1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 11:02:59 +02:00
llvm-mirror/lib/ExecutionEngine/Orc/OrcMCJITReplacement.h
Lang Hames d365016c99 [ORC] Add a MaterializationResponsibility class to track responsibility for
materializing function definitions.

MaterializationUnit instances are responsible for resolving and finalizing
symbol definitions when their materialize method is called. By contract, the
MaterializationUnit must materialize all definitions it is responsible for and
no others. If it can not materialize all definitions (because of some error)
then it must notify the associated VSO about each definition that could not be
materialized. The MaterializationResponsibility class tracks this
responsibility, asserting that all required symbols are resolved and finalized,
and that no extraneous symbols are resolved or finalized. In the event of an
error it provides a convenience method for notifying the VSO about each
definition that could not be materialized.

llvm-svn: 330142
2018-04-16 18:05:24 +00:00

491 lines
17 KiB
C++

//===- OrcMCJITReplacement.h - Orc based MCJIT replacement ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Orc based MCJIT replacement.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_EXECUTIONENGINE_ORC_ORCMCJITREPLACEMENT_H
#define LLVM_LIB_EXECUTIONENGINE_ORC_ORCMCJITREPLACEMENT_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/ExecutionUtils.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h"
#include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Module.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <vector>
namespace llvm {
class ObjectCache;
namespace orc {
class OrcMCJITReplacement : public ExecutionEngine {
// OrcMCJITReplacement needs to do a little extra book-keeping to ensure that
// Orc's automatic finalization doesn't kick in earlier than MCJIT clients are
// expecting - see finalizeMemory.
class MCJITReplacementMemMgr : public MCJITMemoryManager {
public:
MCJITReplacementMemMgr(OrcMCJITReplacement &M,
std::shared_ptr<MCJITMemoryManager> ClientMM)
: M(M), ClientMM(std::move(ClientMM)) {}
uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID,
StringRef SectionName) override {
uint8_t *Addr =
ClientMM->allocateCodeSection(Size, Alignment, SectionID,
SectionName);
M.SectionsAllocatedSinceLastLoad.insert(Addr);
return Addr;
}
uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID, StringRef SectionName,
bool IsReadOnly) override {
uint8_t *Addr = ClientMM->allocateDataSection(Size, Alignment, SectionID,
SectionName, IsReadOnly);
M.SectionsAllocatedSinceLastLoad.insert(Addr);
return Addr;
}
void reserveAllocationSpace(uintptr_t CodeSize, uint32_t CodeAlign,
uintptr_t RODataSize, uint32_t RODataAlign,
uintptr_t RWDataSize,
uint32_t RWDataAlign) override {
return ClientMM->reserveAllocationSpace(CodeSize, CodeAlign,
RODataSize, RODataAlign,
RWDataSize, RWDataAlign);
}
bool needsToReserveAllocationSpace() override {
return ClientMM->needsToReserveAllocationSpace();
}
void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr,
size_t Size) override {
return ClientMM->registerEHFrames(Addr, LoadAddr, Size);
}
void deregisterEHFrames() override {
return ClientMM->deregisterEHFrames();
}
void notifyObjectLoaded(RuntimeDyld &RTDyld,
const object::ObjectFile &O) override {
return ClientMM->notifyObjectLoaded(RTDyld, O);
}
void notifyObjectLoaded(ExecutionEngine *EE,
const object::ObjectFile &O) override {
return ClientMM->notifyObjectLoaded(EE, O);
}
bool finalizeMemory(std::string *ErrMsg = nullptr) override {
// Each set of objects loaded will be finalized exactly once, but since
// symbol lookup during relocation may recursively trigger the
// loading/relocation of other modules, and since we're forwarding all
// finalizeMemory calls to a single underlying memory manager, we need to
// defer forwarding the call on until all necessary objects have been
// loaded. Otherwise, during the relocation of a leaf object, we will end
// up finalizing memory, causing a crash further up the stack when we
// attempt to apply relocations to finalized memory.
// To avoid finalizing too early, look at how many objects have been
// loaded but not yet finalized. This is a bit of a hack that relies on
// the fact that we're lazily emitting object files: The only way you can
// get more than one set of objects loaded but not yet finalized is if
// they were loaded during relocation of another set.
if (M.UnfinalizedSections.size() == 1)
return ClientMM->finalizeMemory(ErrMsg);
return false;
}
private:
OrcMCJITReplacement &M;
std::shared_ptr<MCJITMemoryManager> ClientMM;
};
class LinkingORCResolver : public orc::SymbolResolver {
public:
LinkingORCResolver(OrcMCJITReplacement &M) : M(M) {}
SymbolNameSet lookupFlags(SymbolFlagsMap &SymbolFlags,
const SymbolNameSet &Symbols) override {
SymbolNameSet UnresolvedSymbols;
for (auto &S : Symbols) {
if (auto Sym = M.findMangledSymbol(*S)) {
SymbolFlags[S] = Sym.getFlags();
} else if (auto Err = Sym.takeError()) {
M.reportError(std::move(Err));
return SymbolNameSet();
} else {
if (auto Sym2 = M.ClientResolver->findSymbolInLogicalDylib(*S)) {
SymbolFlags[S] = Sym2.getFlags();
} else if (auto Err = Sym2.takeError()) {
M.reportError(std::move(Err));
return SymbolNameSet();
} else
UnresolvedSymbols.insert(S);
}
}
return UnresolvedSymbols;
}
SymbolNameSet lookup(std::shared_ptr<AsynchronousSymbolQuery> Query,
SymbolNameSet Symbols) override {
SymbolNameSet UnresolvedSymbols;
for (auto &S : Symbols) {
if (auto Sym = M.findMangledSymbol(*S)) {
if (auto Addr = Sym.getAddress())
Query->resolve(S, JITEvaluatedSymbol(*Addr, Sym.getFlags()));
else {
Query->notifyMaterializationFailed(Addr.takeError());
return SymbolNameSet();
}
} else if (auto Err = Sym.takeError()) {
Query->notifyMaterializationFailed(std::move(Err));
return SymbolNameSet();
} else {
if (auto Sym2 = M.ClientResolver->findSymbol(*S)) {
if (auto Addr = Sym2.getAddress())
Query->resolve(S, JITEvaluatedSymbol(*Addr, Sym2.getFlags()));
else {
Query->notifyMaterializationFailed(Addr.takeError());
return SymbolNameSet();
}
} else if (auto Err = Sym2.takeError()) {
Query->notifyMaterializationFailed(std::move(Err));
return SymbolNameSet();
} else
UnresolvedSymbols.insert(S);
}
}
return UnresolvedSymbols;
}
private:
OrcMCJITReplacement &M;
};
private:
static ExecutionEngine *
createOrcMCJITReplacement(std::string *ErrorMsg,
std::shared_ptr<MCJITMemoryManager> MemMgr,
std::shared_ptr<LegacyJITSymbolResolver> Resolver,
std::unique_ptr<TargetMachine> TM) {
return new OrcMCJITReplacement(std::move(MemMgr), std::move(Resolver),
std::move(TM));
}
void reportError(Error Err) {
logAllUnhandledErrors(std::move(Err), errs(), "MCJIT error: ");
}
public:
OrcMCJITReplacement(std::shared_ptr<MCJITMemoryManager> MemMgr,
std::shared_ptr<LegacyJITSymbolResolver> ClientResolver,
std::unique_ptr<TargetMachine> TM)
: ExecutionEngine(TM->createDataLayout()),
TM(std::move(TM)),
MemMgr(
std::make_shared<MCJITReplacementMemMgr>(*this, std::move(MemMgr))),
Resolver(std::make_shared<LinkingORCResolver>(*this)),
ClientResolver(std::move(ClientResolver)), NotifyObjectLoaded(*this),
NotifyFinalized(*this),
ObjectLayer(
ES,
[this](VModuleKey K) {
return ObjectLayerT::Resources{this->MemMgr, this->Resolver};
},
NotifyObjectLoaded, NotifyFinalized),
CompileLayer(ObjectLayer, SimpleCompiler(*this->TM),
[this](VModuleKey K, std::unique_ptr<Module> M) {
Modules.push_back(std::move(M));
}),
LazyEmitLayer(CompileLayer) {}
static void Register() {
OrcMCJITReplacementCtor = createOrcMCJITReplacement;
}
void addModule(std::unique_ptr<Module> M) override {
// If this module doesn't have a DataLayout attached then attach the
// default.
if (M->getDataLayout().isDefault()) {
M->setDataLayout(getDataLayout());
} else {
assert(M->getDataLayout() == getDataLayout() && "DataLayout Mismatch");
}
// Rename, bump linkage and record static constructors and destructors.
// We have to do this before we hand over ownership of the module to the
// JIT.
std::vector<std::string> CtorNames, DtorNames;
{
unsigned CtorId = 0, DtorId = 0;
for (auto Ctor : orc::getConstructors(*M)) {
std::string NewCtorName = ("$static_ctor." + Twine(CtorId++)).str();
Ctor.Func->setName(NewCtorName);
Ctor.Func->setLinkage(GlobalValue::ExternalLinkage);
Ctor.Func->setVisibility(GlobalValue::HiddenVisibility);
CtorNames.push_back(mangle(NewCtorName));
}
for (auto Dtor : orc::getDestructors(*M)) {
std::string NewDtorName = ("$static_dtor." + Twine(DtorId++)).str();
dbgs() << "Found dtor: " << NewDtorName << "\n";
Dtor.Func->setName(NewDtorName);
Dtor.Func->setLinkage(GlobalValue::ExternalLinkage);
Dtor.Func->setVisibility(GlobalValue::HiddenVisibility);
DtorNames.push_back(mangle(NewDtorName));
}
}
auto K = ES.allocateVModule();
UnexecutedConstructors[K] = std::move(CtorNames);
UnexecutedDestructors[K] = std::move(DtorNames);
cantFail(LazyEmitLayer.addModule(K, std::move(M)));
}
void addObjectFile(std::unique_ptr<object::ObjectFile> O) override {
cantFail(ObjectLayer.addObject(
ES.allocateVModule(), MemoryBuffer::getMemBufferCopy(O->getData())));
}
void addObjectFile(object::OwningBinary<object::ObjectFile> O) override {
std::unique_ptr<object::ObjectFile> Obj;
std::unique_ptr<MemoryBuffer> ObjBuffer;
std::tie(Obj, ObjBuffer) = O.takeBinary();
cantFail(ObjectLayer.addObject(ES.allocateVModule(), std::move(ObjBuffer)));
}
void addArchive(object::OwningBinary<object::Archive> A) override {
Archives.push_back(std::move(A));
}
bool removeModule(Module *M) override {
auto I = Modules.begin();
for (auto E = Modules.end(); I != E; ++I)
if (I->get() == M)
break;
if (I == Modules.end())
return false;
Modules.erase(I);
return true;
}
uint64_t getSymbolAddress(StringRef Name) {
return cantFail(findSymbol(Name).getAddress());
}
JITSymbol findSymbol(StringRef Name) {
return findMangledSymbol(mangle(Name));
}
void finalizeObject() override {
// This is deprecated - Aim to remove in ExecutionEngine.
// REMOVE IF POSSIBLE - Doesn't make sense for New JIT.
}
void mapSectionAddress(const void *LocalAddress,
uint64_t TargetAddress) override {
for (auto &P : UnfinalizedSections)
if (P.second.count(LocalAddress))
ObjectLayer.mapSectionAddress(P.first, LocalAddress, TargetAddress);
}
uint64_t getGlobalValueAddress(const std::string &Name) override {
return getSymbolAddress(Name);
}
uint64_t getFunctionAddress(const std::string &Name) override {
return getSymbolAddress(Name);
}
void *getPointerToFunction(Function *F) override {
uint64_t FAddr = getSymbolAddress(F->getName());
return reinterpret_cast<void *>(static_cast<uintptr_t>(FAddr));
}
void *getPointerToNamedFunction(StringRef Name,
bool AbortOnFailure = true) override {
uint64_t Addr = getSymbolAddress(Name);
if (!Addr && AbortOnFailure)
llvm_unreachable("Missing symbol!");
return reinterpret_cast<void *>(static_cast<uintptr_t>(Addr));
}
GenericValue runFunction(Function *F,
ArrayRef<GenericValue> ArgValues) override;
void setObjectCache(ObjectCache *NewCache) override {
CompileLayer.getCompiler().setObjectCache(NewCache);
}
void setProcessAllSections(bool ProcessAllSections) override {
ObjectLayer.setProcessAllSections(ProcessAllSections);
}
void runStaticConstructorsDestructors(bool isDtors) override;
private:
JITSymbol findMangledSymbol(StringRef Name) {
if (auto Sym = LazyEmitLayer.findSymbol(Name, false))
return Sym;
if (auto Sym = ClientResolver->findSymbol(Name))
return Sym;
if (auto Sym = scanArchives(Name))
return Sym;
return nullptr;
}
JITSymbol scanArchives(StringRef Name) {
for (object::OwningBinary<object::Archive> &OB : Archives) {
object::Archive *A = OB.getBinary();
// Look for our symbols in each Archive
auto OptionalChildOrErr = A->findSym(Name);
if (!OptionalChildOrErr)
report_fatal_error(OptionalChildOrErr.takeError());
auto &OptionalChild = *OptionalChildOrErr;
if (OptionalChild) {
// FIXME: Support nested archives?
Expected<std::unique_ptr<object::Binary>> ChildBinOrErr =
OptionalChild->getAsBinary();
if (!ChildBinOrErr) {
// TODO: Actually report errors helpfully.
consumeError(ChildBinOrErr.takeError());
continue;
}
std::unique_ptr<object::Binary> &ChildBin = ChildBinOrErr.get();
if (ChildBin->isObject()) {
cantFail(ObjectLayer.addObject(
ES.allocateVModule(),
MemoryBuffer::getMemBufferCopy(ChildBin->getData())));
if (auto Sym = ObjectLayer.findSymbol(Name, true))
return Sym;
}
}
}
return nullptr;
}
class NotifyObjectLoadedT {
public:
using LoadedObjInfoListT =
std::vector<std::unique_ptr<RuntimeDyld::LoadedObjectInfo>>;
NotifyObjectLoadedT(OrcMCJITReplacement &M) : M(M) {}
void operator()(VModuleKey K, const object::ObjectFile &Obj,
const RuntimeDyld::LoadedObjectInfo &Info) const {
M.UnfinalizedSections[K] = std::move(M.SectionsAllocatedSinceLastLoad);
M.SectionsAllocatedSinceLastLoad = SectionAddrSet();
M.MemMgr->notifyObjectLoaded(&M, Obj);
}
private:
OrcMCJITReplacement &M;
};
class NotifyFinalizedT {
public:
NotifyFinalizedT(OrcMCJITReplacement &M) : M(M) {}
void operator()(VModuleKey K) { M.UnfinalizedSections.erase(K); }
private:
OrcMCJITReplacement &M;
};
std::string mangle(StringRef Name) {
std::string MangledName;
{
raw_string_ostream MangledNameStream(MangledName);
Mang.getNameWithPrefix(MangledNameStream, Name, getDataLayout());
}
return MangledName;
}
using ObjectLayerT = RTDyldObjectLinkingLayer;
using CompileLayerT = IRCompileLayer<ObjectLayerT, orc::SimpleCompiler>;
using LazyEmitLayerT = LazyEmittingLayer<CompileLayerT>;
ExecutionSession ES;
std::unique_ptr<TargetMachine> TM;
std::shared_ptr<MCJITReplacementMemMgr> MemMgr;
std::shared_ptr<LinkingORCResolver> Resolver;
std::shared_ptr<LegacyJITSymbolResolver> ClientResolver;
Mangler Mang;
// IMPORTANT: ShouldDelete *must* come before LocalModules: The shared_ptr
// delete blocks in LocalModules refer to the ShouldDelete map, so
// LocalModules needs to be destructed before ShouldDelete.
std::map<Module*, bool> ShouldDelete;
NotifyObjectLoadedT NotifyObjectLoaded;
NotifyFinalizedT NotifyFinalized;
ObjectLayerT ObjectLayer;
CompileLayerT CompileLayer;
LazyEmitLayerT LazyEmitLayer;
std::map<VModuleKey, std::vector<std::string>> UnexecutedConstructors;
std::map<VModuleKey, std::vector<std::string>> UnexecutedDestructors;
// We need to store ObjLayerT::ObjSetHandles for each of the object sets
// that have been emitted but not yet finalized so that we can forward the
// mapSectionAddress calls appropriately.
using SectionAddrSet = std::set<const void *>;
SectionAddrSet SectionsAllocatedSinceLastLoad;
std::map<VModuleKey, SectionAddrSet> UnfinalizedSections;
std::vector<object::OwningBinary<object::Archive>> Archives;
};
} // end namespace orc
} // end namespace llvm
#endif // LLVM_LIB_EXECUTIONENGINE_ORC_MCJITREPLACEMENT_H