mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 18:54:02 +01:00
7d6ba24baf
This patch transforms the sequence lea (reg1, reg2), reg3 sub reg3, reg4 to two sub instructions sub reg1, reg4 sub reg2, reg4 Similar optimization can also be applied to LEA/ADD sequence. The modifications to TwoAddressInstructionPass is to ensure the operands of ADD instruction has expected order (the dest register of LEA should be src register of ADD). Differential Revision: https://reviews.llvm.org/D104684
639 lines
30 KiB
C++
639 lines
30 KiB
C++
//===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the X86 implementation of the TargetInstrInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_TARGET_X86_X86INSTRINFO_H
|
|
#define LLVM_LIB_TARGET_X86_X86INSTRINFO_H
|
|
|
|
#include "MCTargetDesc/X86BaseInfo.h"
|
|
#include "X86InstrFMA3Info.h"
|
|
#include "X86RegisterInfo.h"
|
|
#include "llvm/CodeGen/ISDOpcodes.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include <vector>
|
|
|
|
#define GET_INSTRINFO_HEADER
|
|
#include "X86GenInstrInfo.inc"
|
|
|
|
namespace llvm {
|
|
class X86Subtarget;
|
|
|
|
namespace X86 {
|
|
|
|
enum AsmComments {
|
|
// For instr that was compressed from EVEX to VEX.
|
|
AC_EVEX_2_VEX = MachineInstr::TAsmComments
|
|
};
|
|
|
|
/// Return a pair of condition code for the given predicate and whether
|
|
/// the instruction operands should be swaped to match the condition code.
|
|
std::pair<CondCode, bool> getX86ConditionCode(CmpInst::Predicate Predicate);
|
|
|
|
/// Return a setcc opcode based on whether it has a memory operand.
|
|
unsigned getSETOpc(bool HasMemoryOperand = false);
|
|
|
|
/// Return a cmov opcode for the given register size in bytes, and operand type.
|
|
unsigned getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand = false);
|
|
|
|
// Turn jCC instruction into condition code.
|
|
CondCode getCondFromBranch(const MachineInstr &MI);
|
|
|
|
// Turn setCC instruction into condition code.
|
|
CondCode getCondFromSETCC(const MachineInstr &MI);
|
|
|
|
// Turn CMov instruction into condition code.
|
|
CondCode getCondFromCMov(const MachineInstr &MI);
|
|
|
|
/// GetOppositeBranchCondition - Return the inverse of the specified cond,
|
|
/// e.g. turning COND_E to COND_NE.
|
|
CondCode GetOppositeBranchCondition(CondCode CC);
|
|
|
|
/// Get the VPCMP immediate for the given condition.
|
|
unsigned getVPCMPImmForCond(ISD::CondCode CC);
|
|
|
|
/// Get the VPCMP immediate if the opcodes are swapped.
|
|
unsigned getSwappedVPCMPImm(unsigned Imm);
|
|
|
|
/// Get the VPCOM immediate if the opcodes are swapped.
|
|
unsigned getSwappedVPCOMImm(unsigned Imm);
|
|
|
|
/// Get the VCMP immediate if the opcodes are swapped.
|
|
unsigned getSwappedVCMPImm(unsigned Imm);
|
|
|
|
} // namespace X86
|
|
|
|
/// isGlobalStubReference - Return true if the specified TargetFlag operand is
|
|
/// a reference to a stub for a global, not the global itself.
|
|
inline static bool isGlobalStubReference(unsigned char TargetFlag) {
|
|
switch (TargetFlag) {
|
|
case X86II::MO_DLLIMPORT: // dllimport stub.
|
|
case X86II::MO_GOTPCREL: // rip-relative GOT reference.
|
|
case X86II::MO_GOT: // normal GOT reference.
|
|
case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
|
|
case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref.
|
|
case X86II::MO_COFFSTUB: // COFF .refptr stub.
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// isGlobalRelativeToPICBase - Return true if the specified global value
|
|
/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this
|
|
/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
|
|
inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
|
|
switch (TargetFlag) {
|
|
case X86II::MO_GOTOFF: // isPICStyleGOT: local global.
|
|
case X86II::MO_GOT: // isPICStyleGOT: other global.
|
|
case X86II::MO_PIC_BASE_OFFSET: // Darwin local global.
|
|
case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
|
|
case X86II::MO_TLVP: // ??? Pretty sure..
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
inline static bool isScale(const MachineOperand &MO) {
|
|
return MO.isImm() && (MO.getImm() == 1 || MO.getImm() == 2 ||
|
|
MO.getImm() == 4 || MO.getImm() == 8);
|
|
}
|
|
|
|
inline static bool isLeaMem(const MachineInstr &MI, unsigned Op) {
|
|
if (MI.getOperand(Op).isFI())
|
|
return true;
|
|
return Op + X86::AddrSegmentReg <= MI.getNumOperands() &&
|
|
MI.getOperand(Op + X86::AddrBaseReg).isReg() &&
|
|
isScale(MI.getOperand(Op + X86::AddrScaleAmt)) &&
|
|
MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
|
|
(MI.getOperand(Op + X86::AddrDisp).isImm() ||
|
|
MI.getOperand(Op + X86::AddrDisp).isGlobal() ||
|
|
MI.getOperand(Op + X86::AddrDisp).isCPI() ||
|
|
MI.getOperand(Op + X86::AddrDisp).isJTI());
|
|
}
|
|
|
|
inline static bool isMem(const MachineInstr &MI, unsigned Op) {
|
|
if (MI.getOperand(Op).isFI())
|
|
return true;
|
|
return Op + X86::AddrNumOperands <= MI.getNumOperands() &&
|
|
MI.getOperand(Op + X86::AddrSegmentReg).isReg() && isLeaMem(MI, Op);
|
|
}
|
|
|
|
class X86InstrInfo final : public X86GenInstrInfo {
|
|
X86Subtarget &Subtarget;
|
|
const X86RegisterInfo RI;
|
|
|
|
virtual void anchor();
|
|
|
|
bool AnalyzeBranchImpl(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
SmallVectorImpl<MachineInstr *> &CondBranches,
|
|
bool AllowModify) const;
|
|
|
|
public:
|
|
explicit X86InstrInfo(X86Subtarget &STI);
|
|
|
|
/// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
|
|
/// such, whenever a client has an instance of instruction info, it should
|
|
/// always be able to get register info as well (through this method).
|
|
///
|
|
const X86RegisterInfo &getRegisterInfo() const { return RI; }
|
|
|
|
/// Returns the stack pointer adjustment that happens inside the frame
|
|
/// setup..destroy sequence (e.g. by pushes, or inside the callee).
|
|
int64_t getFrameAdjustment(const MachineInstr &I) const {
|
|
assert(isFrameInstr(I));
|
|
if (isFrameSetup(I))
|
|
return I.getOperand(2).getImm();
|
|
return I.getOperand(1).getImm();
|
|
}
|
|
|
|
/// Sets the stack pointer adjustment made inside the frame made up by this
|
|
/// instruction.
|
|
void setFrameAdjustment(MachineInstr &I, int64_t V) const {
|
|
assert(isFrameInstr(I));
|
|
if (isFrameSetup(I))
|
|
I.getOperand(2).setImm(V);
|
|
else
|
|
I.getOperand(1).setImm(V);
|
|
}
|
|
|
|
/// getSPAdjust - This returns the stack pointer adjustment made by
|
|
/// this instruction. For x86, we need to handle more complex call
|
|
/// sequences involving PUSHes.
|
|
int getSPAdjust(const MachineInstr &MI) const override;
|
|
|
|
/// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
|
|
/// extension instruction. That is, it's like a copy where it's legal for the
|
|
/// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
|
|
/// true, then it's expected the pre-extension value is available as a subreg
|
|
/// of the result register. This also returns the sub-register index in
|
|
/// SubIdx.
|
|
bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg,
|
|
Register &DstReg, unsigned &SubIdx) const override;
|
|
|
|
/// Returns true if the instruction has no behavior (specified or otherwise)
|
|
/// that is based on the value of any of its register operands
|
|
///
|
|
/// Instructions are considered data invariant even if they set EFLAGS.
|
|
///
|
|
/// A classical example of something that is inherently not data invariant is
|
|
/// an indirect jump -- the destination is loaded into icache based on the
|
|
/// bits set in the jump destination register.
|
|
///
|
|
/// FIXME: This should become part of our instruction tables.
|
|
static bool isDataInvariant(MachineInstr &MI);
|
|
|
|
/// Returns true if the instruction has no behavior (specified or otherwise)
|
|
/// that is based on the value loaded from memory or the value of any
|
|
/// non-address register operands.
|
|
///
|
|
/// For example, if the latency of the instruction is dependent on the
|
|
/// particular bits set in any of the registers *or* any of the bits loaded
|
|
/// from memory.
|
|
///
|
|
/// Instructions are considered data invariant even if they set EFLAGS.
|
|
///
|
|
/// A classical example of something that is inherently not data invariant is
|
|
/// an indirect jump -- the destination is loaded into icache based on the
|
|
/// bits set in the jump destination register.
|
|
///
|
|
/// FIXME: This should become part of our instruction tables.
|
|
static bool isDataInvariantLoad(MachineInstr &MI);
|
|
|
|
unsigned isLoadFromStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const override;
|
|
unsigned isLoadFromStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex,
|
|
unsigned &MemBytes) const override;
|
|
/// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
|
|
/// stack locations as well. This uses a heuristic so it isn't
|
|
/// reliable for correctness.
|
|
unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
|
|
int &FrameIndex) const override;
|
|
|
|
unsigned isStoreToStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const override;
|
|
unsigned isStoreToStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex,
|
|
unsigned &MemBytes) const override;
|
|
/// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
|
|
/// stack locations as well. This uses a heuristic so it isn't
|
|
/// reliable for correctness.
|
|
unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
|
|
int &FrameIndex) const override;
|
|
|
|
bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
|
|
AAResults *AA) const override;
|
|
void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
|
|
Register DestReg, unsigned SubIdx,
|
|
const MachineInstr &Orig,
|
|
const TargetRegisterInfo &TRI) const override;
|
|
|
|
/// Given an operand within a MachineInstr, insert preceding code to put it
|
|
/// into the right format for a particular kind of LEA instruction. This may
|
|
/// involve using an appropriate super-register instead (with an implicit use
|
|
/// of the original) or creating a new virtual register and inserting COPY
|
|
/// instructions to get the data into the right class.
|
|
///
|
|
/// Reference parameters are set to indicate how caller should add this
|
|
/// operand to the LEA instruction.
|
|
bool classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
|
|
unsigned LEAOpcode, bool AllowSP, Register &NewSrc,
|
|
bool &isKill, MachineOperand &ImplicitOp,
|
|
LiveVariables *LV) const;
|
|
|
|
/// convertToThreeAddress - This method must be implemented by targets that
|
|
/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
|
|
/// may be able to convert a two-address instruction into a true
|
|
/// three-address instruction on demand. This allows the X86 target (for
|
|
/// example) to convert ADD and SHL instructions into LEA instructions if they
|
|
/// would require register copies due to two-addressness.
|
|
///
|
|
/// This method returns a null pointer if the transformation cannot be
|
|
/// performed, otherwise it returns the new instruction.
|
|
///
|
|
MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
|
|
MachineInstr &MI,
|
|
LiveVariables *LV) const override;
|
|
|
|
/// Returns true iff the routine could find two commutable operands in the
|
|
/// given machine instruction.
|
|
/// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
|
|
/// input values can be re-defined in this method only if the input values
|
|
/// are not pre-defined, which is designated by the special value
|
|
/// 'CommuteAnyOperandIndex' assigned to it.
|
|
/// If both of indices are pre-defined and refer to some operands, then the
|
|
/// method simply returns true if the corresponding operands are commutable
|
|
/// and returns false otherwise.
|
|
///
|
|
/// For example, calling this method this way:
|
|
/// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
|
|
/// findCommutedOpIndices(MI, Op1, Op2);
|
|
/// can be interpreted as a query asking to find an operand that would be
|
|
/// commutable with the operand#1.
|
|
bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1,
|
|
unsigned &SrcOpIdx2) const override;
|
|
|
|
/// Returns true if we have preference on the operands order in MI, the
|
|
/// commute decision is returned in Commute.
|
|
bool hasCommutePreference(MachineInstr &MI, bool &Commute) const override;
|
|
|
|
/// Returns an adjusted FMA opcode that must be used in FMA instruction that
|
|
/// performs the same computations as the given \p MI but which has the
|
|
/// operands \p SrcOpIdx1 and \p SrcOpIdx2 commuted.
|
|
/// It may return 0 if it is unsafe to commute the operands.
|
|
/// Note that a machine instruction (instead of its opcode) is passed as the
|
|
/// first parameter to make it possible to analyze the instruction's uses and
|
|
/// commute the first operand of FMA even when it seems unsafe when you look
|
|
/// at the opcode. For example, it is Ok to commute the first operand of
|
|
/// VFMADD*SD_Int, if ONLY the lowest 64-bit element of the result is used.
|
|
///
|
|
/// The returned FMA opcode may differ from the opcode in the given \p MI.
|
|
/// For example, commuting the operands #1 and #3 in the following FMA
|
|
/// FMA213 #1, #2, #3
|
|
/// results into instruction with adjusted opcode:
|
|
/// FMA231 #3, #2, #1
|
|
unsigned
|
|
getFMA3OpcodeToCommuteOperands(const MachineInstr &MI, unsigned SrcOpIdx1,
|
|
unsigned SrcOpIdx2,
|
|
const X86InstrFMA3Group &FMA3Group) const;
|
|
|
|
// Branch analysis.
|
|
bool isUnconditionalTailCall(const MachineInstr &MI) const override;
|
|
bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
|
|
const MachineInstr &TailCall) const override;
|
|
void replaceBranchWithTailCall(MachineBasicBlock &MBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
const MachineInstr &TailCall) const override;
|
|
|
|
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const override;
|
|
|
|
Optional<ExtAddrMode>
|
|
getAddrModeFromMemoryOp(const MachineInstr &MemI,
|
|
const TargetRegisterInfo *TRI) const override;
|
|
|
|
bool getConstValDefinedInReg(const MachineInstr &MI, const Register Reg,
|
|
int64_t &ImmVal) const override;
|
|
|
|
bool preservesZeroValueInReg(const MachineInstr *MI,
|
|
const Register NullValueReg,
|
|
const TargetRegisterInfo *TRI) const override;
|
|
|
|
bool getMemOperandsWithOffsetWidth(
|
|
const MachineInstr &LdSt,
|
|
SmallVectorImpl<const MachineOperand *> &BaseOps, int64_t &Offset,
|
|
bool &OffsetIsScalable, unsigned &Width,
|
|
const TargetRegisterInfo *TRI) const override;
|
|
bool analyzeBranchPredicate(MachineBasicBlock &MBB,
|
|
TargetInstrInfo::MachineBranchPredicate &MBP,
|
|
bool AllowModify = false) const override;
|
|
|
|
unsigned removeBranch(MachineBasicBlock &MBB,
|
|
int *BytesRemoved = nullptr) const override;
|
|
unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
|
|
MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
|
|
const DebugLoc &DL,
|
|
int *BytesAdded = nullptr) const override;
|
|
bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
|
|
Register, Register, Register, int &, int &,
|
|
int &) const override;
|
|
void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
|
|
const DebugLoc &DL, Register DstReg,
|
|
ArrayRef<MachineOperand> Cond, Register TrueReg,
|
|
Register FalseReg) const override;
|
|
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
|
|
const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
|
|
bool KillSrc) const override;
|
|
void storeRegToStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI, Register SrcReg,
|
|
bool isKill, int FrameIndex,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const override;
|
|
|
|
void loadRegFromStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI, Register DestReg,
|
|
int FrameIndex, const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const override;
|
|
|
|
bool expandPostRAPseudo(MachineInstr &MI) const override;
|
|
|
|
/// Check whether the target can fold a load that feeds a subreg operand
|
|
/// (or a subreg operand that feeds a store).
|
|
bool isSubregFoldable() const override { return true; }
|
|
|
|
/// foldMemoryOperand - If this target supports it, fold a load or store of
|
|
/// the specified stack slot into the specified machine instruction for the
|
|
/// specified operand(s). If this is possible, the target should perform the
|
|
/// folding and return true, otherwise it should return false. If it folds
|
|
/// the instruction, it is likely that the MachineInstruction the iterator
|
|
/// references has been changed.
|
|
MachineInstr *
|
|
foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
|
|
ArrayRef<unsigned> Ops,
|
|
MachineBasicBlock::iterator InsertPt, int FrameIndex,
|
|
LiveIntervals *LIS = nullptr,
|
|
VirtRegMap *VRM = nullptr) const override;
|
|
|
|
/// foldMemoryOperand - Same as the previous version except it allows folding
|
|
/// of any load and store from / to any address, not just from a specific
|
|
/// stack slot.
|
|
MachineInstr *foldMemoryOperandImpl(
|
|
MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
|
|
MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
|
|
LiveIntervals *LIS = nullptr) const override;
|
|
|
|
/// unfoldMemoryOperand - Separate a single instruction which folded a load or
|
|
/// a store or a load and a store into two or more instruction. If this is
|
|
/// possible, returns true as well as the new instructions by reference.
|
|
bool
|
|
unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
|
|
bool UnfoldLoad, bool UnfoldStore,
|
|
SmallVectorImpl<MachineInstr *> &NewMIs) const override;
|
|
|
|
bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
|
|
SmallVectorImpl<SDNode *> &NewNodes) const override;
|
|
|
|
/// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
|
|
/// instruction after load / store are unfolded from an instruction of the
|
|
/// specified opcode. It returns zero if the specified unfolding is not
|
|
/// possible. If LoadRegIndex is non-null, it is filled in with the operand
|
|
/// index of the operand which will hold the register holding the loaded
|
|
/// value.
|
|
unsigned
|
|
getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
|
|
unsigned *LoadRegIndex = nullptr) const override;
|
|
|
|
/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
|
|
/// to determine if two loads are loading from the same base address. It
|
|
/// should only return true if the base pointers are the same and the
|
|
/// only differences between the two addresses are the offset. It also returns
|
|
/// the offsets by reference.
|
|
bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
|
|
int64_t &Offset2) const override;
|
|
|
|
/// isSchedulingBoundary - Overrides the isSchedulingBoundary from
|
|
/// Codegen/TargetInstrInfo.cpp to make it capable of identifying ENDBR
|
|
/// intructions and prevent it from being re-scheduled.
|
|
bool isSchedulingBoundary(const MachineInstr &MI,
|
|
const MachineBasicBlock *MBB,
|
|
const MachineFunction &MF) const override;
|
|
|
|
/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
|
|
/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads
|
|
/// should be scheduled togther. On some targets if two loads are loading from
|
|
/// addresses in the same cache line, it's better if they are scheduled
|
|
/// together. This function takes two integers that represent the load offsets
|
|
/// from the common base address. It returns true if it decides it's desirable
|
|
/// to schedule the two loads together. "NumLoads" is the number of loads that
|
|
/// have already been scheduled after Load1.
|
|
bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1,
|
|
int64_t Offset2,
|
|
unsigned NumLoads) const override;
|
|
|
|
MCInst getNop() const override;
|
|
|
|
bool
|
|
reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
|
|
|
|
/// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
|
|
/// instruction that defines the specified register class.
|
|
bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override;
|
|
|
|
/// True if MI has a condition code def, e.g. EFLAGS, that is
|
|
/// not marked dead.
|
|
bool hasLiveCondCodeDef(MachineInstr &MI) const;
|
|
|
|
/// getGlobalBaseReg - Return a virtual register initialized with the
|
|
/// the global base register value. Output instructions required to
|
|
/// initialize the register in the function entry block, if necessary.
|
|
///
|
|
unsigned getGlobalBaseReg(MachineFunction *MF) const;
|
|
|
|
std::pair<uint16_t, uint16_t>
|
|
getExecutionDomain(const MachineInstr &MI) const override;
|
|
|
|
uint16_t getExecutionDomainCustom(const MachineInstr &MI) const;
|
|
|
|
void setExecutionDomain(MachineInstr &MI, unsigned Domain) const override;
|
|
|
|
bool setExecutionDomainCustom(MachineInstr &MI, unsigned Domain) const;
|
|
|
|
unsigned
|
|
getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
|
|
const TargetRegisterInfo *TRI) const override;
|
|
unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
|
|
const TargetRegisterInfo *TRI) const override;
|
|
void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
|
|
const TargetRegisterInfo *TRI) const override;
|
|
|
|
MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
|
|
unsigned OpNum,
|
|
ArrayRef<MachineOperand> MOs,
|
|
MachineBasicBlock::iterator InsertPt,
|
|
unsigned Size, Align Alignment,
|
|
bool AllowCommute) const;
|
|
|
|
bool isHighLatencyDef(int opc) const override;
|
|
|
|
bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
|
|
const MachineRegisterInfo *MRI,
|
|
const MachineInstr &DefMI, unsigned DefIdx,
|
|
const MachineInstr &UseMI,
|
|
unsigned UseIdx) const override;
|
|
|
|
bool useMachineCombiner() const override { return true; }
|
|
|
|
bool isAssociativeAndCommutative(const MachineInstr &Inst) const override;
|
|
|
|
bool hasReassociableOperands(const MachineInstr &Inst,
|
|
const MachineBasicBlock *MBB) const override;
|
|
|
|
void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
|
|
MachineInstr &NewMI1,
|
|
MachineInstr &NewMI2) const override;
|
|
|
|
/// analyzeCompare - For a comparison instruction, return the source registers
|
|
/// in SrcReg and SrcReg2 if having two register operands, and the value it
|
|
/// compares against in CmpValue. Return true if the comparison instruction
|
|
/// can be analyzed.
|
|
bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
|
|
Register &SrcReg2, int &CmpMask,
|
|
int &CmpValue) const override;
|
|
|
|
/// optimizeCompareInstr - Check if there exists an earlier instruction that
|
|
/// operates on the same source operands and sets flags in the same way as
|
|
/// Compare; remove Compare if possible.
|
|
bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
|
|
Register SrcReg2, int CmpMask, int CmpValue,
|
|
const MachineRegisterInfo *MRI) const override;
|
|
|
|
/// optimizeLoadInstr - Try to remove the load by folding it to a register
|
|
/// operand at the use. We fold the load instructions if and only if the
|
|
/// def and use are in the same BB. We only look at one load and see
|
|
/// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
|
|
/// defined by the load we are trying to fold. DefMI returns the machine
|
|
/// instruction that defines FoldAsLoadDefReg, and the function returns
|
|
/// the machine instruction generated due to folding.
|
|
MachineInstr *optimizeLoadInstr(MachineInstr &MI,
|
|
const MachineRegisterInfo *MRI,
|
|
Register &FoldAsLoadDefReg,
|
|
MachineInstr *&DefMI) const override;
|
|
|
|
std::pair<unsigned, unsigned>
|
|
decomposeMachineOperandsTargetFlags(unsigned TF) const override;
|
|
|
|
ArrayRef<std::pair<unsigned, const char *>>
|
|
getSerializableDirectMachineOperandTargetFlags() const override;
|
|
|
|
virtual outliner::OutlinedFunction getOutliningCandidateInfo(
|
|
std::vector<outliner::Candidate> &RepeatedSequenceLocs) const override;
|
|
|
|
bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
|
|
bool OutlineFromLinkOnceODRs) const override;
|
|
|
|
outliner::InstrType
|
|
getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const override;
|
|
|
|
void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
|
|
const outliner::OutlinedFunction &OF) const override;
|
|
|
|
MachineBasicBlock::iterator
|
|
insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator &It, MachineFunction &MF,
|
|
const outliner::Candidate &C) const override;
|
|
|
|
#define GET_INSTRINFO_HELPER_DECLS
|
|
#include "X86GenInstrInfo.inc"
|
|
|
|
static bool hasLockPrefix(const MachineInstr &MI) {
|
|
return MI.getDesc().TSFlags & X86II::LOCK;
|
|
}
|
|
|
|
Optional<ParamLoadedValue> describeLoadedValue(const MachineInstr &MI,
|
|
Register Reg) const override;
|
|
|
|
protected:
|
|
/// Commutes the operands in the given instruction by changing the operands
|
|
/// order and/or changing the instruction's opcode and/or the immediate value
|
|
/// operand.
|
|
///
|
|
/// The arguments 'CommuteOpIdx1' and 'CommuteOpIdx2' specify the operands
|
|
/// to be commuted.
|
|
///
|
|
/// Do not call this method for a non-commutable instruction or
|
|
/// non-commutable operands.
|
|
/// Even though the instruction is commutable, the method may still
|
|
/// fail to commute the operands, null pointer is returned in such cases.
|
|
MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
|
|
unsigned CommuteOpIdx1,
|
|
unsigned CommuteOpIdx2) const override;
|
|
|
|
/// If the specific machine instruction is a instruction that moves/copies
|
|
/// value from one register to another register return destination and source
|
|
/// registers as machine operands.
|
|
Optional<DestSourcePair>
|
|
isCopyInstrImpl(const MachineInstr &MI) const override;
|
|
|
|
private:
|
|
/// This is a helper for convertToThreeAddress for 8 and 16-bit instructions.
|
|
/// We use 32-bit LEA to form 3-address code by promoting to a 32-bit
|
|
/// super-register and then truncating back down to a 8/16-bit sub-register.
|
|
MachineInstr *convertToThreeAddressWithLEA(unsigned MIOpc,
|
|
MachineFunction::iterator &MFI,
|
|
MachineInstr &MI,
|
|
LiveVariables *LV,
|
|
bool Is8BitOp) const;
|
|
|
|
/// Handles memory folding for special case instructions, for instance those
|
|
/// requiring custom manipulation of the address.
|
|
MachineInstr *foldMemoryOperandCustom(MachineFunction &MF, MachineInstr &MI,
|
|
unsigned OpNum,
|
|
ArrayRef<MachineOperand> MOs,
|
|
MachineBasicBlock::iterator InsertPt,
|
|
unsigned Size, Align Alignment) const;
|
|
|
|
/// isFrameOperand - Return true and the FrameIndex if the specified
|
|
/// operand and follow operands form a reference to the stack frame.
|
|
bool isFrameOperand(const MachineInstr &MI, unsigned int Op,
|
|
int &FrameIndex) const;
|
|
|
|
/// Returns true iff the routine could find two commutable operands in the
|
|
/// given machine instruction with 3 vector inputs.
|
|
/// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
|
|
/// input values can be re-defined in this method only if the input values
|
|
/// are not pre-defined, which is designated by the special value
|
|
/// 'CommuteAnyOperandIndex' assigned to it.
|
|
/// If both of indices are pre-defined and refer to some operands, then the
|
|
/// method simply returns true if the corresponding operands are commutable
|
|
/// and returns false otherwise.
|
|
///
|
|
/// For example, calling this method this way:
|
|
/// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
|
|
/// findThreeSrcCommutedOpIndices(MI, Op1, Op2);
|
|
/// can be interpreted as a query asking to find an operand that would be
|
|
/// commutable with the operand#1.
|
|
///
|
|
/// If IsIntrinsic is set, operand 1 will be ignored for commuting.
|
|
bool findThreeSrcCommutedOpIndices(const MachineInstr &MI,
|
|
unsigned &SrcOpIdx1,
|
|
unsigned &SrcOpIdx2,
|
|
bool IsIntrinsic = false) const;
|
|
};
|
|
|
|
} // namespace llvm
|
|
|
|
#endif
|