1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/lib/XRay/Trace.cpp
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

471 lines
18 KiB
C++

//===- Trace.cpp - XRay Trace Loading implementation. ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// XRay log reader implementation.
//
//===----------------------------------------------------------------------===//
#include "llvm/XRay/Trace.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/XRay/BlockIndexer.h"
#include "llvm/XRay/BlockVerifier.h"
#include "llvm/XRay/FDRRecordConsumer.h"
#include "llvm/XRay/FDRRecordProducer.h"
#include "llvm/XRay/FDRRecords.h"
#include "llvm/XRay/FDRTraceExpander.h"
#include "llvm/XRay/FileHeaderReader.h"
#include "llvm/XRay/YAMLXRayRecord.h"
#include <memory>
#include <vector>
using namespace llvm;
using namespace llvm::xray;
using llvm::yaml::Input;
namespace {
using XRayRecordStorage =
std::aligned_storage<sizeof(XRayRecord), alignof(XRayRecord)>::type;
Error loadNaiveFormatLog(StringRef Data, bool IsLittleEndian,
XRayFileHeader &FileHeader,
std::vector<XRayRecord> &Records) {
if (Data.size() < 32)
return make_error<StringError>(
"Not enough bytes for an XRay log.",
std::make_error_code(std::errc::invalid_argument));
if (Data.size() - 32 == 0 || Data.size() % 32 != 0)
return make_error<StringError>(
"Invalid-sized XRay data.",
std::make_error_code(std::errc::invalid_argument));
DataExtractor Reader(Data, IsLittleEndian, 8);
uint32_t OffsetPtr = 0;
auto FileHeaderOrError = readBinaryFormatHeader(Reader, OffsetPtr);
if (!FileHeaderOrError)
return FileHeaderOrError.takeError();
FileHeader = std::move(FileHeaderOrError.get());
// Each record after the header will be 32 bytes, in the following format:
//
// (2) uint16 : record type
// (1) uint8 : cpu id
// (1) uint8 : type
// (4) sint32 : function id
// (8) uint64 : tsc
// (4) uint32 : thread id
// (4) uint32 : process id
// (8) - : padding
while (Reader.isValidOffset(OffsetPtr)) {
if (!Reader.isValidOffsetForDataOfSize(OffsetPtr, 32))
return createStringError(
std::make_error_code(std::errc::executable_format_error),
"Not enough bytes to read a full record at offset %d.", OffsetPtr);
auto PreReadOffset = OffsetPtr;
auto RecordType = Reader.getU16(&OffsetPtr);
if (OffsetPtr == PreReadOffset)
return createStringError(
std::make_error_code(std::errc::executable_format_error),
"Failed reading record type at offset %d.", OffsetPtr);
switch (RecordType) {
case 0: { // Normal records.
Records.emplace_back();
auto &Record = Records.back();
Record.RecordType = RecordType;
PreReadOffset = OffsetPtr;
Record.CPU = Reader.getU8(&OffsetPtr);
if (OffsetPtr == PreReadOffset)
return createStringError(
std::make_error_code(std::errc::executable_format_error),
"Failed reading CPU field at offset %d.", OffsetPtr);
PreReadOffset = OffsetPtr;
auto Type = Reader.getU8(&OffsetPtr);
if (OffsetPtr == PreReadOffset)
return createStringError(
std::make_error_code(std::errc::executable_format_error),
"Failed reading record type field at offset %d.", OffsetPtr);
switch (Type) {
case 0:
Record.Type = RecordTypes::ENTER;
break;
case 1:
Record.Type = RecordTypes::EXIT;
break;
case 2:
Record.Type = RecordTypes::TAIL_EXIT;
break;
case 3:
Record.Type = RecordTypes::ENTER_ARG;
break;
default:
return createStringError(
std::make_error_code(std::errc::executable_format_error),
"Unknown record type '%d' at offset %d.", Type, OffsetPtr);
}
PreReadOffset = OffsetPtr;
Record.FuncId = Reader.getSigned(&OffsetPtr, sizeof(int32_t));
if (OffsetPtr == PreReadOffset)
return createStringError(
std::make_error_code(std::errc::executable_format_error),
"Failed reading function id field at offset %d.", OffsetPtr);
PreReadOffset = OffsetPtr;
Record.TSC = Reader.getU64(&OffsetPtr);
if (OffsetPtr == PreReadOffset)
return createStringError(
std::make_error_code(std::errc::executable_format_error),
"Failed reading TSC field at offset %d.", OffsetPtr);
PreReadOffset = OffsetPtr;
Record.TId = Reader.getU32(&OffsetPtr);
if (OffsetPtr == PreReadOffset)
return createStringError(
std::make_error_code(std::errc::executable_format_error),
"Failed reading thread id field at offset %d.", OffsetPtr);
PreReadOffset = OffsetPtr;
Record.PId = Reader.getU32(&OffsetPtr);
if (OffsetPtr == PreReadOffset)
return createStringError(
std::make_error_code(std::errc::executable_format_error),
"Failed reading process id at offset %d.", OffsetPtr);
break;
}
case 1: { // Arg payload record.
auto &Record = Records.back();
// We skip the next two bytes of the record, because we don't need the
// type and the CPU record for arg payloads.
OffsetPtr += 2;
PreReadOffset = OffsetPtr;
int32_t FuncId = Reader.getSigned(&OffsetPtr, sizeof(int32_t));
if (OffsetPtr == PreReadOffset)
return createStringError(
std::make_error_code(std::errc::executable_format_error),
"Failed reading function id field at offset %d.", OffsetPtr);
PreReadOffset = OffsetPtr;
auto TId = Reader.getU32(&OffsetPtr);
if (OffsetPtr == PreReadOffset)
return createStringError(
std::make_error_code(std::errc::executable_format_error),
"Failed reading thread id field at offset %d.", OffsetPtr);
PreReadOffset = OffsetPtr;
auto PId = Reader.getU32(&OffsetPtr);
if (OffsetPtr == PreReadOffset)
return createStringError(
std::make_error_code(std::errc::executable_format_error),
"Failed reading process id field at offset %d.", OffsetPtr);
// Make a check for versions above 3 for the Pid field
if (Record.FuncId != FuncId || Record.TId != TId ||
(FileHeader.Version >= 3 ? Record.PId != PId : false))
return createStringError(
std::make_error_code(std::errc::executable_format_error),
"Corrupted log, found arg payload following non-matching "
"function+thread record. Record for function %d != %d at offset "
"%d",
Record.FuncId, FuncId, OffsetPtr);
PreReadOffset = OffsetPtr;
auto Arg = Reader.getU64(&OffsetPtr);
if (OffsetPtr == PreReadOffset)
return createStringError(
std::make_error_code(std::errc::executable_format_error),
"Failed reading argument payload at offset %d.", OffsetPtr);
Record.CallArgs.push_back(Arg);
break;
}
default:
return createStringError(
std::make_error_code(std::errc::executable_format_error),
"Unknown record type '%d' at offset %d.", RecordType, OffsetPtr);
}
// Advance the offset pointer enough bytes to align to 32-byte records for
// basic mode logs.
OffsetPtr += 8;
}
return Error::success();
}
/// Reads a log in FDR mode for version 1 of this binary format. FDR mode is
/// defined as part of the compiler-rt project in xray_fdr_logging.h, and such
/// a log consists of the familiar 32 bit XRayHeader, followed by sequences of
/// of interspersed 16 byte Metadata Records and 8 byte Function Records.
///
/// The following is an attempt to document the grammar of the format, which is
/// parsed by this function for little-endian machines. Since the format makes
/// use of BitFields, when we support big-endian architectures, we will need to
/// adjust not only the endianness parameter to llvm's RecordExtractor, but also
/// the bit twiddling logic, which is consistent with the little-endian
/// convention that BitFields within a struct will first be packed into the
/// least significant bits the address they belong to.
///
/// We expect a format complying with the grammar in the following pseudo-EBNF
/// in Version 1 of the FDR log.
///
/// FDRLog: XRayFileHeader ThreadBuffer*
/// XRayFileHeader: 32 bytes to identify the log as FDR with machine metadata.
/// Includes BufferSize
/// ThreadBuffer: NewBuffer WallClockTime NewCPUId FunctionSequence EOB
/// BufSize: 8 byte unsigned integer indicating how large the buffer is.
/// NewBuffer: 16 byte metadata record with Thread Id.
/// WallClockTime: 16 byte metadata record with human readable time.
/// Pid: 16 byte metadata record with Pid
/// NewCPUId: 16 byte metadata record with CPUId and a 64 bit TSC reading.
/// EOB: 16 byte record in a thread buffer plus mem garbage to fill BufSize.
/// FunctionSequence: NewCPUId | TSCWrap | FunctionRecord
/// TSCWrap: 16 byte metadata record with a full 64 bit TSC reading.
/// FunctionRecord: 8 byte record with FunctionId, entry/exit, and TSC delta.
///
/// In Version 2, we make the following changes:
///
/// ThreadBuffer: BufferExtents NewBuffer WallClockTime NewCPUId
/// FunctionSequence
/// BufferExtents: 16 byte metdata record describing how many usable bytes are
/// in the buffer. This is measured from the start of the buffer
/// and must always be at least 48 (bytes).
///
/// In Version 3, we make the following changes:
///
/// ThreadBuffer: BufferExtents NewBuffer WallClockTime Pid NewCPUId
/// FunctionSequence
/// EOB: *deprecated*
///
/// In Version 4, we make the following changes:
///
/// CustomEventRecord now includes the CPU data.
///
/// In Version 5, we make the following changes:
///
/// CustomEventRecord and TypedEventRecord now use TSC delta encoding similar to
/// what FunctionRecord instances use, and we no longer need to include the CPU
/// id in the CustomEventRecord.
///
Error loadFDRLog(StringRef Data, bool IsLittleEndian,
XRayFileHeader &FileHeader, std::vector<XRayRecord> &Records) {
if (Data.size() < 32)
return createStringError(std::make_error_code(std::errc::invalid_argument),
"Not enough bytes for an XRay FDR log.");
DataExtractor DE(Data, IsLittleEndian, 8);
uint32_t OffsetPtr = 0;
auto FileHeaderOrError = readBinaryFormatHeader(DE, OffsetPtr);
if (!FileHeaderOrError)
return FileHeaderOrError.takeError();
FileHeader = std::move(FileHeaderOrError.get());
// First we load the records into memory.
std::vector<std::unique_ptr<Record>> FDRRecords;
{
FileBasedRecordProducer P(FileHeader, DE, OffsetPtr);
LogBuilderConsumer C(FDRRecords);
while (DE.isValidOffsetForDataOfSize(OffsetPtr, 1)) {
auto R = P.produce();
if (!R)
return R.takeError();
if (auto E = C.consume(std::move(R.get())))
return E;
}
}
// Next we index the records into blocks.
BlockIndexer::Index Index;
{
BlockIndexer Indexer(Index);
for (auto &R : FDRRecords)
if (auto E = R->apply(Indexer))
return E;
if (auto E = Indexer.flush())
return E;
}
// Then we verify the consistency of the blocks.
{
for (auto &PTB : Index) {
auto &Blocks = PTB.second;
for (auto &B : Blocks) {
BlockVerifier Verifier;
for (auto *R : B.Records)
if (auto E = R->apply(Verifier))
return E;
if (auto E = Verifier.verify())
return E;
}
}
}
// This is now the meat of the algorithm. Here we sort the blocks according to
// the Walltime record in each of the blocks for the same thread. This allows
// us to more consistently recreate the execution trace in temporal order.
// After the sort, we then reconstitute `Trace` records using a stateful
// visitor associated with a single process+thread pair.
{
for (auto &PTB : Index) {
auto &Blocks = PTB.second;
llvm::sort(Blocks, [](const BlockIndexer::Block &L,
const BlockIndexer::Block &R) {
return (L.WallclockTime->seconds() < R.WallclockTime->seconds() &&
L.WallclockTime->nanos() < R.WallclockTime->nanos());
});
auto Adder = [&](const XRayRecord &R) { Records.push_back(R); };
TraceExpander Expander(Adder, FileHeader.Version);
for (auto &B : Blocks) {
for (auto *R : B.Records)
if (auto E = R->apply(Expander))
return E;
}
if (auto E = Expander.flush())
return E;
}
}
return Error::success();
}
Error loadYAMLLog(StringRef Data, XRayFileHeader &FileHeader,
std::vector<XRayRecord> &Records) {
YAMLXRayTrace Trace;
Input In(Data);
In >> Trace;
if (In.error())
return make_error<StringError>("Failed loading YAML Data.", In.error());
FileHeader.Version = Trace.Header.Version;
FileHeader.Type = Trace.Header.Type;
FileHeader.ConstantTSC = Trace.Header.ConstantTSC;
FileHeader.NonstopTSC = Trace.Header.NonstopTSC;
FileHeader.CycleFrequency = Trace.Header.CycleFrequency;
if (FileHeader.Version != 1)
return make_error<StringError>(
Twine("Unsupported XRay file version: ") + Twine(FileHeader.Version),
std::make_error_code(std::errc::invalid_argument));
Records.clear();
std::transform(Trace.Records.begin(), Trace.Records.end(),
std::back_inserter(Records), [&](const YAMLXRayRecord &R) {
return XRayRecord{R.RecordType, R.CPU, R.Type,
R.FuncId, R.TSC, R.TId,
R.PId, R.CallArgs, R.Data};
});
return Error::success();
}
} // namespace
Expected<Trace> llvm::xray::loadTraceFile(StringRef Filename, bool Sort) {
int Fd;
if (auto EC = sys::fs::openFileForRead(Filename, Fd)) {
return make_error<StringError>(
Twine("Cannot read log from '") + Filename + "'", EC);
}
uint64_t FileSize;
if (auto EC = sys::fs::file_size(Filename, FileSize)) {
return make_error<StringError>(
Twine("Cannot read log from '") + Filename + "'", EC);
}
if (FileSize < 4) {
return make_error<StringError>(
Twine("File '") + Filename + "' too small for XRay.",
std::make_error_code(std::errc::executable_format_error));
}
// Map the opened file into memory and use a StringRef to access it later.
std::error_code EC;
sys::fs::mapped_file_region MappedFile(
Fd, sys::fs::mapped_file_region::mapmode::readonly, FileSize, 0, EC);
if (EC) {
return make_error<StringError>(
Twine("Cannot read log from '") + Filename + "'", EC);
}
auto Data = StringRef(MappedFile.data(), MappedFile.size());
// TODO: Lift the endianness and implementation selection here.
DataExtractor LittleEndianDE(Data, true, 8);
auto TraceOrError = loadTrace(LittleEndianDE, Sort);
if (!TraceOrError) {
DataExtractor BigEndianDE(Data, false, 8);
TraceOrError = loadTrace(BigEndianDE, Sort);
}
return TraceOrError;
}
Expected<Trace> llvm::xray::loadTrace(const DataExtractor &DE, bool Sort) {
// Attempt to detect the file type using file magic. We have a slight bias
// towards the binary format, and we do this by making sure that the first 4
// bytes of the binary file is some combination of the following byte
// patterns: (observe the code loading them assumes they're little endian)
//
// 0x01 0x00 0x00 0x00 - version 1, "naive" format
// 0x01 0x00 0x01 0x00 - version 1, "flight data recorder" format
// 0x02 0x00 0x01 0x00 - version 2, "flight data recorder" format
//
// YAML files don't typically have those first four bytes as valid text so we
// try loading assuming YAML if we don't find these bytes.
//
// Only if we can't load either the binary or the YAML format will we yield an
// error.
DataExtractor HeaderExtractor(DE.getData(), DE.isLittleEndian(), 8);
uint32_t OffsetPtr = 0;
uint16_t Version = HeaderExtractor.getU16(&OffsetPtr);
uint16_t Type = HeaderExtractor.getU16(&OffsetPtr);
enum BinaryFormatType { NAIVE_FORMAT = 0, FLIGHT_DATA_RECORDER_FORMAT = 1 };
Trace T;
switch (Type) {
case NAIVE_FORMAT:
if (Version == 1 || Version == 2 || Version == 3) {
if (auto E = loadNaiveFormatLog(DE.getData(), DE.isLittleEndian(),
T.FileHeader, T.Records))
return std::move(E);
} else {
return make_error<StringError>(
Twine("Unsupported version for Basic/Naive Mode logging: ") +
Twine(Version),
std::make_error_code(std::errc::executable_format_error));
}
break;
case FLIGHT_DATA_RECORDER_FORMAT:
if (Version >= 1 && Version <= 5) {
if (auto E = loadFDRLog(DE.getData(), DE.isLittleEndian(), T.FileHeader,
T.Records))
return std::move(E);
} else {
return make_error<StringError>(
Twine("Unsupported version for FDR Mode logging: ") + Twine(Version),
std::make_error_code(std::errc::executable_format_error));
}
break;
default:
if (auto E = loadYAMLLog(DE.getData(), T.FileHeader, T.Records))
return std::move(E);
}
if (Sort)
std::stable_sort(T.Records.begin(), T.Records.end(),
[&](const XRayRecord &L, const XRayRecord &R) {
return L.TSC < R.TSC;
});
return std::move(T);
}