the load offsets
|
|
/// from the common base address. It returns true if it decides it's desirable
|
|
/// to schedule the two loads together. "NumLoads" is the number of loads that
|
|
/// have already been scheduled after Load1.
|
|
bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
|
|
int64_t Offset1, int64_t Offset2,
|
|
unsigned NumLoads) const {
|
|
// Don't worry about Thumb: just ARM and Thumb2.
|
|
if (Subtarget.isThumb1Only()) return false;
|
|
|
|
assert(Offset2 > Offset1);
|
|
|
|
if ((Offset2 - Offset1) / 8 > 64)
|
|
return false;
|
|
|
|
if (Load1->getMachineOpcode() != Load2->getMachineOpcode())
|
|
return false; // FIXME: overly conservative?
|
|
|
|
// Four loads in a row should be sufficient.
|
|
if (NumLoads >= 3)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
|
|
const MachineBasicBlock *MBB,
|
|
const MachineFunction &MF) const {
|
|
// Debug info is never a scheduling boundary. It's necessary to be explicit
|
|
// due to the special treatment of IT instructions below, otherwise a
|
|
// dbg_value followed by an IT will result in the IT instruction being
|
|
// considered a scheduling hazard, which is wrong. It should be the actual
|
|
// instruction preceding the dbg_value instruction(s), just like it is
|
|
// when debug info is not present.
|
|
if (MI->isDebugValue())
|
|
return false;
|
|
|
|
// Terminators and labels can't be scheduled around.
|
|
if (MI->getDesc().isTerminator() || MI->isLabel())
|
|
return true;
|
|
|
|
// Treat the start of the IT block as a scheduling boundary, but schedule
|
|
// t2IT along with all instructions following it.
|
|
// FIXME: This is a big hammer. But the alternative is to add all potential
|
|
// true and anti dependencies to IT block instructions as implicit operands
|
|
// to the t2IT instruction. The added compile time and complexity does not
|
|
// seem worth it.
|
|
MachineBasicBlock::const_iterator I = MI;
|
|
// Make sure to skip any dbg_value instructions
|
|
while (++I != MBB->end() && I->isDebugValue())
|
|
;
|
|
if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
|
|
return true;
|
|
|
|
// Don't attempt to schedule around any instruction that defines
|
|
// a stack-oriented pointer, as it's unlikely to be profitable. This
|
|
// saves compile time, because it doesn't require every single
|
|
// stack slot reference to depend on the instruction that does the
|
|
// modification.
|
|
if (MI->definesRegister(ARM::SP))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ARMBaseInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
|
|
unsigned NumCycles,
|
|
unsigned ExtraPredCycles,
|
|
float Probability,
|
|
float Confidence) const {
|
|
if (!NumCycles)
|
|
return false;
|
|
|
|
// Attempt to estimate the relative costs of predication versus branching.
|
|
float UnpredCost = Probability * NumCycles;
|
|
UnpredCost += 1.0; // The branch itself
|
|
UnpredCost += (1.0 - Confidence) * Subtarget.getMispredictionPenalty();
|
|
|
|
return (float)(NumCycles + ExtraPredCycles) < UnpredCost;
|
|
}
|
|
|
|
bool ARMBaseInstrInfo::
|
|
isProfitableToIfCvt(MachineBasicBlock &TMBB,
|
|
unsigned TCycles, unsigned TExtra,
|
|
MachineBasicBlock &FMBB,
|
|
unsigned FCycles, unsigned FExtra,
|
|
float Probability, float Confidence) const {
|
|
if (!TCycles || !FCycles)
|
|
return false;
|
|
|
|
// Attempt to estimate the relative costs of predication versus branching.
|
|
float UnpredCost = Probability * TCycles + (1.0 - Probability) * FCycles;
|
|
UnpredCost += 1.0; // The branch itself
|
|
UnpredCost += (1.0 - Confidence) * Subtarget.getMispredictionPenalty();
|
|
|
|
return (float)(TCycles + FCycles + TExtra + FExtra) < UnpredCost;
|
|
}
|
|
|
|
/// getInstrPredicate - If instruction is predicated, returns its predicate
|
|
/// condition, otherwise returns AL. It also returns the condition code
|
|
/// register by reference.
|
|
ARMCC::CondCodes
|
|
llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
|
|
int PIdx = MI->findFirstPredOperandIdx();
|
|
if (PIdx == -1) {
|
|
PredReg = 0;
|
|
return ARMCC::AL;
|
|
}
|
|
|
|
PredReg = MI->getOperand(PIdx+1).getReg();
|
|
return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
|
|
}
|
|
|
|
|
|
int llvm::getMatchingCondBranchOpcode(int Opc) {
|
|
if (Opc == ARM::B)
|
|
return ARM::Bcc;
|
|
else if (Opc == ARM::tB)
|
|
return ARM::tBcc;
|
|
else if (Opc == ARM::t2B)
|
|
return ARM::t2Bcc;
|
|
|
|
llvm_unreachable("Unknown unconditional branch opcode!");
|
|
return 0;
|
|
}
|
|
|
|
|
|
void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator &MBBI, DebugLoc dl,
|
|
unsigned DestReg, unsigned BaseReg, int NumBytes,
|
|
ARMCC::CondCodes Pred, unsigned PredReg,
|
|
const ARMBaseInstrInfo &TII, unsigned MIFlags) {
|
|
bool isSub = NumBytes < 0;
|
|
if (isSub) NumBytes = -NumBytes;
|
|
|
|
while (NumBytes) {
|
|
unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
|
|
unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
|
|
assert(ThisVal && "Didn't extract field correctly");
|
|
|
|
// We will handle these bits from offset, clear them.
|
|
NumBytes &= ~ThisVal;
|
|
|
|
assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
|
|
|
|
// Build the new ADD / SUB.
|
|
unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
|
|
BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
|
|
.addReg(BaseReg, RegState::Kill).addImm(ThisVal)
|
|
.addImm((unsigned)Pred).addReg(PredReg).addReg(0)
|
|
.setMIFlags(MIFlags);
|
|
BaseReg = DestReg;
|
|
}
|
|
}
|
|
|
|
bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
|
|
unsigned FrameReg, int &Offset,
|
|
const ARMBaseInstrInfo &TII) {
|
|
unsigned Opcode = MI.getOpcode();
|
|
const TargetInstrDesc &Desc = MI.getDesc();
|
|
unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
|
|
bool isSub = false;
|
|
|
|
// Memory operands in inline assembly always use AddrMode2.
|
|
if (Opcode == ARM::INLINEASM)
|
|
AddrMode = ARMII::AddrMode2;
|
|
|
|
if (Opcode == ARM::ADDri) {
|
|
Offset += MI.getOperand(FrameRegIdx+1).getImm();
|
|
if (Offset == 0) {
|
|
// Turn it into a move.
|
|
MI.setDesc(TII.get(ARM::MOVr));
|
|
MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
|
|
MI.RemoveOperand(FrameRegIdx+1);
|
|
Offset = 0;
|
|
return true;
|
|
} else if (Offset < 0) {
|
|
Offset = -Offset;
|
|
isSub = true;
|
|
MI.setDesc(TII.get(ARM::SUBri));
|
|
}
|
|
|
|
// Common case: small offset, fits into instruction.
|
|
if (ARM_AM::getSOImmVal(Offset) != -1) {
|
|
// Replace the FrameIndex with sp / fp
|
|
MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
|
|
MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
|
|
Offset = 0;
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, pull as much of the immedidate into this ADDri/SUBri
|
|
// as possible.
|
|
unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
|
|
unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
|
|
|
|
// We will handle these bits from offset, clear them.
|
|
Offset &= ~ThisImmVal;
|
|
|
|
// Get the properly encoded SOImmVal field.
|
|
assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
|
|
"Bit extraction didn't work?");
|
|
MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
|
|
} else {
|
|
unsigned ImmIdx = 0;
|
|
int InstrOffs = 0;
|
|
unsigned NumBits = 0;
|
|
unsigned Scale = 1;
|
|
switch (AddrMode) {
|
|
case ARMII::AddrMode_i12: {
|
|
ImmIdx = FrameRegIdx + 1;
|
|
InstrOffs = MI.getOperand(ImmIdx).getImm();
|
|
NumBits = 12;
|
|
break;
|
|
}
|
|
case ARMII::AddrMode2: {
|
|
ImmIdx = FrameRegIdx+2;
|
|
InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
|
|
if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
|
|
InstrOffs *= -1;
|
|
NumBits = 12;
|
|
break;
|
|
}
|
|
case ARMII::AddrMode3: {
|
|
ImmIdx = FrameRegIdx+2;
|
|
InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
|
|
if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
|
|
InstrOffs *= -1;
|
|
NumBits = 8;
|
|
break;
|
|
}
|
|
case ARMII::AddrMode4:
|
|
case ARMII::AddrMode6:
|
|
// Can't fold any offset even if it's zero.
|
|
return false;
|
|
case ARMII::AddrMode5: {
|
|
ImmIdx = FrameRegIdx+1;
|
|
InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
|
|
if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
|
|
InstrOffs *= -1;
|
|
NumBits = 8;
|
|
Scale = 4;
|
|
break;
|
|
}
|
|
default:
|
|
llvm_unreachable("Unsupported addressing mode!");
|
|
break;
|
|
}
|
|
|
|
Offset += InstrOffs * Scale;
|
|
assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
|
|
if (Offset < 0) {
|
|
Offset = -Offset;
|
|
isSub = true;
|
|
}
|
|
|
|
// Attempt to fold address comp. if opcode has offset bits
|
|
if (NumBits > 0) {
|
|
// Common case: small offset, fits into instruction.
|
|
MachineOperand &ImmOp = MI.getOperand(ImmIdx);
|
|
int ImmedOffset = Offset / Scale;
|
|
unsigned Mask = (1 << NumBits) - 1;
|
|
if ((unsigned)Offset <= Mask * Scale) {
|
|
// Replace the FrameIndex with sp
|
|
MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
|
|
// FIXME: When addrmode2 goes away, this will simplify (like the
|
|
// T2 version), as the LDR.i12 versions don't need the encoding
|
|
// tricks for the offset value.
|
|
if (isSub) {
|
|
if (AddrMode == ARMII::AddrMode_i12)
|
|
ImmedOffset = -ImmedOffset;
|
|
else
|
|
ImmedOffset |= 1 << NumBits;
|
|
}
|
|
ImmOp.ChangeToImmediate(ImmedOffset);
|
|
Offset = 0;
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, it didn't fit. Pull in what we can to simplify the immed.
|
|
ImmedOffset = ImmedOffset & Mask;
|
|
if (isSub) {
|
|
if (AddrMode == ARMII::AddrMode_i12)
|
|
ImmedOffset = -ImmedOffset;
|
|
else
|
|
ImmedOffset |= 1 << NumBits;
|
|
}
|
|
ImmOp.ChangeToImmediate(ImmedOffset);
|
|
Offset &= ~(Mask*Scale);
|
|
}
|
|
}
|
|
|
|
Offset = (isSub) ? -Offset : Offset;
|
|
return Offset == 0;
|
|
}
|
|
|
|
bool ARMBaseInstrInfo::
|
|
AnalyzeCompare(const MachineInstr *MI, unsigned &SrcReg, int &CmpMask,
|
|
int &CmpValue) const {
|
|
switch (MI->getOpcode()) {
|
|
default: break;
|
|
case ARM::CMPri:
|
|
case ARM::t2CMPri:
|
|
SrcReg = MI->getOperand(0).getReg();
|
|
CmpMask = ~0;
|
|
CmpValue = MI->getOperand(1).getImm();
|
|
return true;
|
|
case ARM::TSTri:
|
|
case ARM::t2TSTri:
|
|
SrcReg = MI->getOperand(0).getReg();
|
|
CmpMask = MI->getOperand(1).getImm();
|
|
CmpValue = 0;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// isSuitableForMask - Identify a suitable 'and' instruction that
|
|
/// operates on the given source register and applies the same mask
|
|
/// as a 'tst' instruction. Provide a limited look-through for copies.
|
|
/// When successful, MI will hold the found instruction.
|
|
static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
|
|
int CmpMask, bool CommonUse) {
|
|
switch (MI->getOpcode()) {
|
|
case ARM::ANDri:
|
|
case ARM::t2ANDri:
|
|
if (CmpMask != MI->getOperand(2).getImm())
|
|
return false;
|
|
if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
|
|
return true;
|
|
break;
|
|
case ARM::COPY: {
|
|
// Walk down one instruction which is potentially an 'and'.
|
|
const MachineInstr &Copy = *MI;
|
|
MachineBasicBlock::iterator AND(
|
|
llvm::next(MachineBasicBlock::iterator(MI)));
|
|
if (AND == MI->getParent()->end()) return false;
|
|
MI = AND;
|
|
return isSuitableForMask(MI, Copy.getOperand(0).getReg(),
|
|
CmpMask, true);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// OptimizeCompareInstr - Convert the instruction supplying the argument to the
|
|
/// comparison into one that sets the zero bit in the flags register.
|
|
bool ARMBaseInstrInfo::
|
|
OptimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, int CmpMask,
|
|
int CmpValue, const MachineRegisterInfo *MRI) const {
|
|
if (CmpValue != 0)
|
|
return false;
|
|
|
|
MachineRegisterInfo::def_iterator DI = MRI->def_begin(SrcReg);
|
|
if (llvm::next(DI) != MRI->def_end())
|
|
// Only support one definition.
|
|
return false;
|
|
|
|
MachineInstr *MI = &*DI;
|
|
|
|
// Masked compares sometimes use the same register as the corresponding 'and'.
|
|
if (CmpMask != ~0) {
|
|
if (!isSuitableForMask(MI, SrcReg, CmpMask, false)) {
|
|
MI = 0;
|
|
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg),
|
|
UE = MRI->use_end(); UI != UE; ++UI) {
|
|
if (UI->getParent() != CmpInstr->getParent()) continue;
|
|
MachineInstr *PotentialAND = &*UI;
|
|
if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true))
|
|
continue;
|
|
MI = PotentialAND;
|
|
break;
|
|
}
|
|
if (!MI) return false;
|
|
}
|
|
}
|
|
|
|
// Conservatively refuse to convert an instruction which isn't in the same BB
|
|
// as the comparison.
|
|
if (MI->getParent() != CmpInstr->getParent())
|
|
return false;
|
|
|
|
// Check that CPSR isn't set between the comparison instruction and the one we
|
|
// want to change.
|
|
MachineBasicBlock::const_iterator I = CmpInstr, E = MI,
|
|
B = MI->getParent()->begin();
|
|
|
|
// Early exit if CmpInstr is at the beginning of the BB.
|
|
if (I == B) return false;
|
|
|
|
--I;
|
|
for (; I != E; --I) {
|
|
const MachineInstr &Instr = *I;
|
|
|
|
for (unsigned IO = 0, EO = Instr.getNumOperands(); IO != EO; ++IO) {
|
|
const MachineOperand &MO = Instr.getOperand(IO);
|
|
if (!MO.isReg()) continue;
|
|
|
|
// This instruction modifies or uses CPSR after the one we want to
|
|
// change. We can't do this transformation.
|
|
if (MO.getReg() == ARM::CPSR)
|
|
return false;
|
|
}
|
|
|
|
if (I == B)
|
|
// The 'and' is below the comparison instruction.
|
|
return false;
|
|
}
|
|
|
|
// Set the "zero" bit in CPSR.
|
|
switch (MI->getOpcode()) {
|
|
default: break;
|
|
case ARM::RSBrr:
|
|
case ARM::RSBri:
|
|
case ARM::RSCrr:
|
|
case ARM::RSCri:
|
|
case ARM::ADDrr:
|
|
case ARM::ADDri:
|
|
case ARM::ADCrr:
|
|
case ARM::ADCri:
|
|
case ARM::SUBrr:
|
|
case ARM::SUBri:
|
|
case ARM::SBCrr:
|
|
case ARM::SBCri:
|
|
case ARM::t2RSBri:
|
|
case ARM::t2ADDrr:
|
|
case ARM::t2ADDri:
|
|
case ARM::t2ADCrr:
|
|
case ARM::t2ADCri:
|
|
case ARM::t2SUBrr:
|
|
case ARM::t2SUBri:
|
|
case ARM::t2SBCrr:
|
|
case ARM::t2SBCri:
|
|
case ARM::ANDrr:
|
|
case ARM::ANDri:
|
|
case ARM::t2ANDrr:
|
|
case ARM::t2ANDri:
|
|
case ARM::ORRrr:
|
|
case ARM::ORRri:
|
|
case ARM::t2ORRrr:
|
|
case ARM::t2ORRri:
|
|
case ARM::EORrr:
|
|
case ARM::EORri:
|
|
case ARM::t2EORrr:
|
|
case ARM::t2EORri: {
|
|
// Scan forward for the use of CPSR, if it's a conditional code requires
|
|
// checking of V bit, then this is not safe to do. If we can't find the
|
|
// CPSR use (i.e. used in another block), then it's not safe to perform
|
|
// the optimization.
|
|
bool isSafe = false;
|
|
I = CmpInstr;
|
|
E = MI->getParent()->end();
|
|
while (!isSafe && ++I != E) {
|
|
const MachineInstr &Instr = *I;
|
|
for (unsigned IO = 0, EO = Instr.getNumOperands();
|
|
!isSafe && IO != EO; ++IO) {
|
|
const MachineOperand &MO = Instr.getOperand(IO);
|
|
if (!MO.isReg() || MO.getReg() != ARM::CPSR)
|
|
continue;
|
|
if (MO.isDef()) {
|
|
isSafe = true;
|
|
break;
|
|
}
|
|
// Condition code is after the operand before CPSR.
|
|
ARMCC::CondCodes CC = (ARMCC::CondCodes)Instr.getOperand(IO-1).getImm();
|
|
switch (CC) {
|
|
default:
|
|
isSafe = true;
|
|
break;
|
|
case ARMCC::VS:
|
|
case ARMCC::VC:
|
|
case ARMCC::GE:
|
|
case ARMCC::LT:
|
|
case ARMCC::GT:
|
|
case ARMCC::LE:
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!isSafe)
|
|
return false;
|
|
|
|
// Toggle the optional operand to CPSR.
|
|
MI->getOperand(5).setReg(ARM::CPSR);
|
|
MI->getOperand(5).setIsDef(true);
|
|
CmpInstr->eraseFromParent();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI,
|
|
MachineInstr *DefMI, unsigned Reg,
|
|
MachineRegisterInfo *MRI) const {
|
|
// Fold large immediates into add, sub, or, xor.
|
|
unsigned DefOpc = DefMI->getOpcode();
|
|
if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
|
|
return false;
|
|
if (!DefMI->getOperand(1).isImm())
|
|
// Could be t2MOVi32imm <ga:xx>
|
|
return false;
|
|
|
|
if (!MRI->hasOneNonDBGUse(Reg))
|
|
return false;
|
|
|
|
unsigned UseOpc = UseMI->getOpcode();
|
|
unsigned NewUseOpc = 0;
|
|
uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm();
|
|
uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
|
|
bool Commute = false;
|
|
switch (UseOpc) {
|
|
default: return false;
|
|
case ARM::SUBrr:
|
|
case ARM::ADDrr:
|
|
case ARM::ORRrr:
|
|
case ARM::EORrr:
|
|
case ARM::t2SUBrr:
|
|
case ARM::t2ADDrr:
|
|
case ARM::t2ORRrr:
|
|
case ARM::t2EORrr: {
|
|
Commute = UseMI->getOperand(2).getReg() != Reg;
|
|
switch (UseOpc) {
|
|
default: break;
|
|
case ARM::SUBrr: {
|
|
if (Commute)
|
|
return false;
|
|
ImmVal = -ImmVal;
|
|
NewUseOpc = ARM::SUBri;
|
|
// Fallthrough
|
|
}
|
|
case ARM::ADDrr:
|
|
case ARM::ORRrr:
|
|
case ARM::EORrr: {
|
|
if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
|
|
return false;
|
|
SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
|
|
SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
|
|
switch (UseOpc) {
|
|
default: break;
|
|
case ARM::ADDrr: NewUseOpc = ARM::ADDri; break;
|
|
case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
|
|
case ARM::EORrr: NewUseOpc = ARM::EORri; break;
|
|
}
|
|
break;
|
|
}
|
|
case ARM::t2SUBrr: {
|
|
if (Commute)
|
|
return false;
|
|
ImmVal = -ImmVal;
|
|
NewUseOpc = ARM::t2SUBri;
|
|
// Fallthrough
|
|
}
|
|
case ARM::t2ADDrr:
|
|
case ARM::t2ORRrr:
|
|
case ARM::t2EORrr: {
|
|
if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
|
|
return false;
|
|
SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
|
|
SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
|
|
switch (UseOpc) {
|
|
default: break;
|
|
case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break;
|
|
case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
|
|
case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned OpIdx = Commute ? 2 : 1;
|
|
unsigned Reg1 = UseMI->getOperand(OpIdx).getReg();
|
|
bool isKill = UseMI->getOperand(OpIdx).isKill();
|
|
unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
|
|
AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(),
|
|
*UseMI, UseMI->getDebugLoc(),
|
|
get(NewUseOpc), NewReg)
|
|
.addReg(Reg1, getKillRegState(isKill))
|
|
.addImm(SOImmValV1)));
|
|
UseMI->setDesc(get(NewUseOpc));
|
|
UseMI->getOperand(1).setReg(NewReg);
|
|
UseMI->getOperand(1).setIsKill();
|
|
UseMI->getOperand(2).ChangeToImmediate(SOImmValV2);
|
|
DefMI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
unsigned
|
|
ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
|
|
const MachineInstr *MI) const {
|
|
if (!ItinData || ItinData->isEmpty())
|
|
return 1;
|
|
|
|
const TargetInstrDesc &Desc = MI->getDesc();
|
|
unsigned Class = Desc.getSchedClass();
|
|
unsigned UOps = ItinData->Itineraries[Class].NumMicroOps;
|
|
if (UOps)
|
|
return UOps;
|
|
|
|
unsigned Opc = MI->getOpcode();
|
|
switch (Opc) {
|
|
default:
|
|
llvm_unreachable("Unexpected multi-uops instruction!");
|
|
break;
|
|
case ARM::VLDMQIA:
|
|
case ARM::VSTMQIA:
|
|
return 2;
|
|
|
|
// The number of uOps for load / store multiple are determined by the number
|
|
// registers.
|
|
//
|
|
// On Cortex-A8, each pair of register loads / stores can be scheduled on the
|
|
// same cycle. The scheduling for the first load / store must be done
|
|
// separately by assuming the the address is not 64-bit aligned.
|
|
//
|
|
// On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
|
|
// is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON
|
|
// load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
|
|
case ARM::VLDMDIA:
|
|
case ARM::VLDMDIA_UPD:
|
|
case ARM::VLDMDDB_UPD:
|
|
case ARM::VLDMSIA:
|
|
case ARM::VLDMSIA_UPD:
|
|
case ARM::VLDMSDB_UPD:
|
|
case ARM::VSTMDIA:
|
|
case ARM::VSTMDIA_UPD:
|
|
case ARM::VSTMDDB_UPD:
|
|
case ARM::VSTMSIA:
|
|
case ARM::VSTMSIA_UPD:
|
|
case ARM::VSTMSDB_UPD: {
|
|
unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands();
|
|
return (NumRegs / 2) + (NumRegs % 2) + 1;
|
|
}
|
|
|
|
case ARM::LDMIA_RET:
|
|
case ARM::LDMIA:
|
|
case ARM::LDMDA:
|
|
case ARM::LDMDB:
|
|
case ARM::LDMIB:
|
|
case ARM::LDMIA_UPD:
|
|
case ARM::LDMDA_UPD:
|
|
case ARM::LDMDB_UPD:
|
|
case ARM::LDMIB_UPD:
|
|
case ARM::STMIA:
|
|
case ARM::STMDA:
|
|
case ARM::STMDB:
|
|
case ARM::STMIB:
|
|
case ARM::STMIA_UPD:
|
|
case ARM::STMDA_UPD:
|
|
case ARM::STMDB_UPD:
|
|
case ARM::STMIB_UPD:
|
|
case ARM::tLDMIA:
|
|
case ARM::tLDMIA_UPD:
|
|
case ARM::tSTMIA:
|
|
case ARM::tSTMIA_UPD:
|
|
case ARM::tPOP_RET:
|
|
case ARM::tPOP:
|
|
case ARM::tPUSH:
|
|
case ARM::t2LDMIA_RET:
|
|
case ARM::t2LDMIA:
|
|
case ARM::t2LDMDB:
|
|
case ARM::t2LDMIA_UPD:
|
|
case ARM::t2LDMDB_UPD:
|
|
case ARM::t2STMIA:
|
|
case ARM::t2STMDB:
|
|
case ARM::t2STMIA_UPD:
|
|
case ARM::t2STMDB_UPD: {
|
|
unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1;
|
|
if (Subtarget.isCortexA8()) {
|
|
if (NumRegs < 4)
|
|
return 2;
|
|
// 4 registers would be issued: 2, 2.
|
|
// 5 registers would be issued: 2, 2, 1.
|
|
UOps = (NumRegs / 2);
|
|
if (NumRegs % 2)
|
|
++UOps;
|
|
return UOps;
|
|
} else if (Subtarget.isCortexA9()) {
|
|
UOps = (NumRegs / 2);
|
|
// If there are odd number of registers or if it's not 64-bit aligned,
|
|
// then it takes an extra AGU (Address Generation Unit) cycle.
|
|
if ((NumRegs % 2) ||
|
|
!MI->hasOneMemOperand() ||
|
|
(*MI->memoperands_begin())->getAlignment() < 8)
|
|
++UOps;
|
|
return UOps;
|
|
} else {
|
|
// Assume the worst.
|
|
return NumRegs;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
|
|
const TargetInstrDesc &DefTID,
|
|
unsigned DefClass,
|
|
unsigned DefIdx, unsigned DefAlign) const {
|
|
int RegNo = (int)(DefIdx+1) - DefTID.getNumOperands() + 1;
|
|
if (RegNo <= 0)
|
|
// Def is the address writeback.
|
|
return ItinData->getOperandCycle(DefClass, DefIdx);
|
|
|
|
int DefCycle;
|
|
if (Subtarget.isCortexA8()) {
|
|
// (regno / 2) + (regno % 2) + 1
|
|
DefCycle = RegNo / 2 + 1;
|
|
if (RegNo % 2)
|
|
++DefCycle;
|
|
} else if (Subtarget.isCortexA9()) {
|
|
DefCycle = RegNo;
|
|
bool isSLoad = false;
|
|
|
|
switch (DefTID.getOpcode()) {
|
|
default: break;
|
|
case ARM::VLDMSIA:
|
|
case ARM::VLDMSIA_UPD:
|
|
case ARM::VLDMSDB_UPD:
|
|
isSLoad = true;
|
|
break;
|
|
}
|
|
|
|
// If there are odd number of 'S' registers or if it's not 64-bit aligned,
|
|
// then it takes an extra cycle.
|
|
if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
|
|
++DefCycle;
|
|
} else {
|
|
// Assume the worst.
|
|
DefCycle = RegNo + 2;
|
|
}
|
|
|
|
return DefCycle;
|
|
}
|
|
|
|
int
|
|
ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
|
|
const TargetInstrDesc &DefTID,
|
|
unsigned DefClass,
|
|
unsigned DefIdx, unsigned DefAlign) const {
|
|
int RegNo = (int)(DefIdx+1) - DefTID.getNumOperands() + 1;
|
|
if (RegNo <= 0)
|
|
// Def is the address writeback.
|
|
return ItinData->getOperandCycle(DefClass, DefIdx);
|
|
|
|
int DefCycle;
|
|
if (Subtarget.isCortexA8()) {
|
|
// 4 registers would be issued: 1, 2, 1.
|
|
// 5 registers would be issued: 1, 2, 2.
|
|
DefCycle = RegNo / 2;
|
|
if (DefCycle < 1)
|
|
DefCycle = 1;
|
|
// Result latency is issue cycle + 2: E2.
|
|
DefCycle += 2;
|
|
} else if (Subtarget.isCortexA9()) {
|
|
DefCycle = (RegNo / 2);
|
|
// If there are odd number of registers or if it's not 64-bit aligned,
|
|
// then it takes an extra AGU (Address Generation Unit) cycle.
|
|
if ((RegNo % 2) || DefAlign < 8)
|
|
++DefCycle;
|
|
// Result latency is AGU cycles + 2.
|
|
DefCycle += 2;
|
|
} else {
|
|
// Assume the worst.
|
|
DefCycle = RegNo + 2;
|
|
}
|
|
|
|
return DefCycle;
|
|
}
|
|
|
|
int
|
|
ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
|
|
const TargetInstrDesc &UseTID,
|
|
unsigned UseClass,
|
|
unsigned UseIdx, unsigned UseAlign) const {
|
|
int RegNo = (int)(UseIdx+1) - UseTID.getNumOperands() + 1;
|
|
if (RegNo <= 0)
|
|
return ItinData->getOperandCycle(UseClass, UseIdx);
|
|
|
|
int UseCycle;
|
|
if (Subtarget.isCortexA8()) {
|
|
// (regno / 2) + (regno % 2) + 1
|
|
UseCycle = RegNo / 2 + 1;
|
|
if (RegNo % 2)
|
|
++UseCycle;
|
|
} else if (Subtarget.isCortexA9()) {
|
|
UseCycle = RegNo;
|
|
bool isSStore = false;
|
|
|
|
switch (UseTID.getOpcode()) {
|
|
default: break;
|
|
case ARM::VSTMSIA:
|
|
case ARM::VSTMSIA_UPD:
|
|
case ARM::VSTMSDB_UPD:
|
|
isSStore = true;
|
|
break;
|
|
}
|
|
|
|
// If there are odd number of 'S' registers or if it's not 64-bit aligned,
|
|
// then it takes an extra cycle.
|
|
if ((isSStore && (RegNo % 2)) || UseAlign < 8)
|
|
++UseCycle;
|
|
} else {
|
|
// Assume the worst.
|
|
UseCycle = RegNo + 2;
|
|
}
|
|
|
|
return UseCycle;
|
|
}
|
|
|
|
int
|
|
ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
|
|
const TargetInstrDesc &UseTID,
|
|
unsigned UseClass,
|
|
unsigned UseIdx, unsigned UseAlign) const {
|
|
int RegNo = (int)(UseIdx+1) - UseTID.getNumOperands() + 1;
|
|
if (RegNo <= 0)
|
|
return ItinData->getOperandCycle(UseClass, UseIdx);
|
|
|
|
int UseCycle;
|
|
if (Subtarget.isCortexA8()) {
|
|
UseCycle = RegNo / 2;
|
|
if (UseCycle < 2)
|
|
UseCycle = 2;
|
|
// Read in E3.
|
|
UseCycle += 2;
|
|
} else if (Subtarget.isCortexA9()) {
|
|
UseCycle = (RegNo / 2);
|
|
// If there are odd number of registers or if it's not 64-bit aligned,
|
|
// then it takes an extra AGU (Address Generation Unit) cycle.
|
|
if ((RegNo % 2) || UseAlign < 8)
|
|
++UseCycle;
|
|
} else {
|
|
// Assume the worst.
|
|
UseCycle = 1;
|
|
}
|
|
return UseCycle;
|
|
}
|
|
|
|
int
|
|
ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
|
|
const TargetInstrDesc &DefTID,
|
|
unsigned DefIdx, unsigned DefAlign,
|
|
const TargetInstrDesc &UseTID,
|
|
unsigned UseIdx, unsigned UseAlign) const {
|
|
unsigned DefClass = DefTID.getSchedClass();
|
|
unsigned UseClass = UseTID.getSchedClass();
|
|
|
|
if (DefIdx < DefTID.getNumDefs() && UseIdx < UseTID.getNumOperands())
|
|
return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
|
|
|
|
// This may be a def / use of a variable_ops instruction, the operand
|
|
// latency might be determinable dynamically. Let the target try to
|
|
// figure it out.
|
|
int DefCycle = -1;
|
|
bool LdmBypass = false;
|
|
switch (DefTID.getOpcode()) {
|
|
default:
|
|
DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
|
|
break;
|
|
|
|
case ARM::VLDMDIA:
|
|
case ARM::VLDMDIA_UPD:
|
|
case ARM::VLDMDDB_UPD:
|
|
case ARM::VLDMSIA:
|
|
case ARM::VLDMSIA_UPD:
|
|
case ARM::VLDMSDB_UPD:
|
|
DefCycle = getVLDMDefCycle(ItinData, DefTID, DefClass, DefIdx, DefAlign);
|
|
break;
|
|
|
|
case ARM::LDMIA_RET:
|
|
case ARM::LDMIA:
|
|
case ARM::LDMDA:
|
|
case ARM::LDMDB:
|
|
case ARM::LDMIB:
|
|
case ARM::LDMIA_UPD:
|
|
case ARM::LDMDA_UPD:
|
|
case ARM::LDMDB_UPD:
|
|
case ARM::LDMIB_UPD:
|
|
case ARM::tLDMIA:
|
|
case ARM::tLDMIA_UPD:
|
|
case ARM::tPUSH:
|
|
case ARM::t2LDMIA_RET:
|
|
case ARM::t2LDMIA:
|
|
case ARM::t2LDMDB:
|
|
case ARM::t2LDMIA_UPD:
|
|
case ARM::t2LDMDB_UPD:
|
|
LdmBypass = 1;
|
|
DefCycle = getLDMDefCycle(ItinData, DefTID, DefClass, DefIdx, DefAlign);
|
|
break;
|
|
}
|
|
|
|
if (DefCycle == -1)
|
|
// We can't seem to determine the result latency of the def, assume it's 2.
|
|
DefCycle = 2;
|
|
|
|
int UseCycle = -1;
|
|
switch (UseTID.getOpcode()) {
|
|
default:
|
|
UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
|
|
break;
|
|
|
|
case ARM::VSTMDIA:
|
|
case ARM::VSTMDIA_UPD:
|
|
case ARM::VSTMDDB_UPD:
|
|
case ARM::VSTMSIA:
|
|
case ARM::VSTMSIA_UPD:
|
|
case ARM::VSTMSDB_UPD:
|
|
UseCycle = getVSTMUseCycle(ItinData, UseTID, UseClass, UseIdx, UseAlign);
|
|
break;
|
|
|
|
case ARM::STMIA:
|
|
case ARM::STMDA:
|
|
case ARM::STMDB:
|
|
case ARM::STMIB:
|
|
case ARM::STMIA_UPD:
|
|
case ARM::STMDA_UPD:
|
|
case ARM::STMDB_UPD:
|
|
case ARM::STMIB_UPD:
|
|
case ARM::tSTMIA:
|
|
case ARM::tSTMIA_UPD:
|
|
case ARM::tPOP_RET:
|
|
case ARM::tPOP:
|
|
case ARM::t2STMIA:
|
|
case ARM::t2STMDB:
|
|
case ARM::t2STMIA_UPD:
|
|
case ARM::t2STMDB_UPD:
|
|
UseCycle = getSTMUseCycle(ItinData, UseTID, UseClass, UseIdx, UseAlign);
|
|
break;
|
|
}
|
|
|
|
if (UseCycle == -1)
|
|
// Assume it's read in the first stage.
|
|
UseCycle = 1;
|
|
|
|
UseCycle = DefCycle - UseCycle + 1;
|
|
if (UseCycle > 0) {
|
|
if (LdmBypass) {
|
|
// It's a variable_ops instruction so we can't use DefIdx here. Just use
|
|
// first def operand.
|
|
if (ItinData->hasPipelineForwarding(DefClass, DefTID.getNumOperands()-1,
|
|
UseClass, UseIdx))
|
|
--UseCycle;
|
|
} else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
|
|
UseClass, UseIdx)) {
|
|
--UseCycle;
|
|
}
|
|
}
|
|
|
|
return UseCycle;
|
|
}
|
|
|
|
int
|
|
ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
|
|
const MachineInstr *DefMI, unsigned DefIdx,
|
|
const MachineInstr *UseMI, unsigned UseIdx) const {
|
|
if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
|
|
DefMI->isRegSequence() || DefMI->isImplicitDef())
|
|
return 1;
|
|
|
|
const TargetInstrDesc &DefTID = DefMI->getDesc();
|
|
if (!ItinData || ItinData->isEmpty())
|
|
return DefTID.mayLoad() ? 3 : 1;
|
|
|
|
const TargetInstrDesc &UseTID = UseMI->getDesc();
|
|
const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
|
|
if (DefMO.getReg() == ARM::CPSR) {
|
|
if (DefMI->getOpcode() == ARM::FMSTAT) {
|
|
// fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
|
|
return Subtarget.isCortexA9() ? 1 : 20;
|
|
}
|
|
|
|
// CPSR set and branch can be paired in the same cycle.
|
|
if (UseTID.isBranch())
|
|
return 0;
|
|
}
|
|
|
|
unsigned DefAlign = DefMI->hasOneMemOperand()
|
|
? (*DefMI->memoperands_begin())->getAlignment() : 0;
|
|
unsigned UseAlign = UseMI->hasOneMemOperand()
|
|
? (*UseMI->memoperands_begin())->getAlignment() : 0;
|
|
int Latency = getOperandLatency(ItinData, DefTID, DefIdx, DefAlign,
|
|
UseTID, UseIdx, UseAlign);
|
|
|
|
if (Latency > 1 &&
|
|
(Subtarget.isCortexA8() || Subtarget.isCortexA9())) {
|
|
// FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
|
|
// variants are one cycle cheaper.
|
|
switch (DefTID.getOpcode()) {
|
|
default: break;
|
|
case ARM::LDRrs:
|
|
case ARM::LDRBrs: {
|
|
unsigned ShOpVal = DefMI->getOperand(3).getImm();
|
|
unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
|
|
if (ShImm == 0 ||
|
|
(ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
|
|
--Latency;
|
|
break;
|
|
}
|
|
case ARM::t2LDRs:
|
|
case ARM::t2LDRBs:
|
|
case ARM::t2LDRHs:
|
|
case ARM::t2LDRSHs: {
|
|
// Thumb2 mode: lsl only.
|
|
unsigned ShAmt = DefMI->getOperand(3).getImm();
|
|
if (ShAmt == 0 || ShAmt == 2)
|
|
--Latency;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (DefAlign < 8 && Subtarget.isCortexA9())
|
|
switch (DefTID.getOpcode()) {
|
|
default: break;
|
|
case ARM::VLD1q8:
|
|
case ARM::VLD1q16:
|
|
case ARM::VLD1q32:
|
|
case ARM::VLD1q64:
|
|
case ARM::VLD1q8_UPD:
|
|
case ARM::VLD1q16_UPD:
|
|
case ARM::VLD1q32_UPD:
|
|
case ARM::VLD1q64_UPD:
|
|
case ARM::VLD2d8:
|
|
case ARM::VLD2d16:
|
|
case ARM::VLD2d32:
|
|
case ARM::VLD2q8:
|
|
case ARM::VLD2q16:
|
|
case ARM::VLD2q32:
|
|
case ARM::VLD2d8_UPD:
|
|
case ARM::VLD2d16_UPD:
|
|
case ARM::VLD2d32_UPD:
|
|
case ARM::VLD2q8_UPD:
|
|
case ARM::VLD2q16_UPD:
|
|
case ARM::VLD2q32_UPD:
|
|
case ARM::VLD3d8:
|
|
case ARM::VLD3d16:
|
|
case ARM::VLD3d32:
|
|
case ARM::VLD1d64T:
|
|
case ARM::VLD3d8_UPD:
|
|
case ARM::VLD3d16_UPD:
|
|
case ARM::VLD3d32_UPD:
|
|
case ARM::VLD1d64T_UPD:
|
|
case ARM::VLD3q8_UPD:
|
|
case ARM::VLD3q16_UPD:
|
|
case ARM::VLD3q32_UPD:
|
|
case ARM::VLD4d8:
|
|
case ARM::VLD4d16:
|
|
case ARM::VLD4d32:
|
|
case ARM::VLD1d64Q:
|
|
case ARM::VLD4d8_UPD:
|
|
case ARM::VLD4d16_UPD:
|
|
case ARM::VLD4d32_UPD:
|
|
case ARM::VLD1d64Q_UPD:
|
|
case ARM::VLD4q8_UPD:
|
|
case ARM::VLD4q16_UPD:
|
|
case ARM::VLD4q32_UPD:
|
|
case ARM::VLD1DUPq8:
|
|
case ARM::VLD1DUPq16:
|
|
case ARM::VLD1DUPq32:
|
|
case ARM::VLD1DUPq8_UPD:
|
|
case ARM::VLD1DUPq16_UPD:
|
|
case ARM::VLD1DUPq32_UPD:
|
|
case ARM::VLD2DUPd8:
|
|
case ARM::VLD2DUPd16:
|
|
case ARM::VLD2DUPd32:
|
|
case ARM::VLD2DUPd8_UPD:
|
|
case ARM::VLD2DUPd16_UPD:
|
|
case ARM::VLD2DUPd32_UPD:
|
|
case ARM::VLD4DUPd8:
|
|
case ARM::VLD4DUPd16:
|
|
case ARM::VLD4DUPd32:
|
|
case ARM::VLD4DUPd8_UPD:
|
|
case ARM::VLD4DUPd16_UPD:
|
|
case ARM::VLD4DUPd32_UPD:
|
|
case ARM::VLD1LNd8:
|
|
case ARM::VLD1LNd16:
|
|
case ARM::VLD1LNd32:
|
|
case ARM::VLD1LNd8_UPD:
|
|
case ARM::VLD1LNd16_UPD:
|
|
case ARM::VLD1LNd32_UPD:
|
|
case ARM::VLD2LNd8:
|
|
case ARM::VLD2LNd16:
|
|
case ARM::VLD2LNd32:
|
|
case ARM::VLD2LNq16:
|
|
case ARM::VLD2LNq32:
|
|
case ARM::VLD2LNd8_UPD:
|
|
case ARM::VLD2LNd16_UPD:
|
|
case ARM::VLD2LNd32_UPD:
|
|
case ARM::VLD2LNq16_UPD:
|
|
case ARM::VLD2LNq32_UPD:
|
|
case ARM::VLD4LNd8:
|
|
case ARM::VLD4LNd16:
|
|
case ARM::VLD4LNd32:
|
|
case ARM::VLD4LNq16:
|
|
case ARM::VLD4LNq32:
|
|
case ARM::VLD4LNd8_UPD:
|
|
case ARM::VLD4LNd16_UPD:
|
|
case ARM::VLD4LNd32_UPD:
|
|
case ARM::VLD4LNq16_UPD:
|
|
case ARM::VLD4LNq32_UPD:
|
|
// If the address is not 64-bit aligned, the latencies of these
|
|
// instructions increases by one.
|
|
++Latency;
|
|
break;
|
|
}
|
|
|
|
return Latency;
|
|
}
|
|
|
|
int
|
|
ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
|
|
SDNode *DefNode, unsigned DefIdx,
|
|
SDNode *UseNode, unsigned UseIdx) const {
|
|
if (!DefNode->isMachineOpcode())
|
|
return 1;
|
|
|
|
const TargetInstrDesc &DefTID = get(DefNode->getMachineOpcode());
|
|
|
|
if (isZeroCost(DefTID.Opcode))
|
|
return 0;
|
|
|
|
if (!ItinData || ItinData->isEmpty())
|
|
return DefTID.mayLoad() ? 3 : 1;
|
|
|
|
if (!UseNode->isMachineOpcode()) {
|
|
int Latency = ItinData->getOperandCycle(DefTID.getSchedClass(), DefIdx);
|
|
if (Subtarget.isCortexA9())
|
|
return Latency <= 2 ? 1 : Latency - 1;
|
|
else
|
|
return Latency <= 3 ? 1 : Latency - 2;
|
|
}
|
|
|
|
const TargetInstrDesc &UseTID = get(UseNode->getMachineOpcode());
|
|
const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
|
|
unsigned DefAlign = !DefMN->memoperands_empty()
|
|
? (*DefMN->memoperands_begin())->getAlignment() : 0;
|
|
const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
|
|
unsigned UseAlign = !UseMN->memoperands_empty()
|
|
? (*UseMN->memoperands_begin())->getAlignment() : 0;
|
|
int Latency = getOperandLatency(ItinData, DefTID, DefIdx, DefAlign,
|
|
UseTID, UseIdx, UseAlign);
|
|
|
|
if (Latency > 1 &&
|
|
(Subtarget.isCortexA8() || Subtarget.isCortexA9())) {
|
|
// FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
|
|
// variants are one cycle cheaper.
|
|
switch (DefTID.getOpcode()) {
|
|
default: break;
|
|
case ARM::LDRrs:
|
|
case ARM::LDRBrs: {
|
|
unsigned ShOpVal =
|
|
cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
|
|
unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
|
|
if (ShImm == 0 ||
|
|
(ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
|
|
--Latency;
|
|
break;
|
|
}
|
|
case ARM::t2LDRs:
|
|
case ARM::t2LDRBs:
|
|
case ARM::t2LDRHs:
|
|
case ARM::t2LDRSHs: {
|
|
// Thumb2 mode: lsl only.
|
|
unsigned ShAmt =
|
|
cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
|
|
if (ShAmt == 0 || ShAmt == 2)
|
|
--Latency;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (DefAlign < 8 && Subtarget.isCortexA9())
|
|
switch (DefTID.getOpcode()) {
|
|
default: break;
|
|
case ARM::VLD1q8Pseudo:
|
|
case ARM::VLD1q16Pseudo:
|
|
case ARM::VLD1q32Pseudo:
|
|
case ARM::VLD1q64Pseudo:
|
|
case ARM::VLD1q8Pseudo_UPD:
|
|
case ARM::VLD1q16Pseudo_UPD:
|
|
case ARM::VLD1q32Pseudo_UPD:
|
|
case ARM::VLD1q64Pseudo_UPD:
|
|
case ARM::VLD2d8Pseudo:
|
|
case ARM::VLD2d16Pseudo:
|
|
case ARM::VLD2d32Pseudo:
|
|
case ARM::VLD2q8Pseudo:
|
|
case ARM::VLD2q16Pseudo:
|
|
case ARM::VLD2q32Pseudo:
|
|
case ARM::VLD2d8Pseudo_UPD:
|
|
case ARM::VLD2d16Pseudo_UPD:
|
|
case ARM::VLD2d32Pseudo_UPD:
|
|
case ARM::VLD2q8Pseudo_UPD:
|
|
case ARM::VLD2q16Pseudo_UPD:
|
|
case ARM::VLD2q32Pseudo_UPD:
|
|
case ARM::VLD3d8Pseudo:
|
|
case ARM::VLD3d16Pseudo:
|
|
case ARM::VLD3d32Pseudo:
|
|
case ARM::VLD1d64TPseudo:
|
|
case ARM::VLD3d8Pseudo_UPD:
|
|
case ARM::VLD3d16Pseudo_UPD:
|
|
case ARM::VLD3d32Pseudo_UPD:
|
|
case ARM::VLD1d64TPseudo_UPD:
|
|
case ARM::VLD3q8Pseudo_UPD:
|
|
case ARM::VLD3q16Pseudo_UPD:
|
|
case ARM::VLD3q32Pseudo_UPD:
|
|
case ARM::VLD3q8oddPseudo:
|
|
case ARM::VLD3q16oddPseudo:
|
|
case ARM::VLD3q32oddPseudo:
|
|
case ARM::VLD3q8oddPseudo_UPD:
|
|
case ARM::VLD3q16oddPseudo_UPD:
|
|
case ARM::VLD3q32oddPseudo_UPD:
|
|
case ARM::VLD4d8Pseudo:
|
|
case ARM::VLD4d16Pseudo:
|
|
case ARM::VLD4d32Pseudo:
|
|
case ARM::VLD1d64QPseudo:
|
|
case ARM::VLD4d8Pseudo_UPD:
|
|
case ARM::VLD4d16Pseudo_UPD:
|
|
case ARM::VLD4d32Pseudo_UPD:
|
|
case ARM::VLD1d64QPseudo_UPD:
|
|
case ARM::VLD4q8Pseudo_UPD:
|
|
case ARM::VLD4q16Pseudo_UPD:
|
|
case ARM::VLD4q32Pseudo_UPD:
|
|
case ARM::VLD4q8oddPseudo:
|
|
case ARM::VLD4q16oddPseudo:
|
|
case ARM::VLD4q32oddPseudo:
|
|
case ARM::VLD4q8oddPseudo_UPD:
|
|
case ARM::VLD4q16oddPseudo_UPD:
|
|
case ARM::VLD4q32oddPseudo_UPD:
|
|
case ARM::VLD1DUPq8Pseudo:
|
|
case ARM::VLD1DUPq16Pseudo:
|
|
case ARM::VLD1DUPq32Pseudo:
|
|
case ARM::VLD1DUPq8Pseudo_UPD:
|
|
case ARM::VLD1DUPq16Pseudo_UPD:
|
|
case ARM::VLD1DUPq32Pseudo_UPD:
|
|
case ARM::VLD2DUPd8Pseudo:
|
|
case ARM::VLD2DUPd16Pseudo:
|
|
case ARM::VLD2DUPd32Pseudo:
|
|
case ARM::VLD2DUPd8Pseudo_UPD:
|
|
case ARM::VLD2DUPd16Pseudo_UPD:
|
|
case ARM::VLD2DUPd32Pseudo_UPD:
|
|
case ARM::VLD4DUPd8Pseudo:
|
|
case ARM::VLD4DUPd16Pseudo:
|
|
case ARM::VLD4DUPd32Pseudo:
|
|
case ARM::VLD4DUPd8Pseudo_UPD:
|
|
case ARM::VLD4DUPd16Pseudo_UPD:
|
|
case ARM::VLD4DUPd32Pseudo_UPD:
|
|
case ARM::VLD1LNq8Pseudo:
|
|
case ARM::VLD1LNq16Pseudo:
|
|
case ARM::VLD1LNq32Pseudo:
|
|
case ARM::VLD1LNq8Pseudo_UPD:
|
|
case ARM::VLD1LNq16Pseudo_UPD:
|
|
case ARM::VLD1LNq32Pseudo_UPD:
|
|
case ARM::VLD2LNd8Pseudo:
|
|
case ARM::VLD2LNd16Pseudo:
|
|
case ARM::VLD2LNd32Pseudo:
|
|
case ARM::VLD2LNq16Pseudo:
|
|
case ARM::VLD2LNq32Pseudo:
|
|
case ARM::VLD2LNd8Pseudo_UPD:
|
|
case ARM::VLD2LNd16Pseudo_UPD:
|
|
case ARM::VLD2LNd32Pseudo_UPD:
|
|
case ARM::VLD2LNq16Pseudo_UPD:
|
|
case ARM::VLD2LNq32Pseudo_UPD:
|
|
case ARM::VLD4LNd8Pseudo:
|
|
case ARM::VLD4LNd16Pseudo:
|
|
case ARM::VLD4LNd32Pseudo:
|
|
case ARM::VLD4LNq16Pseudo:
|
|
case ARM::VLD4LNq32Pseudo:
|
|
case ARM::VLD4LNd8Pseudo_UPD:
|
|
case ARM::VLD4LNd16Pseudo_UPD:
|
|
case ARM::VLD4LNd32Pseudo_UPD:
|
|
case ARM::VLD4LNq16Pseudo_UPD:
|
|
case ARM::VLD4LNq32Pseudo_UPD:
|
|
// If the address is not 64-bit aligned, the latencies of these
|
|
// instructions increases by one.
|
|
++Latency;
|
|
break;
|
|
}
|
|
|
|
return Latency;
|
|
}
|
|
|
|
int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
|
|
const MachineInstr *MI,
|
|
unsigned *PredCost) const {
|
|
if (MI->isCopyLike() || MI->isInsertSubreg() ||
|
|
MI->isRegSequence() || MI->isImplicitDef())
|
|
return 1;
|
|
|
|
if (!ItinData || ItinData->isEmpty())
|
|
return 1;
|
|
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
unsigned Class = TID.getSchedClass();
|
|
unsigned UOps = ItinData->Itineraries[Class].NumMicroOps;
|
|
if (PredCost && TID.hasImplicitDefOfPhysReg(ARM::CPSR))
|
|
// When predicated, CPSR is an additional source operand for CPSR updating
|
|
// instructions, this apparently increases their latencies.
|
|
*PredCost = 1;
|
|
if (UOps)
|
|
return ItinData->getStageLatency(Class);
|
|
return getNumMicroOps(ItinData, MI);
|
|
}
|
|
|
|
int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
|
|
SDNode *Node) const {
|
|
if (!Node->isMachineOpcode())
|
|
return 1;
|
|
|
|
if (!ItinData || ItinData->isEmpty())
|
|
return 1;
|
|
|
|
unsigned Opcode = Node->getMachineOpcode();
|
|
switch (Opcode) {
|
|
default:
|
|
return ItinData->getStageLatency(get(Opcode).getSchedClass());
|
|
case ARM::VLDMQIA:
|
|
case ARM::VSTMQIA:
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
bool ARMBaseInstrInfo::
|
|
hasHighOperandLatency(const InstrItineraryData *ItinData,
|
|
const MachineRegisterInfo *MRI,
|
|
const MachineInstr *DefMI, unsigned DefIdx,
|
|
const MachineInstr *UseMI, unsigned UseIdx) const {
|
|
unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
|
|
unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask;
|
|
if (Subtarget.isCortexA8() &&
|
|
(DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
|
|
// CortexA8 VFP instructions are not pipelined.
|
|
return true;
|
|
|
|
// Hoist VFP / NEON instructions with 4 or higher latency.
|
|
int Latency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
|
|
if (Latency <= 3)
|
|
return false;
|
|
return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
|
|
UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
|
|
}
|
|
|
|
bool ARMBaseInstrInfo::
|
|
hasLowDefLatency(const InstrItineraryData *ItinData,
|
|
const MachineInstr *DefMI, unsigned DefIdx) const {
|
|
if (!ItinData || ItinData->isEmpty())
|
|
return false;
|
|
|
|
unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
|
|
if (DDomain == ARMII::DomainGeneral) {
|
|
unsigned DefClass = DefMI->getDesc().getSchedClass();
|
|
int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
|
|
return (DefCycle != -1 && DefCycle <= 2);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
|
|
unsigned &AddSubOpc,
|
|
bool &NegAcc, bool &HasLane) const {
|
|
DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
|
|
if (I == MLxEntryMap.end())
|
|
return false;
|
|
|
|
const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
|
|
MulOpc = Entry.MulOpc;
|
|
AddSubOpc = Entry.AddSubOpc;
|
|
NegAcc = Entry.NegAcc;
|
|
HasLane = Entry.HasLane;
|
|
return true;
|
|
}
|