1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-29 23:12:55 +01:00
llvm-mirror/lib/Target/SparcV9/SparcV9TargetMachine.cpp

293 lines
9.9 KiB
C++

//===-- SparcV9TargetMachine.cpp - SparcV9 Target Machine Implementation --===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Primary interface to machine description for the UltraSPARC. Primarily just
// initializes machine-dependent parameters in class TargetMachine, and creates
// machine-dependent subclasses for classes such as TargetInstrInfo.
//
//===----------------------------------------------------------------------===//
#include "llvm/Function.h"
#include "llvm/PassManager.h"
#include "llvm/Assembly/PrintModulePass.h"
#include "llvm/CodeGen/InstrScheduling.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetMachineRegistry.h"
#include "llvm/Transforms/Scalar.h"
#include "MappingInfo.h"
#include "MachineFunctionInfo.h"
#include "MachineCodeForInstruction.h"
#include "SparcV9Internals.h"
#include "SparcV9TargetMachine.h"
#include "SparcV9BurgISel.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
static const unsigned ImplicitRegUseList[] = { 0 }; /* not used yet */
// Build the MachineInstruction Description Array...
const TargetInstrDescriptor llvm::SparcV9MachineInstrDesc[] = {
#define I(ENUM, OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \
NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS) \
{ OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \
NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS, 0, \
ImplicitRegUseList, ImplicitRegUseList },
#include "SparcV9Instr.def"
};
//---------------------------------------------------------------------------
// Command line options to control choice of code generation passes.
//---------------------------------------------------------------------------
namespace llvm {
bool EmitMappingInfo = false;
}
namespace {
cl::opt<bool> DisableSched("disable-sched",
cl::desc("Disable local scheduling pass"));
cl::opt<bool> DisablePeephole("disable-peephole",
cl::desc("Disable peephole optimization pass"));
cl::opt<bool, true> EmitMappingInfoOpt("enable-maps",
cl::location(EmitMappingInfo),
cl::init(false),
cl::desc("Emit LLVM-to-MachineCode mapping info to assembly"));
cl::opt<bool> EnableModSched("enable-modsched",
cl::desc("Enable modulo scheduling pass instead of local scheduling"), cl::Hidden);
// Register the target.
RegisterTarget<SparcV9TargetMachine> X("sparcv9", " SPARC V9");
}
unsigned SparcV9TargetMachine::getJITMatchQuality() {
#if defined(__sparcv9)
return 10;
#else
return 0;
#endif
}
unsigned SparcV9TargetMachine::getModuleMatchQuality(const Module &M) {
// We strongly match "sparcv9-*".
std::string TT = M.getTargetTriple();
if (TT.size() >= 8 && std::string(TT.begin(), TT.begin()+8) == "sparcv9-")
return 20;
if (M.getEndianness() == Module::BigEndian &&
M.getPointerSize() == Module::Pointer64)
return 10; // Weak match
else if (M.getEndianness() != Module::AnyEndianness ||
M.getPointerSize() != Module::AnyPointerSize)
return 0; // Match for some other target
return getJITMatchQuality()/2;
}
//===---------------------------------------------------------------------===//
// Code generation/destruction passes
//===---------------------------------------------------------------------===//
namespace {
class ConstructMachineFunction : public FunctionPass {
TargetMachine &Target;
public:
ConstructMachineFunction(TargetMachine &T) : Target(T) {}
const char *getPassName() const {
return "ConstructMachineFunction";
}
bool runOnFunction(Function &F) {
MachineFunction::construct(&F, Target).getInfo<SparcV9FunctionInfo>()->CalculateArgSize();
return false;
}
};
struct DestroyMachineFunction : public FunctionPass {
const char *getPassName() const { return "DestroyMachineFunction"; }
static void freeMachineCode(Instruction &I) {
MachineCodeForInstruction::destroy(&I);
}
bool runOnFunction(Function &F) {
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
for (BasicBlock::iterator I = FI->begin(), E = FI->end(); I != E; ++I)
MachineCodeForInstruction::get(I).dropAllReferences();
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
for_each(FI->begin(), FI->end(), freeMachineCode);
MachineFunction::destruct(&F);
return false;
}
};
FunctionPass *createMachineCodeConstructionPass(TargetMachine &Target) {
return new ConstructMachineFunction(Target);
}
}
FunctionPass *llvm::createSparcV9MachineCodeDestructionPass() {
return new DestroyMachineFunction();
}
SparcV9TargetMachine::SparcV9TargetMachine(const Module &M,
IntrinsicLowering *il)
: TargetMachine("UltraSparcV9-Native", il, false),
schedInfo(*this),
regInfo(*this),
frameInfo(*this),
jitInfo(*this) {
}
/// addPassesToEmitAssembly - This method controls the entire code generation
/// process for the ultra sparc.
///
bool
SparcV9TargetMachine::addPassesToEmitAssembly(PassManager &PM, std::ostream &Out)
{
// FIXME: Implement efficient support for garbage collection intrinsics.
PM.add(createLowerGCPass());
// Replace malloc and free instructions with library calls.
PM.add(createLowerAllocationsPass());
// FIXME: implement the switch instruction in the instruction selector.
PM.add(createLowerSwitchPass());
// FIXME: implement the invoke/unwind instructions!
PM.add(createLowerInvokePass());
// decompose multi-dimensional array references into single-dim refs
PM.add(createDecomposeMultiDimRefsPass());
// Lower LLVM code to the form expected by the SPARCv9 instruction selector.
PM.add(createPreSelectionPass(*this));
PM.add(createLowerSelectPass());
// If the user's trying to read the generated code, they'll need to see the
// transformed input.
if (PrintMachineCode)
PM.add(new PrintModulePass());
// Construct and initialize the MachineFunction object for this fn.
PM.add(createMachineCodeConstructionPass(*this));
// Insert empty stackslots in the stack frame of each function
// so %fp+offset-8 and %fp+offset-16 are empty slots now!
PM.add(createStackSlotsPass(*this));
PM.add(createSparcV9BurgInstSelector(*this));
if (!DisableSched)
PM.add(createInstructionSchedulingWithSSAPass(*this));
if(PrintMachineCode && EnableModSched)
PM.add(createMachineFunctionPrinterPass(&std::cerr, "Before modulo scheduling:\n"));
//Use ModuloScheduling if enabled, otherwise use local scheduling if not disabled.
if(EnableModSched)
PM.add(createModuloSchedulingPass(*this));
if (PrintMachineCode)
PM.add(createMachineFunctionPrinterPass(&std::cerr, "Before reg alloc:\n"));
PM.add(getRegisterAllocator(*this));
if (PrintMachineCode)
PM.add(createMachineFunctionPrinterPass(&std::cerr, "After reg alloc:\n"));
PM.add(createPrologEpilogInsertionPass());
if (!DisablePeephole)
PM.add(createPeepholeOptsPass(*this));
if (PrintMachineCode)
PM.add(createMachineFunctionPrinterPass(&std::cerr, "Final code:\n"));
if (EmitMappingInfo) {
PM.add(createInternalGlobalMapperPass());
PM.add(getMappingInfoAsmPrinterPass(Out));
}
// Output assembly language to the .s file. Assembly emission is split into
// two parts: Function output and Global value output. This is because
// function output is pipelined with all of the rest of code generation stuff,
// allowing machine code representations for functions to be free'd after the
// function has been emitted.
PM.add(createAsmPrinterPass(Out, *this));
// Free machine-code IR which is no longer needed:
PM.add(createSparcV9MachineCodeDestructionPass());
// Emit bytecode to the assembly file into its special section next
if (EmitMappingInfo)
PM.add(createBytecodeAsmPrinterPass(Out));
return false;
}
/// addPassesToJITCompile - This method controls the JIT method of code
/// generation for the UltraSparcV9.
///
void SparcV9JITInfo::addPassesToJITCompile(FunctionPassManager &PM) {
// FIXME: Implement efficient support for garbage collection intrinsics.
PM.add(createLowerGCPass());
// Replace malloc and free instructions with library calls.
PM.add(createLowerAllocationsPass());
// FIXME: implement the switch instruction in the instruction selector.
PM.add(createLowerSwitchPass());
// FIXME: implement the invoke/unwind instructions!
PM.add(createLowerInvokePass());
// decompose multi-dimensional array references into single-dim refs
PM.add(createDecomposeMultiDimRefsPass());
// Lower LLVM code to the form expected by the SPARCv9 instruction selector.
PM.add(createPreSelectionPass(TM));
PM.add(createLowerSelectPass());
// If the user's trying to read the generated code, they'll need to see the
// transformed input.
if (PrintMachineCode)
PM.add(new PrintFunctionPass());
// Construct and initialize the MachineFunction object for this fn.
PM.add(createMachineCodeConstructionPass(TM));
PM.add(createSparcV9BurgInstSelector(TM));
if (PrintMachineCode)
PM.add(createMachineFunctionPrinterPass(&std::cerr, "Before reg alloc:\n"));
PM.add(getRegisterAllocator(TM));
if (PrintMachineCode)
PM.add(createMachineFunctionPrinterPass(&std::cerr, "After reg alloc:\n"));
PM.add(createPrologEpilogInsertionPass());
if (!DisablePeephole)
PM.add(createPeepholeOptsPass(TM));
if (PrintMachineCode)
PM.add(createMachineFunctionPrinterPass(&std::cerr, "Final code:\n"));
}