mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 03:33:20 +01:00
cdc96f47e0
I was looking at an unrelated fold and noticed that we don't have this simplification (because the other fold would break existing tests). Name: zext udiv %z = zext i1 %x to i32 %r = udiv i32 %y, %z => %r = %y Name: zext urem %z = zext i1 %x to i32 %r = urem i32 %y, %z => %r = 0 Name: zext sdiv %z = zext i1 %x to i32 %r = sdiv i32 %y, %z => %r = %y Name: zext srem %z = zext i1 %x to i32 %r = srem i32 %y, %z => %r = 0 https://rise4fun.com/Alive/LZ9 llvm-svn: 335512
309 lines
7.8 KiB
LLVM
309 lines
7.8 KiB
LLVM
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
|
|
; RUN: opt < %s -instsimplify -S | FileCheck %s
|
|
|
|
define i32 @zero_dividend(i32 %A) {
|
|
; CHECK-LABEL: @zero_dividend(
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
%B = urem i32 0, %A
|
|
ret i32 %B
|
|
}
|
|
|
|
define <2 x i32> @zero_dividend_vector(<2 x i32> %A) {
|
|
; CHECK-LABEL: @zero_dividend_vector(
|
|
; CHECK-NEXT: ret <2 x i32> zeroinitializer
|
|
;
|
|
%B = srem <2 x i32> zeroinitializer, %A
|
|
ret <2 x i32> %B
|
|
}
|
|
|
|
define <2 x i32> @zero_dividend_vector_undef_elt(<2 x i32> %A) {
|
|
; CHECK-LABEL: @zero_dividend_vector_undef_elt(
|
|
; CHECK-NEXT: ret <2 x i32> zeroinitializer
|
|
;
|
|
%B = urem <2 x i32> <i32 undef, i32 0>, %A
|
|
ret <2 x i32> %B
|
|
}
|
|
|
|
; Division-by-zero is undef. UB in any vector lane means the whole op is undef.
|
|
|
|
define <2 x i8> @srem_zero_elt_vec_constfold(<2 x i8> %x) {
|
|
; CHECK-LABEL: @srem_zero_elt_vec_constfold(
|
|
; CHECK-NEXT: ret <2 x i8> undef
|
|
;
|
|
%rem = srem <2 x i8> <i8 1, i8 2>, <i8 0, i8 -42>
|
|
ret <2 x i8> %rem
|
|
}
|
|
|
|
define <2 x i8> @urem_zero_elt_vec_constfold(<2 x i8> %x) {
|
|
; CHECK-LABEL: @urem_zero_elt_vec_constfold(
|
|
; CHECK-NEXT: ret <2 x i8> undef
|
|
;
|
|
%rem = urem <2 x i8> <i8 1, i8 2>, <i8 42, i8 0>
|
|
ret <2 x i8> %rem
|
|
}
|
|
|
|
define <2 x i8> @srem_zero_elt_vec(<2 x i8> %x) {
|
|
; CHECK-LABEL: @srem_zero_elt_vec(
|
|
; CHECK-NEXT: ret <2 x i8> undef
|
|
;
|
|
%rem = srem <2 x i8> %x, <i8 -42, i8 0>
|
|
ret <2 x i8> %rem
|
|
}
|
|
|
|
define <2 x i8> @urem_zero_elt_vec(<2 x i8> %x) {
|
|
; CHECK-LABEL: @urem_zero_elt_vec(
|
|
; CHECK-NEXT: ret <2 x i8> undef
|
|
;
|
|
%rem = urem <2 x i8> %x, <i8 0, i8 42>
|
|
ret <2 x i8> %rem
|
|
}
|
|
|
|
define <2 x i8> @srem_undef_elt_vec(<2 x i8> %x) {
|
|
; CHECK-LABEL: @srem_undef_elt_vec(
|
|
; CHECK-NEXT: ret <2 x i8> undef
|
|
;
|
|
%rem = srem <2 x i8> %x, <i8 -42, i8 undef>
|
|
ret <2 x i8> %rem
|
|
}
|
|
|
|
define <2 x i8> @urem_undef_elt_vec(<2 x i8> %x) {
|
|
; CHECK-LABEL: @urem_undef_elt_vec(
|
|
; CHECK-NEXT: ret <2 x i8> undef
|
|
;
|
|
%rem = urem <2 x i8> %x, <i8 undef, i8 42>
|
|
ret <2 x i8> %rem
|
|
}
|
|
|
|
; Division-by-zero is undef. UB in any vector lane means the whole op is undef.
|
|
; Thus, we can simplify this: if any element of 'y' is 0, we can do anything.
|
|
; Therefore, assume that all elements of 'y' must be 1.
|
|
|
|
define <2 x i1> @srem_bool_vec(<2 x i1> %x, <2 x i1> %y) {
|
|
; CHECK-LABEL: @srem_bool_vec(
|
|
; CHECK-NEXT: ret <2 x i1> zeroinitializer
|
|
;
|
|
%rem = srem <2 x i1> %x, %y
|
|
ret <2 x i1> %rem
|
|
}
|
|
|
|
define <2 x i1> @urem_bool_vec(<2 x i1> %x, <2 x i1> %y) {
|
|
; CHECK-LABEL: @urem_bool_vec(
|
|
; CHECK-NEXT: ret <2 x i1> zeroinitializer
|
|
;
|
|
%rem = urem <2 x i1> %x, %y
|
|
ret <2 x i1> %rem
|
|
}
|
|
|
|
define <2 x i32> @zext_bool_urem_divisor_vec(<2 x i1> %x, <2 x i32> %y) {
|
|
; CHECK-LABEL: @zext_bool_urem_divisor_vec(
|
|
; CHECK-NEXT: ret <2 x i32> zeroinitializer
|
|
;
|
|
%ext = zext <2 x i1> %x to <2 x i32>
|
|
%r = urem <2 x i32> %y, %ext
|
|
ret <2 x i32> %r
|
|
}
|
|
|
|
define i32 @zext_bool_srem_divisor(i1 %x, i32 %y) {
|
|
; CHECK-LABEL: @zext_bool_srem_divisor(
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
%ext = zext i1 %x to i32
|
|
%r = srem i32 %y, %ext
|
|
ret i32 %r
|
|
}
|
|
|
|
define i32 @select1(i32 %x, i1 %b) {
|
|
; CHECK-LABEL: @select1(
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
%rhs = select i1 %b, i32 %x, i32 1
|
|
%rem = srem i32 %x, %rhs
|
|
ret i32 %rem
|
|
}
|
|
|
|
define i32 @select2(i32 %x, i1 %b) {
|
|
; CHECK-LABEL: @select2(
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
%rhs = select i1 %b, i32 %x, i32 1
|
|
%rem = urem i32 %x, %rhs
|
|
ret i32 %rem
|
|
}
|
|
|
|
define i32 @rem1(i32 %x, i32 %n) {
|
|
; CHECK-LABEL: @rem1(
|
|
; CHECK-NEXT: [[MOD:%.*]] = srem i32 [[X:%.*]], [[N:%.*]]
|
|
; CHECK-NEXT: ret i32 [[MOD]]
|
|
;
|
|
%mod = srem i32 %x, %n
|
|
%mod1 = srem i32 %mod, %n
|
|
ret i32 %mod1
|
|
}
|
|
|
|
define i32 @rem2(i32 %x, i32 %n) {
|
|
; CHECK-LABEL: @rem2(
|
|
; CHECK-NEXT: [[MOD:%.*]] = urem i32 [[X:%.*]], [[N:%.*]]
|
|
; CHECK-NEXT: ret i32 [[MOD]]
|
|
;
|
|
%mod = urem i32 %x, %n
|
|
%mod1 = urem i32 %mod, %n
|
|
ret i32 %mod1
|
|
}
|
|
|
|
define i32 @rem3(i32 %x, i32 %n) {
|
|
; CHECK-LABEL: @rem3(
|
|
; CHECK-NEXT: [[MOD:%.*]] = srem i32 [[X:%.*]], [[N:%.*]]
|
|
; CHECK-NEXT: [[MOD1:%.*]] = urem i32 [[MOD]], [[N]]
|
|
; CHECK-NEXT: ret i32 [[MOD1]]
|
|
;
|
|
%mod = srem i32 %x, %n
|
|
%mod1 = urem i32 %mod, %n
|
|
ret i32 %mod1
|
|
}
|
|
|
|
define i32 @urem_dividend_known_smaller_than_constant_divisor(i32 %x) {
|
|
; CHECK-LABEL: @urem_dividend_known_smaller_than_constant_divisor(
|
|
; CHECK-NEXT: [[AND:%.*]] = and i32 [[X:%.*]], 250
|
|
; CHECK-NEXT: ret i32 [[AND]]
|
|
;
|
|
%and = and i32 %x, 250
|
|
%r = urem i32 %and, 251
|
|
ret i32 %r
|
|
}
|
|
|
|
define i32 @not_urem_dividend_known_smaller_than_constant_divisor(i32 %x) {
|
|
; CHECK-LABEL: @not_urem_dividend_known_smaller_than_constant_divisor(
|
|
; CHECK-NEXT: [[AND:%.*]] = and i32 [[X:%.*]], 251
|
|
; CHECK-NEXT: [[R:%.*]] = urem i32 [[AND]], 251
|
|
; CHECK-NEXT: ret i32 [[R]]
|
|
;
|
|
%and = and i32 %x, 251
|
|
%r = urem i32 %and, 251
|
|
ret i32 %r
|
|
}
|
|
|
|
define i32 @urem_constant_dividend_known_smaller_than_divisor(i32 %x) {
|
|
; CHECK-LABEL: @urem_constant_dividend_known_smaller_than_divisor(
|
|
; CHECK-NEXT: ret i32 250
|
|
;
|
|
%or = or i32 %x, 251
|
|
%r = urem i32 250, %or
|
|
ret i32 %r
|
|
}
|
|
|
|
define i32 @not_urem_constant_dividend_known_smaller_than_divisor(i32 %x) {
|
|
; CHECK-LABEL: @not_urem_constant_dividend_known_smaller_than_divisor(
|
|
; CHECK-NEXT: [[OR:%.*]] = or i32 [[X:%.*]], 251
|
|
; CHECK-NEXT: [[R:%.*]] = urem i32 251, [[OR]]
|
|
; CHECK-NEXT: ret i32 [[R]]
|
|
;
|
|
%or = or i32 %x, 251
|
|
%r = urem i32 251, %or
|
|
ret i32 %r
|
|
}
|
|
|
|
; This would require computing known bits on both x and y. Is it worth doing?
|
|
|
|
define i32 @urem_dividend_known_smaller_than_divisor(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @urem_dividend_known_smaller_than_divisor(
|
|
; CHECK-NEXT: [[AND:%.*]] = and i32 [[X:%.*]], 250
|
|
; CHECK-NEXT: [[OR:%.*]] = or i32 [[Y:%.*]], 251
|
|
; CHECK-NEXT: [[R:%.*]] = urem i32 [[AND]], [[OR]]
|
|
; CHECK-NEXT: ret i32 [[R]]
|
|
;
|
|
%and = and i32 %x, 250
|
|
%or = or i32 %y, 251
|
|
%r = urem i32 %and, %or
|
|
ret i32 %r
|
|
}
|
|
|
|
define i32 @not_urem_dividend_known_smaller_than_divisor(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @not_urem_dividend_known_smaller_than_divisor(
|
|
; CHECK-NEXT: [[AND:%.*]] = and i32 [[X:%.*]], 251
|
|
; CHECK-NEXT: [[OR:%.*]] = or i32 [[Y:%.*]], 251
|
|
; CHECK-NEXT: [[R:%.*]] = urem i32 [[AND]], [[OR]]
|
|
; CHECK-NEXT: ret i32 [[R]]
|
|
;
|
|
%and = and i32 %x, 251
|
|
%or = or i32 %y, 251
|
|
%r = urem i32 %and, %or
|
|
ret i32 %r
|
|
}
|
|
|
|
declare i32 @external()
|
|
|
|
define i32 @rem4() {
|
|
; CHECK-LABEL: @rem4(
|
|
; CHECK-NEXT: [[CALL:%.*]] = call i32 @external(), !range !0
|
|
; CHECK-NEXT: ret i32 [[CALL]]
|
|
;
|
|
%call = call i32 @external(), !range !0
|
|
%urem = urem i32 %call, 3
|
|
ret i32 %urem
|
|
}
|
|
|
|
!0 = !{i32 0, i32 3}
|
|
|
|
define i32 @rem5(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @rem5(
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
%shl = shl nsw i32 %x, %y
|
|
%mod = srem i32 %shl, %x
|
|
ret i32 %mod
|
|
}
|
|
|
|
define <2 x i32> @rem6(<2 x i32> %x, <2 x i32> %y) {
|
|
; CHECK-LABEL: @rem6(
|
|
; CHECK-NEXT: ret <2 x i32> zeroinitializer
|
|
;
|
|
%shl = shl nsw <2 x i32> %x, %y
|
|
%mod = srem <2 x i32> %shl, %x
|
|
ret <2 x i32> %mod
|
|
}
|
|
|
|
; make sure the previous fold doesn't take place for wrapped shifts
|
|
|
|
define i32 @rem7(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @rem7(
|
|
; CHECK-NEXT: [[SHL:%.*]] = shl i32 [[X:%.*]], [[Y:%.*]]
|
|
; CHECK-NEXT: [[MOD:%.*]] = srem i32 [[SHL]], [[X]]
|
|
; CHECK-NEXT: ret i32 [[MOD]]
|
|
;
|
|
%shl = shl i32 %x, %y
|
|
%mod = srem i32 %shl, %x
|
|
ret i32 %mod
|
|
}
|
|
|
|
define i32 @rem8(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @rem8(
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
%shl = shl nuw i32 %x, %y
|
|
%mod = urem i32 %shl, %x
|
|
ret i32 %mod
|
|
}
|
|
|
|
define <2 x i32> @rem9(<2 x i32> %x, <2 x i32> %y) {
|
|
; CHECK-LABEL: @rem9(
|
|
; CHECK-NEXT: ret <2 x i32> zeroinitializer
|
|
;
|
|
%shl = shl nuw <2 x i32> %x, %y
|
|
%mod = urem <2 x i32> %shl, %x
|
|
ret <2 x i32> %mod
|
|
}
|
|
|
|
; make sure the previous fold doesn't take place for wrapped shifts
|
|
|
|
define i32 @rem10(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @rem10(
|
|
; CHECK-NEXT: [[SHL:%.*]] = shl i32 [[X:%.*]], [[Y:%.*]]
|
|
; CHECK-NEXT: [[MOD:%.*]] = urem i32 [[SHL]], [[X]]
|
|
; CHECK-NEXT: ret i32 [[MOD]]
|
|
;
|
|
%shl = shl i32 %x, %y
|
|
%mod = urem i32 %shl, %x
|
|
ret i32 %mod
|
|
}
|