1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00
llvm-mirror/lib/Transforms/TransformInternals.cpp
Chris Lattner e3b8fb7426 Don't insert scales of 1 :)
llvm-svn: 1430
2001-12-07 04:26:02 +00:00

249 lines
9.4 KiB
C++

//===-- TransformInternals.cpp - Implement shared functions for transforms --=//
//
// This file defines shared functions used by the different components of the
// Transforms library.
//
//===----------------------------------------------------------------------===//
#include "TransformInternals.h"
#include "llvm/Method.h"
#include "llvm/Type.h"
#include "llvm/ConstantVals.h"
#include "llvm/Analysis/Expressions.h"
#include "llvm/iOther.h"
// TargetData Hack: Eventually we will have annotations given to us by the
// backend so that we know stuff about type size and alignments. For now
// though, just use this, because it happens to match the model that GCC uses.
//
const TargetData TD("LevelRaise: Should be GCC though!");
// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
// with a value, then remove and delete the original instruction.
//
void ReplaceInstWithValue(BasicBlock::InstListType &BIL,
BasicBlock::iterator &BI, Value *V) {
Instruction *I = *BI;
// Replaces all of the uses of the instruction with uses of the value
I->replaceAllUsesWith(V);
// Remove the unneccesary instruction now...
BIL.remove(BI);
// Make sure to propogate a name if there is one already...
if (I->hasName() && !V->hasName())
V->setName(I->getName(), BIL.getParent()->getSymbolTable());
// Remove the dead instruction now...
delete I;
}
// ReplaceInstWithInst - Replace the instruction specified by BI with the
// instruction specified by I. The original instruction is deleted and BI is
// updated to point to the new instruction.
//
void ReplaceInstWithInst(BasicBlock::InstListType &BIL,
BasicBlock::iterator &BI, Instruction *I) {
assert(I->getParent() == 0 &&
"ReplaceInstWithInst: Instruction already inserted into basic block!");
// Insert the new instruction into the basic block...
BI = BIL.insert(BI, I)+1;
// Replace all uses of the old instruction, and delete it.
ReplaceInstWithValue(BIL, BI, I);
// Reexamine the instruction just inserted next time around the cleanup pass
// loop.
--BI;
}
// getStructOffsetType - Return a vector of offsets that are to be used to index
// into the specified struct type to get as close as possible to index as we
// can. Note that it is possible that we cannot get exactly to Offset, in which
// case we update offset to be the offset we actually obtained. The resultant
// leaf type is returned.
//
// If StopEarly is set to true (the default), the first object with the
// specified type is returned, even if it is a struct type itself. In this
// case, this routine will not drill down to the leaf type. Set StopEarly to
// false if you want a leaf
//
const Type *getStructOffsetType(const Type *Ty, unsigned &Offset,
vector<Value*> &Offsets,
bool StopEarly = true) {
if (!isa<CompositeType>(Ty) ||
(Offset == 0 && StopEarly && !Offsets.empty())) {
Offset = 0; // Return the offset that we were able to acheive
return Ty; // Return the leaf type
}
unsigned ThisOffset;
const Type *NextType;
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
assert(Offset < TD.getTypeSize(Ty) && "Offset not in composite!");
const StructLayout *SL = TD.getStructLayout(STy);
// This loop terminates always on a 0 <= i < MemberOffsets.size()
unsigned i;
for (i = 0; i < SL->MemberOffsets.size()-1; ++i)
if (Offset >= SL->MemberOffsets[i] && Offset < SL->MemberOffsets[i+1])
break;
assert(Offset >= SL->MemberOffsets[i] &&
(i == SL->MemberOffsets.size()-1 || Offset <SL->MemberOffsets[i+1]));
// Make sure to save the current index...
Offsets.push_back(ConstantUInt::get(Type::UByteTy, i));
ThisOffset = SL->MemberOffsets[i];
NextType = STy->getElementTypes()[i];
} else {
const ArrayType *ATy = cast<ArrayType>(Ty);
assert(ATy->isUnsized() || Offset < TD.getTypeSize(Ty) &&
"Offset not in composite!");
NextType = ATy->getElementType();
unsigned ChildSize = TD.getTypeSize(NextType);
Offsets.push_back(ConstantUInt::get(Type::UIntTy, Offset/ChildSize));
ThisOffset = (Offset/ChildSize)*ChildSize;
}
unsigned SubOffs = Offset - ThisOffset;
const Type *LeafTy = getStructOffsetType(NextType, SubOffs, Offsets);
Offset = ThisOffset + SubOffs;
return LeafTy;
}
// ConvertableToGEP - This function returns true if the specified value V is
// a valid index into a pointer of type Ty. If it is valid, Idx is filled in
// with the values that would be appropriate to make this a getelementptr
// instruction. The type returned is the root type that the GEP would point to
//
const Type *ConvertableToGEP(const Type *Ty, Value *OffsetVal,
vector<Value*> &Indices,
BasicBlock::iterator *BI = 0) {
const CompositeType *CompTy = getPointedToComposite(Ty);
if (CompTy == 0) return 0;
// See if the cast is of an integer expression that is either a constant,
// or a value scaled by some amount with a possible offset.
//
analysis::ExprType Expr = analysis::ClassifyExpression(OffsetVal);
// The expression must either be a constant, or a scaled index to be useful
if (!Expr.Offset && !Expr.Scale)
return 0;
// Get the offset and scale now...
unsigned Offset = 0, Scale = Expr.Var != 0;
// Get the offset value if it exists...
if (Expr.Offset) {
int Val = getConstantValue(Expr.Offset);
if (Val < 0) return false; // Don't mess with negative offsets
Offset = (unsigned)Val;
}
// Get the scale value if it exists...
if (Expr.Scale) {
int Val = getConstantValue(Expr.Scale);
if (Val < 0) return false; // Don't mess with negative scales
Scale = (unsigned)Val;
}
// Check to make sure the offset is not negative or really large, outside the
// scope of this structure...
//
if (!isa<ArrayType>(CompTy) || cast<ArrayType>(CompTy)->isSized())
if (Offset >= TD.getTypeSize(CompTy))
return 0;
// Loop over the Scale and Offset values, filling in the Indices vector for
// our final getelementptr instruction.
//
const Type *NextTy = CompTy;
do {
if (!isa<CompositeType>(NextTy))
return 0; // Type must not be ready for processing...
CompTy = cast<CompositeType>(NextTy);
if (const StructType *StructTy = dyn_cast<StructType>(CompTy)) {
const StructLayout *SL = TD.getStructLayout(StructTy);
unsigned ActualOffset = Offset;
NextTy = getStructOffsetType(StructTy, ActualOffset, Indices);
Offset -= ActualOffset;
} else {
const ArrayType *AT = cast<ArrayType>(CompTy);
const Type *ElTy = AT->getElementType();
unsigned ElSize = TD.getTypeSize(ElTy);
// See if the user is indexing into a different cell of this array...
if (Scale && Scale >= ElSize) {
// A scale n*ElSize might occur if we are not stepping through
// array by one. In this case, we will have to insert math to munge
// the index.
//
unsigned ScaleAmt = Scale/ElSize;
if (Scale-ScaleAmt*ElSize)
return 0; // Didn't scale by a multiple of element size, bail out
Scale = ElSize;
unsigned Index = Offset/ElSize; // is zero unless Offset > ElSize
Offset -= Index*ElSize; // Consume part of the offset
if (BI) { // Generate code?
BasicBlock *BB = (**BI)->getParent();
if (Expr.Var->getType() != Type::UIntTy) {
CastInst *IdxCast = new CastInst(Expr.Var, Type::UIntTy);
if (Expr.Var->hasName())
IdxCast->setName(Expr.Var->getName()+"-idxcast");
*BI = BB->getInstList().insert(*BI, IdxCast)+1;
Expr.Var = IdxCast;
}
if (ScaleAmt && ScaleAmt != 1) {
// If we have to scale up our index, do so now
Value *ScaleAmtVal = ConstantUInt::get(Type::UIntTy, ScaleAmt);
Instruction *Scaler = BinaryOperator::create(Instruction::Mul,
Expr.Var,ScaleAmtVal);
if (Expr.Var->hasName())
Scaler->setName(Expr.Var->getName()+"-scale");
*BI = BB->getInstList().insert(*BI, Scaler)+1;
Expr.Var = Scaler;
}
if (Index) { // Add an offset to the index
Value *IndexAmt = ConstantUInt::get(Type::UIntTy, Index);
Instruction *Offseter = BinaryOperator::create(Instruction::Add,
Expr.Var, IndexAmt);
if (Expr.Var->hasName())
Offseter->setName(Expr.Var->getName()+"-offset");
*BI = BB->getInstList().insert(*BI, Offseter)+1;
Expr.Var = Offseter;
}
}
Indices.push_back(Expr.Var);
Scale = 0; // Consume scale factor!
} else if (Offset >= ElSize) {
// Calculate the index that we are entering into the array cell with
unsigned Index = Offset/ElSize;
Indices.push_back(ConstantUInt::get(Type::UIntTy, Index));
Offset -= Index*ElSize; // Consume part of the offset
} else {
// Must be indexing a small amount into the first cell of the array
// Just index into element zero of the array here.
//
Indices.push_back(ConstantUInt::get(Type::UIntTy, 0));
}
NextTy = ElTy;
}
} while (Offset || Scale); // Go until we're done!
return NextTy;
}