mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-26 04:32:44 +01:00
d39edfda46
Interleaved memory accesses are grouped and vectorized into vector load/store and shufflevector. E.g. for (i = 0; i < N; i+=2) { a = A[i]; // load of even element b = A[i+1]; // load of odd element ... // operations on a, b, c, d A[i] = c; // store of even element A[i+1] = d; // store of odd element } The loads of even and odd elements are identified as an interleave load group, which will be transfered into vectorized IRs like: %wide.vec = load <8 x i32>, <8 x i32>* %ptr %vec.even = shufflevector <8 x i32> %wide.vec, <8 x i32> undef, <4 x i32> <i32 0, i32 2, i32 4, i32 6> %vec.odd = shufflevector <8 x i32> %wide.vec, <8 x i32> undef, <4 x i32> <i32 1, i32 3, i32 5, i32 7> The stores of even and odd elements are identified as an interleave store group, which will be transfered into vectorized IRs like: %interleaved.vec = shufflevector <4 x i32> %vec.even, %vec.odd, <8 x i32> <i32 0, i32 4, i32 1, i32 5, i32 2, i32 6, i32 3, i32 7> store <8 x i32> %interleaved.vec, <8 x i32>* %ptr This optimization is currently disabled by defaut. To try it by adding '-enable-interleaved-mem-accesses=true'. llvm-svn: 239291
452 lines
15 KiB
C++
452 lines
15 KiB
C++
//===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file provides helpers for the implementation of
|
|
/// a TargetTransformInfo-conforming class.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
|
|
#define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
|
|
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/Type.h"
|
|
|
|
namespace llvm {
|
|
|
|
/// \brief Base class for use as a mix-in that aids implementing
|
|
/// a TargetTransformInfo-compatible class.
|
|
class TargetTransformInfoImplBase {
|
|
protected:
|
|
typedef TargetTransformInfo TTI;
|
|
|
|
const DataLayout *DL;
|
|
|
|
explicit TargetTransformInfoImplBase(const DataLayout *DL)
|
|
: DL(DL) {}
|
|
|
|
public:
|
|
// Provide value semantics. MSVC requires that we spell all of these out.
|
|
TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg)
|
|
: DL(Arg.DL) {}
|
|
TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg)
|
|
: DL(std::move(Arg.DL)) {}
|
|
TargetTransformInfoImplBase &
|
|
operator=(const TargetTransformInfoImplBase &RHS) {
|
|
DL = RHS.DL;
|
|
return *this;
|
|
}
|
|
TargetTransformInfoImplBase &operator=(TargetTransformInfoImplBase &&RHS) {
|
|
DL = std::move(RHS.DL);
|
|
return *this;
|
|
}
|
|
|
|
unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
|
|
switch (Opcode) {
|
|
default:
|
|
// By default, just classify everything as 'basic'.
|
|
return TTI::TCC_Basic;
|
|
|
|
case Instruction::GetElementPtr:
|
|
llvm_unreachable("Use getGEPCost for GEP operations!");
|
|
|
|
case Instruction::BitCast:
|
|
assert(OpTy && "Cast instructions must provide the operand type");
|
|
if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
|
|
// Identity and pointer-to-pointer casts are free.
|
|
return TTI::TCC_Free;
|
|
|
|
// Otherwise, the default basic cost is used.
|
|
return TTI::TCC_Basic;
|
|
|
|
case Instruction::IntToPtr: {
|
|
if (!DL)
|
|
return TTI::TCC_Basic;
|
|
|
|
// An inttoptr cast is free so long as the input is a legal integer type
|
|
// which doesn't contain values outside the range of a pointer.
|
|
unsigned OpSize = OpTy->getScalarSizeInBits();
|
|
if (DL->isLegalInteger(OpSize) &&
|
|
OpSize <= DL->getPointerTypeSizeInBits(Ty))
|
|
return TTI::TCC_Free;
|
|
|
|
// Otherwise it's not a no-op.
|
|
return TTI::TCC_Basic;
|
|
}
|
|
case Instruction::PtrToInt: {
|
|
if (!DL)
|
|
return TTI::TCC_Basic;
|
|
|
|
// A ptrtoint cast is free so long as the result is large enough to store
|
|
// the pointer, and a legal integer type.
|
|
unsigned DestSize = Ty->getScalarSizeInBits();
|
|
if (DL->isLegalInteger(DestSize) &&
|
|
DestSize >= DL->getPointerTypeSizeInBits(OpTy))
|
|
return TTI::TCC_Free;
|
|
|
|
// Otherwise it's not a no-op.
|
|
return TTI::TCC_Basic;
|
|
}
|
|
case Instruction::Trunc:
|
|
// trunc to a native type is free (assuming the target has compare and
|
|
// shift-right of the same width).
|
|
if (DL && DL->isLegalInteger(DL->getTypeSizeInBits(Ty)))
|
|
return TTI::TCC_Free;
|
|
|
|
return TTI::TCC_Basic;
|
|
}
|
|
}
|
|
|
|
unsigned getGEPCost(const Value *Ptr, ArrayRef<const Value *> Operands) {
|
|
// In the basic model, we just assume that all-constant GEPs will be folded
|
|
// into their uses via addressing modes.
|
|
for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
|
|
if (!isa<Constant>(Operands[Idx]))
|
|
return TTI::TCC_Basic;
|
|
|
|
return TTI::TCC_Free;
|
|
}
|
|
|
|
unsigned getCallCost(FunctionType *FTy, int NumArgs) {
|
|
assert(FTy && "FunctionType must be provided to this routine.");
|
|
|
|
// The target-independent implementation just measures the size of the
|
|
// function by approximating that each argument will take on average one
|
|
// instruction to prepare.
|
|
|
|
if (NumArgs < 0)
|
|
// Set the argument number to the number of explicit arguments in the
|
|
// function.
|
|
NumArgs = FTy->getNumParams();
|
|
|
|
return TTI::TCC_Basic * (NumArgs + 1);
|
|
}
|
|
|
|
unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
|
|
ArrayRef<Type *> ParamTys) {
|
|
switch (IID) {
|
|
default:
|
|
// Intrinsics rarely (if ever) have normal argument setup constraints.
|
|
// Model them as having a basic instruction cost.
|
|
// FIXME: This is wrong for libc intrinsics.
|
|
return TTI::TCC_Basic;
|
|
|
|
case Intrinsic::annotation:
|
|
case Intrinsic::assume:
|
|
case Intrinsic::dbg_declare:
|
|
case Intrinsic::dbg_value:
|
|
case Intrinsic::invariant_start:
|
|
case Intrinsic::invariant_end:
|
|
case Intrinsic::lifetime_start:
|
|
case Intrinsic::lifetime_end:
|
|
case Intrinsic::objectsize:
|
|
case Intrinsic::ptr_annotation:
|
|
case Intrinsic::var_annotation:
|
|
case Intrinsic::experimental_gc_result_int:
|
|
case Intrinsic::experimental_gc_result_float:
|
|
case Intrinsic::experimental_gc_result_ptr:
|
|
case Intrinsic::experimental_gc_result:
|
|
case Intrinsic::experimental_gc_relocate:
|
|
// These intrinsics don't actually represent code after lowering.
|
|
return TTI::TCC_Free;
|
|
}
|
|
}
|
|
|
|
bool hasBranchDivergence() { return false; }
|
|
|
|
bool isSourceOfDivergence(const Value *V) { return false; }
|
|
|
|
bool isLoweredToCall(const Function *F) {
|
|
// FIXME: These should almost certainly not be handled here, and instead
|
|
// handled with the help of TLI or the target itself. This was largely
|
|
// ported from existing analysis heuristics here so that such refactorings
|
|
// can take place in the future.
|
|
|
|
if (F->isIntrinsic())
|
|
return false;
|
|
|
|
if (F->hasLocalLinkage() || !F->hasName())
|
|
return true;
|
|
|
|
StringRef Name = F->getName();
|
|
|
|
// These will all likely lower to a single selection DAG node.
|
|
if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
|
|
Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
|
|
Name == "fmin" || Name == "fminf" || Name == "fminl" ||
|
|
Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" ||
|
|
Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
|
|
Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
|
|
return false;
|
|
|
|
// These are all likely to be optimized into something smaller.
|
|
if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
|
|
Name == "exp2l" || Name == "exp2f" || Name == "floor" ||
|
|
Name == "floorf" || Name == "ceil" || Name == "round" ||
|
|
Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" ||
|
|
Name == "llabs")
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void getUnrollingPreferences(Loop *, TTI::UnrollingPreferences &) {}
|
|
|
|
bool isLegalAddImmediate(int64_t Imm) { return false; }
|
|
|
|
bool isLegalICmpImmediate(int64_t Imm) { return false; }
|
|
|
|
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
|
|
bool HasBaseReg, int64_t Scale,
|
|
unsigned AddrSpace) {
|
|
// Guess that only reg and reg+reg addressing is allowed. This heuristic is
|
|
// taken from the implementation of LSR.
|
|
return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1);
|
|
}
|
|
|
|
bool isLegalMaskedStore(Type *DataType, int Consecutive) { return false; }
|
|
|
|
bool isLegalMaskedLoad(Type *DataType, int Consecutive) { return false; }
|
|
|
|
int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
|
|
bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
|
|
// Guess that all legal addressing mode are free.
|
|
if (isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
|
|
Scale, AddrSpace))
|
|
return 0;
|
|
return -1;
|
|
}
|
|
|
|
bool isTruncateFree(Type *Ty1, Type *Ty2) { return false; }
|
|
|
|
bool isProfitableToHoist(Instruction *I) { return true; }
|
|
|
|
bool isTypeLegal(Type *Ty) { return false; }
|
|
|
|
unsigned getJumpBufAlignment() { return 0; }
|
|
|
|
unsigned getJumpBufSize() { return 0; }
|
|
|
|
bool shouldBuildLookupTables() { return true; }
|
|
|
|
bool enableAggressiveInterleaving(bool LoopHasReductions) { return false; }
|
|
|
|
TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) {
|
|
return TTI::PSK_Software;
|
|
}
|
|
|
|
bool haveFastSqrt(Type *Ty) { return false; }
|
|
|
|
unsigned getFPOpCost(Type *Ty) { return TargetTransformInfo::TCC_Basic; }
|
|
|
|
unsigned getIntImmCost(const APInt &Imm, Type *Ty) { return TTI::TCC_Basic; }
|
|
|
|
unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
|
|
Type *Ty) {
|
|
return TTI::TCC_Free;
|
|
}
|
|
|
|
unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
|
|
Type *Ty) {
|
|
return TTI::TCC_Free;
|
|
}
|
|
|
|
unsigned getNumberOfRegisters(bool Vector) { return 8; }
|
|
|
|
unsigned getRegisterBitWidth(bool Vector) { return 32; }
|
|
|
|
unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
|
|
|
|
unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
|
|
TTI::OperandValueKind Opd1Info,
|
|
TTI::OperandValueKind Opd2Info,
|
|
TTI::OperandValueProperties Opd1PropInfo,
|
|
TTI::OperandValueProperties Opd2PropInfo) {
|
|
return 1;
|
|
}
|
|
|
|
unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Ty, int Index,
|
|
Type *SubTp) {
|
|
return 1;
|
|
}
|
|
|
|
unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) { return 1; }
|
|
|
|
unsigned getCFInstrCost(unsigned Opcode) { return 1; }
|
|
|
|
unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
|
|
return 1;
|
|
}
|
|
|
|
unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
|
|
return 1;
|
|
}
|
|
|
|
unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
|
|
unsigned AddressSpace) {
|
|
return 1;
|
|
}
|
|
|
|
unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
|
|
unsigned AddressSpace) {
|
|
return 1;
|
|
}
|
|
|
|
unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
|
|
unsigned Factor,
|
|
ArrayRef<unsigned> Indices,
|
|
unsigned Alignment,
|
|
unsigned AddressSpace) {
|
|
return 1;
|
|
}
|
|
|
|
unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
|
|
ArrayRef<Type *> Tys) {
|
|
return 1;
|
|
}
|
|
|
|
unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) {
|
|
return 1;
|
|
}
|
|
|
|
unsigned getNumberOfParts(Type *Tp) { return 0; }
|
|
|
|
unsigned getAddressComputationCost(Type *Tp, bool) { return 0; }
|
|
|
|
unsigned getReductionCost(unsigned, Type *, bool) { return 1; }
|
|
|
|
unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { return 0; }
|
|
|
|
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) {
|
|
return false;
|
|
}
|
|
|
|
Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
|
|
Type *ExpectedType) {
|
|
return nullptr;
|
|
}
|
|
};
|
|
|
|
/// \brief CRTP base class for use as a mix-in that aids implementing
|
|
/// a TargetTransformInfo-compatible class.
|
|
template <typename T>
|
|
class TargetTransformInfoImplCRTPBase : public TargetTransformInfoImplBase {
|
|
private:
|
|
typedef TargetTransformInfoImplBase BaseT;
|
|
|
|
protected:
|
|
explicit TargetTransformInfoImplCRTPBase(const DataLayout *DL)
|
|
: BaseT(DL) {}
|
|
|
|
public:
|
|
// Provide value semantics. MSVC requires that we spell all of these out.
|
|
TargetTransformInfoImplCRTPBase(const TargetTransformInfoImplCRTPBase &Arg)
|
|
: BaseT(static_cast<const BaseT &>(Arg)) {}
|
|
TargetTransformInfoImplCRTPBase(TargetTransformInfoImplCRTPBase &&Arg)
|
|
: BaseT(std::move(static_cast<BaseT &>(Arg))) {}
|
|
TargetTransformInfoImplCRTPBase &
|
|
operator=(const TargetTransformInfoImplCRTPBase &RHS) {
|
|
BaseT::operator=(static_cast<const BaseT &>(RHS));
|
|
return *this;
|
|
}
|
|
TargetTransformInfoImplCRTPBase &
|
|
operator=(TargetTransformInfoImplCRTPBase &&RHS) {
|
|
BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
|
|
return *this;
|
|
}
|
|
|
|
using BaseT::getCallCost;
|
|
|
|
unsigned getCallCost(const Function *F, int NumArgs) {
|
|
assert(F && "A concrete function must be provided to this routine.");
|
|
|
|
if (NumArgs < 0)
|
|
// Set the argument number to the number of explicit arguments in the
|
|
// function.
|
|
NumArgs = F->arg_size();
|
|
|
|
if (Intrinsic::ID IID = F->getIntrinsicID()) {
|
|
FunctionType *FTy = F->getFunctionType();
|
|
SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
|
|
return static_cast<T *>(this)
|
|
->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys);
|
|
}
|
|
|
|
if (!static_cast<T *>(this)->isLoweredToCall(F))
|
|
return TTI::TCC_Basic; // Give a basic cost if it will be lowered
|
|
// directly.
|
|
|
|
return static_cast<T *>(this)->getCallCost(F->getFunctionType(), NumArgs);
|
|
}
|
|
|
|
unsigned getCallCost(const Function *F, ArrayRef<const Value *> Arguments) {
|
|
// Simply delegate to generic handling of the call.
|
|
// FIXME: We should use instsimplify or something else to catch calls which
|
|
// will constant fold with these arguments.
|
|
return static_cast<T *>(this)->getCallCost(F, Arguments.size());
|
|
}
|
|
|
|
using BaseT::getIntrinsicCost;
|
|
|
|
unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
|
|
ArrayRef<const Value *> Arguments) {
|
|
// Delegate to the generic intrinsic handling code. This mostly provides an
|
|
// opportunity for targets to (for example) special case the cost of
|
|
// certain intrinsics based on constants used as arguments.
|
|
SmallVector<Type *, 8> ParamTys;
|
|
ParamTys.reserve(Arguments.size());
|
|
for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
|
|
ParamTys.push_back(Arguments[Idx]->getType());
|
|
return static_cast<T *>(this)->getIntrinsicCost(IID, RetTy, ParamTys);
|
|
}
|
|
|
|
unsigned getUserCost(const User *U) {
|
|
if (isa<PHINode>(U))
|
|
return TTI::TCC_Free; // Model all PHI nodes as free.
|
|
|
|
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
|
|
SmallVector<const Value *, 4> Indices(GEP->idx_begin(), GEP->idx_end());
|
|
return static_cast<T *>(this)
|
|
->getGEPCost(GEP->getPointerOperand(), Indices);
|
|
}
|
|
|
|
if (auto CS = ImmutableCallSite(U)) {
|
|
const Function *F = CS.getCalledFunction();
|
|
if (!F) {
|
|
// Just use the called value type.
|
|
Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
|
|
return static_cast<T *>(this)
|
|
->getCallCost(cast<FunctionType>(FTy), CS.arg_size());
|
|
}
|
|
|
|
SmallVector<const Value *, 8> Arguments(CS.arg_begin(), CS.arg_end());
|
|
return static_cast<T *>(this)->getCallCost(F, Arguments);
|
|
}
|
|
|
|
if (const CastInst *CI = dyn_cast<CastInst>(U)) {
|
|
// Result of a cmp instruction is often extended (to be used by other
|
|
// cmp instructions, logical or return instructions). These are usually
|
|
// nop on most sane targets.
|
|
if (isa<CmpInst>(CI->getOperand(0)))
|
|
return TTI::TCC_Free;
|
|
}
|
|
|
|
return static_cast<T *>(this)->getOperationCost(
|
|
Operator::getOpcode(U), U->getType(),
|
|
U->getNumOperands() == 1 ? U->getOperand(0)->getType() : nullptr);
|
|
}
|
|
};
|
|
}
|
|
|
|
#endif
|