1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 02:52:53 +02:00
llvm-mirror/lib/Target/AArch64/AArch64SchedKryo.td
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

138 lines
6.1 KiB
TableGen

//==- AArch64SchedKryo.td - Qualcomm Kryo Scheduling Defs ---*- tablegen -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the machine model for Qualcomm Kryo to support
// instruction scheduling and other instruction cost heuristics.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// The issue width is set to five, matching the five issue queues for expanded
// uops. Now, the latency spreadsheet has information based on fragmented uops,
// but these do not actually take up an issue queue.
def KryoModel : SchedMachineModel {
let IssueWidth = 5; // 5-wide issue for expanded uops
let MicroOpBufferSize = 128; // Out-of-order with temporary unified issue buffer
let LoadLatency = 4; // Optimistic load latency
let MispredictPenalty = 14; // Fetch + Decode/Rename/Dispatch + Branch
// Enable partial & runtime unrolling. The magic number is chosen based on
// experiments and benchmarking data.
let LoopMicroOpBufferSize = 16;
let CompleteModel = 1;
list<Predicate> UnsupportedFeatures = [HasSVE];
// FIXME: Remove when all errors have been fixed.
let FullInstRWOverlapCheck = 0;
}
//===----------------------------------------------------------------------===//
// Define each kind of processor resource and number available on Kryo.
let SchedModel = KryoModel in {
def KryoUnitXA : ProcResource<1>; // Type X(A) micro-ops
def KryoUnitXB : ProcResource<1>; // Type X(B) micro-ops
def KryoUnitYA : ProcResource<1>; // Type Y(A) micro-ops
def KryoUnitYB : ProcResource<1>; // Type Y(B) micro-ops
def KryoUnitX : ProcResGroup<[KryoUnitXA, // Type X micro-ops
KryoUnitXB]>;
def KryoUnitY : ProcResGroup<[KryoUnitYA, // Type Y micro-ops
KryoUnitYB]>;
def KryoUnitXY : ProcResGroup<[KryoUnitXA, // Type XY micro-ops
KryoUnitXB,
KryoUnitYA,
KryoUnitYB]>;
def KryoUnitLSA : ProcResource<1>; // Type LS(A) micro-ops
def KryoUnitLSB : ProcResource<1>; // Type LS(B) micro-ops
def KryoUnitLS : ProcResGroup<[KryoUnitLSA, // Type LS micro-ops
KryoUnitLSB]>;
}
let SchedModel = KryoModel in {
//===----------------------------------------------------------------------===//
// Map the target-defined scheduler read/write resources and latency for
// Kryo.
def : WriteRes<WriteImm, [KryoUnitXY]> { let Latency = 1; }
def : WriteRes<WriteI, [KryoUnitXY]> { let Latency = 1; }
def : WriteRes<WriteISReg, [KryoUnitXY, KryoUnitXY]>
{ let Latency = 2; let NumMicroOps = 2; }
def : WriteRes<WriteIEReg, [KryoUnitXY, KryoUnitXY]>
{ let Latency = 2; let NumMicroOps = 2; }
def : WriteRes<WriteExtr, [KryoUnitXY, KryoUnitX]>
{ let Latency = 2; let NumMicroOps = 2; }
def : WriteRes<WriteIS, [KryoUnitXY]> { let Latency = 2; }
def : WriteRes<WriteID32, [KryoUnitXA, KryoUnitY]>
{ let Latency = 8; let NumMicroOps = 1; } // Fragent -1
def : WriteRes<WriteID64, [KryoUnitXA, KryoUnitY]>
{ let Latency = 8; let NumMicroOps = 1; } // Fragent -1
def : WriteRes<WriteIM32, [KryoUnitX]> { let Latency = 5; }
def : WriteRes<WriteIM64, [KryoUnitX]> { let Latency = 5; }
def : WriteRes<WriteBr, [KryoUnitXY]> { let Latency = 1; }
def : WriteRes<WriteBrReg, [KryoUnitXY]> { let Latency = 1; }
def : WriteRes<WriteLD, [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteST, [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteSTP, [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteAdr, [KryoUnitXY]> { let Latency = 6; }
def : WriteRes<WriteLDIdx, [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteSTIdx, [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteF, [KryoUnitXY, KryoUnitXY]>
{ let Latency = 3; let NumMicroOps = 2; }
def : WriteRes<WriteFCmp, [KryoUnitXY]> { let Latency = 2; }
def : WriteRes<WriteFCvt, [KryoUnitX]> { let Latency = 4; }
def : WriteRes<WriteFCopy, [KryoUnitXY]> { let Latency = 6; }
def : WriteRes<WriteFImm, [KryoUnitXY]> { let Latency = 6; }
def : WriteRes<WriteFMul, [KryoUnitX, KryoUnitX]>
{ let Latency = 6; let NumMicroOps = 2; }
def : WriteRes<WriteFDiv, [KryoUnitXA, KryoUnitY]>
{ let Latency = 12; let NumMicroOps = 2; } // Fragent -1 / NoRSV +1
def : WriteRes<WriteV, [KryoUnitXY]> { let Latency = 6; }
def : WriteRes<WriteVLD, [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteVST, [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteSys, []> { let Latency = 1; }
def : WriteRes<WriteBarrier, []> { let Latency = 1; }
def : WriteRes<WriteHint, []> { let Latency = 1; }
def : WriteRes<WriteLDHi, []> { let Latency = 4; }
def : WriteRes<WriteAtomic, []> { let Unsupported = 1; }
// No forwarding logic is modelled yet.
def : ReadAdvance<ReadI, 0>;
def : ReadAdvance<ReadISReg, 0>;
def : ReadAdvance<ReadIEReg, 0>;
def : ReadAdvance<ReadIM, 0>;
def : ReadAdvance<ReadIMA, 0>;
def : ReadAdvance<ReadID, 0>;
def : ReadAdvance<ReadExtrHi, 0>;
def : ReadAdvance<ReadAdrBase, 0>;
def : ReadAdvance<ReadVLD, 0>;
//===----------------------------------------------------------------------===//
// Specialize the coarse model by associating instruction groups with the
// subtarget-defined types. As the modeled is refined, this will override most
// of the above SchedWriteRes and SchedAlias mappings.
// Miscellaneous
// -----------------------------------------------------------------------------
def : InstRW<[WriteI], (instrs COPY)>;
// Detailed Refinedments
// -----------------------------------------------------------------------------
include "AArch64SchedKryoDetails.td"
} // SchedModel = KryoModel