1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00
llvm-mirror/include/llvm/Transforms/Utils/IntegerDivision.h
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

73 lines
2.9 KiB
C++

//===- llvm/Transforms/Utils/IntegerDivision.h ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains an implementation of 32bit and 64bit scalar integer
// division for targets that don't have native support. It's largely derived
// from compiler-rt's implementations of __udivsi3 and __udivmoddi4,
// but hand-tuned for targets that prefer less control flow.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_UTILS_INTEGERDIVISION_H
#define LLVM_TRANSFORMS_UTILS_INTEGERDIVISION_H
namespace llvm {
class BinaryOperator;
}
namespace llvm {
/// Generate code to calculate the remainder of two integers, replacing Rem
/// with the generated code. This currently generates code using the udiv
/// expansion, but future work includes generating more specialized code,
/// e.g. when more information about the operands are known. Implements both
/// 32bit and 64bit scalar division.
///
/// Replace Rem with generated code.
bool expandRemainder(BinaryOperator *Rem);
/// Generate code to divide two integers, replacing Div with the generated
/// code. This currently generates code similarly to compiler-rt's
/// implementations, but future work includes generating more specialized code
/// when more information about the operands are known. Implements both
/// 32bit and 64bit scalar division.
///
/// Replace Div with generated code.
bool expandDivision(BinaryOperator* Div);
/// Generate code to calculate the remainder of two integers, replacing Rem
/// with the generated code. Uses ExpandReminder with a 32bit Rem which
/// makes it useful for targets with little or no support for less than
/// 32 bit arithmetic.
///
/// Replace Rem with generated code.
bool expandRemainderUpTo32Bits(BinaryOperator *Rem);
/// Generate code to calculate the remainder of two integers, replacing Rem
/// with the generated code. Uses ExpandReminder with a 64bit Rem.
///
/// Replace Rem with generated code.
bool expandRemainderUpTo64Bits(BinaryOperator *Rem);
/// Generate code to divide two integers, replacing Div with the generated
/// code. Uses ExpandDivision with a 32bit Div which makes it useful for
/// targets with little or no support for less than 32 bit arithmetic.
///
/// Replace Rem with generated code.
bool expandDivisionUpTo32Bits(BinaryOperator *Div);
/// Generate code to divide two integers, replacing Div with the generated
/// code. Uses ExpandDivision with a 64bit Div.
///
/// Replace Rem with generated code.
bool expandDivisionUpTo64Bits(BinaryOperator *Div);
} // End llvm namespace
#endif