mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 03:33:20 +01:00
4bd434d1b0
as DDG and PDG. Summary: This is an implementation of a directed graph base class with explicit representation of both nodes and edges. This implementation makes the edges explicit because we expect to assign various attributes (such as dependence type, distribution interference weight, etc) to the edges in the derived classes such as DDG and DIG. The DirectedGraph consists of a list of DGNode's. Each node consists of a (possibly empty) list of outgoing edges to other nodes in the graph. A DGEdge contains a reference to a single target node. Note that nodes do not know about their incoming edges so the DirectedGraph class provides a function to find all incoming edges to a given node. This is the first patch in a series of patches that we are planning to contribute upstream in order to implement Data Dependence Graph and Program Dependence Graph. More information about the proposed design can be found here: https://ibm.ent.box.com/v/directed-graph-and-ddg Authored By: bmahjour Reviewer: Meinersbur, myhsum hfinkel, fhahn, jdoerfert, kbarton Reviewed By: Meinersbur Subscribers: mgorny, wuzish, jsji, lebedev.ri, dexonsmith, kristina, llvm-commits, Whitney, etiotto Tag: LLVM Differential Revision: https://reviews.llvm.org/D64088 llvm-svn: 367043
271 lines
9.4 KiB
C++
271 lines
9.4 KiB
C++
//===- llvm/ADT/DirectedGraph.h - Directed Graph ----------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interface and a base class implementation for a
|
|
// directed graph.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_DIRECTEDGRAPH_H
|
|
#define LLVM_ADT_DIRECTEDGRAPH_H
|
|
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
namespace llvm {
|
|
|
|
/// Represent an edge in the directed graph.
|
|
/// The edge contains the target node it connects to.
|
|
template <class NodeType, class EdgeType> class DGEdge {
|
|
public:
|
|
DGEdge() = delete;
|
|
/// Create an edge pointing to the given node \p N.
|
|
explicit DGEdge(NodeType &N) : TargetNode(N) {}
|
|
explicit DGEdge(const DGEdge<NodeType, EdgeType> &E)
|
|
: TargetNode(E.TargetNode) {}
|
|
DGEdge<NodeType, EdgeType> &operator=(const DGEdge<NodeType, EdgeType> &E) {
|
|
TargetNode = E.TargetNode;
|
|
return *this;
|
|
}
|
|
|
|
/// Static polymorphism: delegate implementation (via isEqualTo) to the
|
|
/// derived class.
|
|
bool operator==(const EdgeType &E) const { return getDerived().isEqualTo(E); }
|
|
bool operator!=(const EdgeType &E) const { return !operator==(E); }
|
|
|
|
/// Retrieve the target node this edge connects to.
|
|
const NodeType &getTargetNode() const { return TargetNode; }
|
|
NodeType &getTargetNode() {
|
|
return const_cast<NodeType &>(
|
|
static_cast<const DGEdge<NodeType, EdgeType> &>(*this).getTargetNode());
|
|
}
|
|
|
|
protected:
|
|
// As the default implementation use address comparison for equality.
|
|
bool isEqualTo(const EdgeType &E) const { return this == &E; }
|
|
|
|
// Cast the 'this' pointer to the derived type and return a reference.
|
|
EdgeType &getDerived() { return *static_cast<EdgeType *>(this); }
|
|
const EdgeType &getDerived() const {
|
|
return *static_cast<const EdgeType *>(this);
|
|
}
|
|
|
|
// The target node this edge connects to.
|
|
NodeType &TargetNode;
|
|
};
|
|
|
|
/// Represent a node in the directed graph.
|
|
/// The node has a (possibly empty) list of outgoing edges.
|
|
template <class NodeType, class EdgeType> class DGNode {
|
|
public:
|
|
using EdgeListTy = SetVector<EdgeType *>;
|
|
using iterator = typename EdgeListTy::iterator;
|
|
using const_iterator = typename EdgeListTy::const_iterator;
|
|
|
|
/// Create a node with a single outgoing edge \p E.
|
|
explicit DGNode(EdgeType &E) : Edges() { Edges.insert(&E); }
|
|
DGNode() = default;
|
|
|
|
explicit DGNode(const DGNode<NodeType, EdgeType> &N) : Edges(N.Edges) {}
|
|
DGNode(DGNode<NodeType, EdgeType> &&N) : Edges(std::move(N.Edges)) {}
|
|
|
|
DGNode<NodeType, EdgeType> &operator=(const DGNode<NodeType, EdgeType> &N) {
|
|
Edges = N.Edges;
|
|
return *this;
|
|
}
|
|
DGNode<NodeType, EdgeType> &operator=(const DGNode<NodeType, EdgeType> &&N) {
|
|
Edges = std::move(N.Edges);
|
|
return *this;
|
|
}
|
|
|
|
/// Static polymorphism: delegate implementation (via isEqualTo) to the
|
|
/// derived class.
|
|
bool operator==(const NodeType &N) const { return getDerived().isEqualTo(N); }
|
|
bool operator!=(const NodeType &N) const { return !operator==(N); }
|
|
|
|
const_iterator begin() const { return Edges.begin(); }
|
|
const_iterator end() const { return Edges.end(); }
|
|
iterator begin() { return Edges.begin(); }
|
|
iterator end() { return Edges.end(); }
|
|
const EdgeType &front() const { return *Edges.front(); }
|
|
EdgeType &front() { return *Edges.front(); }
|
|
const EdgeType &back() const { return *Edges.back(); }
|
|
EdgeType &back() { return *Edges.back(); }
|
|
|
|
/// Collect in \p EL, all the edges from this node to \p N.
|
|
/// Return true if at least one edge was found, and false otherwise.
|
|
/// Note that this implementation allows more than one edge to connect
|
|
/// a given pair of nodes.
|
|
bool findEdgesTo(const NodeType &N, SmallVectorImpl<EdgeType *> &EL) const {
|
|
assert(EL.empty() && "Expected the list of edges to be empty.");
|
|
for (auto *E : Edges)
|
|
if (E->getTargetNode() == N)
|
|
EL.push_back(E);
|
|
return !EL.empty();
|
|
}
|
|
|
|
/// Add the given edge \p E to this node, if it doesn't exist already. Returns
|
|
/// true if the edge is added and false otherwise.
|
|
bool addEdge(EdgeType &E) { return Edges.insert(&E); }
|
|
|
|
/// Remove the given edge \p E from this node, if it exists.
|
|
void removeEdge(EdgeType &E) { Edges.remove(&E); }
|
|
|
|
/// Test whether there is an edge that goes from this node to \p N.
|
|
bool hasEdgeTo(const NodeType &N) const {
|
|
return (findEdgeTo(N) != Edges.end());
|
|
}
|
|
|
|
/// Retrieve the outgoing edges for the node.
|
|
const EdgeListTy &getEdges() const { return Edges; }
|
|
EdgeListTy &getEdges() {
|
|
return const_cast<EdgeListTy &>(
|
|
static_cast<const DGNode<NodeType, EdgeType> &>(*this).Edges);
|
|
}
|
|
|
|
/// Clear the outgoing edges.
|
|
void clear() { Edges.clear(); }
|
|
|
|
protected:
|
|
// As the default implementation use address comparison for equality.
|
|
bool isEqualTo(const NodeType &N) const { return this == &N; }
|
|
|
|
// Cast the 'this' pointer to the derived type and return a reference.
|
|
NodeType &getDerived() { return *static_cast<NodeType *>(this); }
|
|
const NodeType &getDerived() const {
|
|
return *static_cast<const NodeType *>(this);
|
|
}
|
|
|
|
/// Find an edge to \p N. If more than one edge exists, this will return
|
|
/// the first one in the list of edges.
|
|
const_iterator findEdgeTo(const NodeType &N) const {
|
|
return llvm::find_if(
|
|
Edges, [&N](const EdgeType *E) { return E->getTargetNode() == N; });
|
|
}
|
|
|
|
// The list of outgoing edges.
|
|
EdgeListTy Edges;
|
|
};
|
|
|
|
/// Directed graph
|
|
///
|
|
/// The graph is represented by a table of nodes.
|
|
/// Each node contains a (possibly empty) list of outgoing edges.
|
|
/// Each edge contains the target node it connects to.
|
|
template <class NodeType, class EdgeType> class DirectedGraph {
|
|
protected:
|
|
using NodeListTy = SmallVector<NodeType *, 10>;
|
|
using EdgeListTy = SmallVector<EdgeType *, 10>;
|
|
public:
|
|
using iterator = typename NodeListTy::iterator;
|
|
using const_iterator = typename NodeListTy::const_iterator;
|
|
using DGraphType = DirectedGraph<NodeType, EdgeType>;
|
|
|
|
DirectedGraph() = default;
|
|
explicit DirectedGraph(NodeType &N) : Nodes() { addNode(N); }
|
|
DirectedGraph(const DGraphType &G) : Nodes(G.Nodes) {}
|
|
DirectedGraph(DGraphType &&RHS) : Nodes(std::move(RHS.Nodes)) {}
|
|
DGraphType &operator=(const DGraphType &G) {
|
|
Nodes = G.Nodes;
|
|
return *this;
|
|
}
|
|
DGraphType &operator=(const DGraphType &&G) {
|
|
Nodes = std::move(G.Nodes);
|
|
return *this;
|
|
}
|
|
|
|
const_iterator begin() const { return Nodes.begin(); }
|
|
const_iterator end() const { return Nodes.end(); }
|
|
iterator begin() { return Nodes.begin(); }
|
|
iterator end() { return Nodes.end(); }
|
|
const NodeType &front() const { return *Nodes.front(); }
|
|
NodeType &front() { return *Nodes.front(); }
|
|
const NodeType &back() const { return *Nodes.back(); }
|
|
NodeType &back() { return *Nodes.back(); }
|
|
|
|
size_t size() const { return Nodes.size(); }
|
|
|
|
/// Find the given node \p N in the table.
|
|
const_iterator findNode(const NodeType &N) const {
|
|
return llvm::find_if(Nodes,
|
|
[&N](const NodeType *Node) { return *Node == N; });
|
|
}
|
|
iterator findNode(const NodeType &N) {
|
|
return const_cast<iterator>(
|
|
static_cast<const DGraphType &>(*this).findNode(N));
|
|
}
|
|
|
|
/// Add the given node \p N to the graph if it is not already present.
|
|
bool addNode(NodeType &N) {
|
|
if (findNode(N) != Nodes.end())
|
|
return false;
|
|
Nodes.push_back(&N);
|
|
return true;
|
|
}
|
|
|
|
/// Collect in \p EL all edges that are coming into node \p N. Return true
|
|
/// if at least one edge was found, and false otherwise.
|
|
bool findIncomingEdgesToNode(const NodeType &N, SmallVectorImpl<EdgeType*> &EL) const {
|
|
assert(EL.empty() && "Expected the list of edges to be empty.");
|
|
EdgeListTy TempList;
|
|
for (auto *Node : Nodes) {
|
|
if (*Node == N)
|
|
continue;
|
|
Node->findEdgesTo(N, TempList);
|
|
EL.insert(EL.end(), TempList.begin(), TempList.end());
|
|
TempList.clear();
|
|
}
|
|
return !EL.empty();
|
|
}
|
|
|
|
/// Remove the given node \p N from the graph. If the node has incoming or
|
|
/// outgoing edges, they are also removed. Return true if the node was found
|
|
/// and then removed, and false if the node was not found in the graph to
|
|
/// begin with.
|
|
bool removeNode(NodeType &N) {
|
|
iterator IT = findNode(N);
|
|
if (IT == Nodes.end())
|
|
return false;
|
|
// Remove incoming edges.
|
|
EdgeListTy EL;
|
|
for (auto *Node : Nodes) {
|
|
if (*Node == N)
|
|
continue;
|
|
Node->findEdgesTo(N, EL);
|
|
for (auto *E : EL)
|
|
Node->removeEdge(*E);
|
|
EL.clear();
|
|
}
|
|
N.clear();
|
|
Nodes.erase(IT);
|
|
return true;
|
|
}
|
|
|
|
/// Assuming nodes \p Src and \p Dst are already in the graph, connect node \p
|
|
/// Src to node \p Dst using the provided edge \p E. Return true if \p Src is
|
|
/// not already connected to \p Dst via \p E, and false otherwise.
|
|
bool connect(NodeType &Src, NodeType &Dst, EdgeType &E) {
|
|
assert(findNode(Src) != Nodes.end() && "Src node should be present.");
|
|
assert(findNode(Dst) != Nodes.end() && "Dst node should be present.");
|
|
assert((E.getTargetNode() == Dst) &&
|
|
"Target of the given edge does not match Dst.");
|
|
return Src.addEdge(E);
|
|
}
|
|
|
|
protected:
|
|
// The list of nodes in the graph.
|
|
NodeListTy Nodes;
|
|
};
|
|
|
|
} // namespace llvm
|
|
|
|
#endif // LLVM_ADT_DIRECTEDGRAPH_H
|