mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 19:23:23 +01:00
0073832262
x*rsqrt(x) returns NaN for x == 0, whereas 1/rsqrt(x) returns 0, as desired. Verified that the particular nvptx approximate instructions here do in fact return 0 for x = 0. llvm-svn: 293713
151 lines
4.2 KiB
LLVM
151 lines
4.2 KiB
LLVM
; RUN: llc < %s -march=nvptx -mcpu=sm_20 -nvptx-prec-divf32=0 -nvptx-prec-sqrtf32=0 \
|
|
; RUN: | FileCheck %s
|
|
|
|
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
|
|
|
|
declare float @llvm.sqrt.f32(float)
|
|
declare double @llvm.sqrt.f64(double)
|
|
|
|
; -- reciprocal sqrt --
|
|
|
|
; CHECK-LABEL test_rsqrt32
|
|
define float @test_rsqrt32(float %a) #0 {
|
|
; CHECK: rsqrt.approx.f32
|
|
%val = tail call float @llvm.sqrt.f32(float %a)
|
|
%ret = fdiv float 1.0, %val
|
|
ret float %ret
|
|
}
|
|
|
|
; CHECK-LABEL test_rsqrt_ftz
|
|
define float @test_rsqrt_ftz(float %a) #0 #1 {
|
|
; CHECK: rsqrt.approx.ftz.f32
|
|
%val = tail call float @llvm.sqrt.f32(float %a)
|
|
%ret = fdiv float 1.0, %val
|
|
ret float %ret
|
|
}
|
|
|
|
; CHECK-LABEL test_rsqrt64
|
|
define double @test_rsqrt64(double %a) #0 {
|
|
; CHECK: rsqrt.approx.f64
|
|
%val = tail call double @llvm.sqrt.f64(double %a)
|
|
%ret = fdiv double 1.0, %val
|
|
ret double %ret
|
|
}
|
|
|
|
; CHECK-LABEL test_rsqrt64_ftz
|
|
define double @test_rsqrt64_ftz(double %a) #0 #1 {
|
|
; There's no rsqrt.approx.ftz.f64 instruction; we just use the non-ftz version.
|
|
; CHECK: rsqrt.approx.f64
|
|
%val = tail call double @llvm.sqrt.f64(double %a)
|
|
%ret = fdiv double 1.0, %val
|
|
ret double %ret
|
|
}
|
|
|
|
; -- sqrt --
|
|
|
|
; CHECK-LABEL test_sqrt32
|
|
define float @test_sqrt32(float %a) #0 {
|
|
; CHECK: sqrt.approx.f32
|
|
%ret = tail call float @llvm.sqrt.f32(float %a)
|
|
ret float %ret
|
|
}
|
|
|
|
; CHECK-LABEL test_sqrt_ftz
|
|
define float @test_sqrt_ftz(float %a) #0 #1 {
|
|
; CHECK: sqrt.approx.ftz.f32
|
|
%ret = tail call float @llvm.sqrt.f32(float %a)
|
|
ret float %ret
|
|
}
|
|
|
|
; CHECK-LABEL test_sqrt64
|
|
define double @test_sqrt64(double %a) #0 {
|
|
; There's no sqrt.approx.f64 instruction; we emit
|
|
; reciprocal(rsqrt.approx.f64(x)). There's no non-ftz approximate reciprocal,
|
|
; so we just use the ftz version.
|
|
; CHECK: rsqrt.approx.f64
|
|
; CHECK: rcp.approx.ftz.f64
|
|
%ret = tail call double @llvm.sqrt.f64(double %a)
|
|
ret double %ret
|
|
}
|
|
|
|
; CHECK-LABEL test_sqrt64_ftz
|
|
define double @test_sqrt64_ftz(double %a) #0 #1 {
|
|
; There's no sqrt.approx.ftz.f64 instruction; we just use the non-ftz version.
|
|
; CHECK: rsqrt.approx.f64
|
|
; CHECK: rcp.approx.ftz.f64
|
|
%ret = tail call double @llvm.sqrt.f64(double %a)
|
|
ret double %ret
|
|
}
|
|
|
|
; -- refined sqrt and rsqrt --
|
|
;
|
|
; The sqrt and rsqrt refinement algorithms both emit an rsqrt.approx, followed
|
|
; by some math.
|
|
|
|
; CHECK-LABEL: test_rsqrt32_refined
|
|
define float @test_rsqrt32_refined(float %a) #0 #2 {
|
|
; CHECK: rsqrt.approx.f32
|
|
%val = tail call float @llvm.sqrt.f32(float %a)
|
|
%ret = fdiv float 1.0, %val
|
|
ret float %ret
|
|
}
|
|
|
|
; CHECK-LABEL: test_sqrt32_refined
|
|
define float @test_sqrt32_refined(float %a) #0 #2 {
|
|
; CHECK: rsqrt.approx.f32
|
|
%ret = tail call float @llvm.sqrt.f32(float %a)
|
|
ret float %ret
|
|
}
|
|
|
|
; CHECK-LABEL: test_rsqrt64_refined
|
|
define double @test_rsqrt64_refined(double %a) #0 #2 {
|
|
; CHECK: rsqrt.approx.f64
|
|
%val = tail call double @llvm.sqrt.f64(double %a)
|
|
%ret = fdiv double 1.0, %val
|
|
ret double %ret
|
|
}
|
|
|
|
; CHECK-LABEL: test_sqrt64_refined
|
|
define double @test_sqrt64_refined(double %a) #0 #2 {
|
|
; CHECK: rsqrt.approx.f64
|
|
%ret = tail call double @llvm.sqrt.f64(double %a)
|
|
ret double %ret
|
|
}
|
|
|
|
; -- refined sqrt and rsqrt with ftz enabled --
|
|
|
|
; CHECK-LABEL: test_rsqrt32_refined_ftz
|
|
define float @test_rsqrt32_refined_ftz(float %a) #0 #1 #2 {
|
|
; CHECK: rsqrt.approx.ftz.f32
|
|
%val = tail call float @llvm.sqrt.f32(float %a)
|
|
%ret = fdiv float 1.0, %val
|
|
ret float %ret
|
|
}
|
|
|
|
; CHECK-LABEL: test_sqrt32_refined_ftz
|
|
define float @test_sqrt32_refined_ftz(float %a) #0 #1 #2 {
|
|
; CHECK: rsqrt.approx.ftz.f32
|
|
%ret = tail call float @llvm.sqrt.f32(float %a)
|
|
ret float %ret
|
|
}
|
|
|
|
; CHECK-LABEL: test_rsqrt64_refined_ftz
|
|
define double @test_rsqrt64_refined_ftz(double %a) #0 #1 #2 {
|
|
; There's no rsqrt.approx.ftz.f64, so we just use the non-ftz version.
|
|
; CHECK: rsqrt.approx.f64
|
|
%val = tail call double @llvm.sqrt.f64(double %a)
|
|
%ret = fdiv double 1.0, %val
|
|
ret double %ret
|
|
}
|
|
|
|
; CHECK-LABEL: test_sqrt64_refined_ftz
|
|
define double @test_sqrt64_refined_ftz(double %a) #0 #1 #2 {
|
|
; CHECK: rsqrt.approx.f64
|
|
%ret = tail call double @llvm.sqrt.f64(double %a)
|
|
ret double %ret
|
|
}
|
|
|
|
attributes #0 = { "unsafe-fp-math" = "true" }
|
|
attributes #1 = { "nvptx-f32ftz" = "true" }
|
|
attributes #2 = { "reciprocal-estimates" = "rsqrtf:1,rsqrtd:1,sqrtf:1,sqrtd:1" }
|