mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-26 04:32:44 +01:00
55f623649f
The API for shuffles and reductions uses generic Type parameters, instead of VectorType, and so assertions and casts are used a lot. This patch makes those types explicit, which means that the clients can't be lazy, but results in less ambiguity, and that can only be a good thing. Bugzilla: https://bugs.llvm.org/show_bug.cgi?id=45562 Differential Revision: https://reviews.llvm.org/D78357
7531 lines
282 KiB
C++
7531 lines
282 KiB
C++
//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
|
|
// stores that can be put together into vector-stores. Next, it attempts to
|
|
// construct vectorizable tree using the use-def chains. If a profitable tree
|
|
// was found, the SLP vectorizer performs vectorization on the tree.
|
|
//
|
|
// The pass is inspired by the work described in the paper:
|
|
// "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/iterator.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/CodeMetrics.h"
|
|
#include "llvm/Analysis/DemandedBits.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/LoopAccessAnalysis.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/NoFolder.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/DOTGraphTraits.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/GraphWriter.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/InjectTLIMappings.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include "llvm/Transforms/Vectorize.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <set>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
using namespace slpvectorizer;
|
|
|
|
#define SV_NAME "slp-vectorizer"
|
|
#define DEBUG_TYPE "SLP"
|
|
|
|
STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
|
|
|
|
cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
|
|
cl::desc("Run the SLP vectorization passes"));
|
|
|
|
static cl::opt<int>
|
|
SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
|
|
cl::desc("Only vectorize if you gain more than this "
|
|
"number "));
|
|
|
|
static cl::opt<bool>
|
|
ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
|
|
cl::desc("Attempt to vectorize horizontal reductions"));
|
|
|
|
static cl::opt<bool> ShouldStartVectorizeHorAtStore(
|
|
"slp-vectorize-hor-store", cl::init(false), cl::Hidden,
|
|
cl::desc(
|
|
"Attempt to vectorize horizontal reductions feeding into a store"));
|
|
|
|
static cl::opt<int>
|
|
MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
|
|
cl::desc("Attempt to vectorize for this register size in bits"));
|
|
|
|
static cl::opt<int>
|
|
MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
|
|
cl::desc("Maximum depth of the lookup for consecutive stores."));
|
|
|
|
/// Limits the size of scheduling regions in a block.
|
|
/// It avoid long compile times for _very_ large blocks where vector
|
|
/// instructions are spread over a wide range.
|
|
/// This limit is way higher than needed by real-world functions.
|
|
static cl::opt<int>
|
|
ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
|
|
cl::desc("Limit the size of the SLP scheduling region per block"));
|
|
|
|
static cl::opt<int> MinVectorRegSizeOption(
|
|
"slp-min-reg-size", cl::init(128), cl::Hidden,
|
|
cl::desc("Attempt to vectorize for this register size in bits"));
|
|
|
|
static cl::opt<unsigned> RecursionMaxDepth(
|
|
"slp-recursion-max-depth", cl::init(12), cl::Hidden,
|
|
cl::desc("Limit the recursion depth when building a vectorizable tree"));
|
|
|
|
static cl::opt<unsigned> MinTreeSize(
|
|
"slp-min-tree-size", cl::init(3), cl::Hidden,
|
|
cl::desc("Only vectorize small trees if they are fully vectorizable"));
|
|
|
|
// The maximum depth that the look-ahead score heuristic will explore.
|
|
// The higher this value, the higher the compilation time overhead.
|
|
static cl::opt<int> LookAheadMaxDepth(
|
|
"slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
|
|
cl::desc("The maximum look-ahead depth for operand reordering scores"));
|
|
|
|
// The Look-ahead heuristic goes through the users of the bundle to calculate
|
|
// the users cost in getExternalUsesCost(). To avoid compilation time increase
|
|
// we limit the number of users visited to this value.
|
|
static cl::opt<unsigned> LookAheadUsersBudget(
|
|
"slp-look-ahead-users-budget", cl::init(2), cl::Hidden,
|
|
cl::desc("The maximum number of users to visit while visiting the "
|
|
"predecessors. This prevents compilation time increase."));
|
|
|
|
static cl::opt<bool>
|
|
ViewSLPTree("view-slp-tree", cl::Hidden,
|
|
cl::desc("Display the SLP trees with Graphviz"));
|
|
|
|
// Limit the number of alias checks. The limit is chosen so that
|
|
// it has no negative effect on the llvm benchmarks.
|
|
static const unsigned AliasedCheckLimit = 10;
|
|
|
|
// Another limit for the alias checks: The maximum distance between load/store
|
|
// instructions where alias checks are done.
|
|
// This limit is useful for very large basic blocks.
|
|
static const unsigned MaxMemDepDistance = 160;
|
|
|
|
/// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
|
|
/// regions to be handled.
|
|
static const int MinScheduleRegionSize = 16;
|
|
|
|
/// Predicate for the element types that the SLP vectorizer supports.
|
|
///
|
|
/// The most important thing to filter here are types which are invalid in LLVM
|
|
/// vectors. We also filter target specific types which have absolutely no
|
|
/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
|
|
/// avoids spending time checking the cost model and realizing that they will
|
|
/// be inevitably scalarized.
|
|
static bool isValidElementType(Type *Ty) {
|
|
return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
|
|
!Ty->isPPC_FP128Ty();
|
|
}
|
|
|
|
/// \returns true if all of the instructions in \p VL are in the same block or
|
|
/// false otherwise.
|
|
static bool allSameBlock(ArrayRef<Value *> VL) {
|
|
Instruction *I0 = dyn_cast<Instruction>(VL[0]);
|
|
if (!I0)
|
|
return false;
|
|
BasicBlock *BB = I0->getParent();
|
|
for (int i = 1, e = VL.size(); i < e; i++) {
|
|
Instruction *I = dyn_cast<Instruction>(VL[i]);
|
|
if (!I)
|
|
return false;
|
|
|
|
if (BB != I->getParent())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// \returns True if all of the values in \p VL are constants (but not
|
|
/// globals/constant expressions).
|
|
static bool allConstant(ArrayRef<Value *> VL) {
|
|
// Constant expressions and globals can't be vectorized like normal integer/FP
|
|
// constants.
|
|
for (Value *i : VL)
|
|
if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// \returns True if all of the values in \p VL are identical.
|
|
static bool isSplat(ArrayRef<Value *> VL) {
|
|
for (unsigned i = 1, e = VL.size(); i < e; ++i)
|
|
if (VL[i] != VL[0])
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// \returns True if \p I is commutative, handles CmpInst as well as Instruction.
|
|
static bool isCommutative(Instruction *I) {
|
|
if (auto *IC = dyn_cast<CmpInst>(I))
|
|
return IC->isCommutative();
|
|
return I->isCommutative();
|
|
}
|
|
|
|
/// Checks if the vector of instructions can be represented as a shuffle, like:
|
|
/// %x0 = extractelement <4 x i8> %x, i32 0
|
|
/// %x3 = extractelement <4 x i8> %x, i32 3
|
|
/// %y1 = extractelement <4 x i8> %y, i32 1
|
|
/// %y2 = extractelement <4 x i8> %y, i32 2
|
|
/// %x0x0 = mul i8 %x0, %x0
|
|
/// %x3x3 = mul i8 %x3, %x3
|
|
/// %y1y1 = mul i8 %y1, %y1
|
|
/// %y2y2 = mul i8 %y2, %y2
|
|
/// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0
|
|
/// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
|
|
/// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
|
|
/// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
|
|
/// ret <4 x i8> %ins4
|
|
/// can be transformed into:
|
|
/// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
|
|
/// i32 6>
|
|
/// %2 = mul <4 x i8> %1, %1
|
|
/// ret <4 x i8> %2
|
|
/// We convert this initially to something like:
|
|
/// %x0 = extractelement <4 x i8> %x, i32 0
|
|
/// %x3 = extractelement <4 x i8> %x, i32 3
|
|
/// %y1 = extractelement <4 x i8> %y, i32 1
|
|
/// %y2 = extractelement <4 x i8> %y, i32 2
|
|
/// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0
|
|
/// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
|
|
/// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
|
|
/// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
|
|
/// %5 = mul <4 x i8> %4, %4
|
|
/// %6 = extractelement <4 x i8> %5, i32 0
|
|
/// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0
|
|
/// %7 = extractelement <4 x i8> %5, i32 1
|
|
/// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
|
|
/// %8 = extractelement <4 x i8> %5, i32 2
|
|
/// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
|
|
/// %9 = extractelement <4 x i8> %5, i32 3
|
|
/// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
|
|
/// ret <4 x i8> %ins4
|
|
/// InstCombiner transforms this into a shuffle and vector mul
|
|
/// TODO: Can we split off and reuse the shuffle mask detection from
|
|
/// TargetTransformInfo::getInstructionThroughput?
|
|
static Optional<TargetTransformInfo::ShuffleKind>
|
|
isShuffle(ArrayRef<Value *> VL) {
|
|
auto *EI0 = cast<ExtractElementInst>(VL[0]);
|
|
unsigned Size = EI0->getVectorOperandType()->getNumElements();
|
|
Value *Vec1 = nullptr;
|
|
Value *Vec2 = nullptr;
|
|
enum ShuffleMode { Unknown, Select, Permute };
|
|
ShuffleMode CommonShuffleMode = Unknown;
|
|
for (unsigned I = 0, E = VL.size(); I < E; ++I) {
|
|
auto *EI = cast<ExtractElementInst>(VL[I]);
|
|
auto *Vec = EI->getVectorOperand();
|
|
// All vector operands must have the same number of vector elements.
|
|
if (cast<VectorType>(Vec->getType())->getNumElements() != Size)
|
|
return None;
|
|
auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
|
|
if (!Idx)
|
|
return None;
|
|
// Undefined behavior if Idx is negative or >= Size.
|
|
if (Idx->getValue().uge(Size))
|
|
continue;
|
|
unsigned IntIdx = Idx->getValue().getZExtValue();
|
|
// We can extractelement from undef vector.
|
|
if (isa<UndefValue>(Vec))
|
|
continue;
|
|
// For correct shuffling we have to have at most 2 different vector operands
|
|
// in all extractelement instructions.
|
|
if (!Vec1 || Vec1 == Vec)
|
|
Vec1 = Vec;
|
|
else if (!Vec2 || Vec2 == Vec)
|
|
Vec2 = Vec;
|
|
else
|
|
return None;
|
|
if (CommonShuffleMode == Permute)
|
|
continue;
|
|
// If the extract index is not the same as the operation number, it is a
|
|
// permutation.
|
|
if (IntIdx != I) {
|
|
CommonShuffleMode = Permute;
|
|
continue;
|
|
}
|
|
CommonShuffleMode = Select;
|
|
}
|
|
// If we're not crossing lanes in different vectors, consider it as blending.
|
|
if (CommonShuffleMode == Select && Vec2)
|
|
return TargetTransformInfo::SK_Select;
|
|
// If Vec2 was never used, we have a permutation of a single vector, otherwise
|
|
// we have permutation of 2 vectors.
|
|
return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
|
|
: TargetTransformInfo::SK_PermuteSingleSrc;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Main data required for vectorization of instructions.
|
|
struct InstructionsState {
|
|
/// The very first instruction in the list with the main opcode.
|
|
Value *OpValue = nullptr;
|
|
|
|
/// The main/alternate instruction.
|
|
Instruction *MainOp = nullptr;
|
|
Instruction *AltOp = nullptr;
|
|
|
|
/// The main/alternate opcodes for the list of instructions.
|
|
unsigned getOpcode() const {
|
|
return MainOp ? MainOp->getOpcode() : 0;
|
|
}
|
|
|
|
unsigned getAltOpcode() const {
|
|
return AltOp ? AltOp->getOpcode() : 0;
|
|
}
|
|
|
|
/// Some of the instructions in the list have alternate opcodes.
|
|
bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
|
|
|
|
bool isOpcodeOrAlt(Instruction *I) const {
|
|
unsigned CheckedOpcode = I->getOpcode();
|
|
return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
|
|
}
|
|
|
|
InstructionsState() = delete;
|
|
InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
|
|
: OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Chooses the correct key for scheduling data. If \p Op has the same (or
|
|
/// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
|
|
/// OpValue.
|
|
static Value *isOneOf(const InstructionsState &S, Value *Op) {
|
|
auto *I = dyn_cast<Instruction>(Op);
|
|
if (I && S.isOpcodeOrAlt(I))
|
|
return Op;
|
|
return S.OpValue;
|
|
}
|
|
|
|
/// \returns true if \p Opcode is allowed as part of of the main/alternate
|
|
/// instruction for SLP vectorization.
|
|
///
|
|
/// Example of unsupported opcode is SDIV that can potentially cause UB if the
|
|
/// "shuffled out" lane would result in division by zero.
|
|
static bool isValidForAlternation(unsigned Opcode) {
|
|
if (Instruction::isIntDivRem(Opcode))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \returns analysis of the Instructions in \p VL described in
|
|
/// InstructionsState, the Opcode that we suppose the whole list
|
|
/// could be vectorized even if its structure is diverse.
|
|
static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
|
|
unsigned BaseIndex = 0) {
|
|
// Make sure these are all Instructions.
|
|
if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
|
|
return InstructionsState(VL[BaseIndex], nullptr, nullptr);
|
|
|
|
bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
|
|
bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
|
|
unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
|
|
unsigned AltOpcode = Opcode;
|
|
unsigned AltIndex = BaseIndex;
|
|
|
|
// Check for one alternate opcode from another BinaryOperator.
|
|
// TODO - generalize to support all operators (types, calls etc.).
|
|
for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
|
|
unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
|
|
if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
|
|
if (InstOpcode == Opcode || InstOpcode == AltOpcode)
|
|
continue;
|
|
if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
|
|
isValidForAlternation(Opcode)) {
|
|
AltOpcode = InstOpcode;
|
|
AltIndex = Cnt;
|
|
continue;
|
|
}
|
|
} else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
|
|
Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
|
|
Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
|
|
if (Ty0 == Ty1) {
|
|
if (InstOpcode == Opcode || InstOpcode == AltOpcode)
|
|
continue;
|
|
if (Opcode == AltOpcode) {
|
|
assert(isValidForAlternation(Opcode) &&
|
|
isValidForAlternation(InstOpcode) &&
|
|
"Cast isn't safe for alternation, logic needs to be updated!");
|
|
AltOpcode = InstOpcode;
|
|
AltIndex = Cnt;
|
|
continue;
|
|
}
|
|
}
|
|
} else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
|
|
continue;
|
|
return InstructionsState(VL[BaseIndex], nullptr, nullptr);
|
|
}
|
|
|
|
return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
|
|
cast<Instruction>(VL[AltIndex]));
|
|
}
|
|
|
|
/// \returns true if all of the values in \p VL have the same type or false
|
|
/// otherwise.
|
|
static bool allSameType(ArrayRef<Value *> VL) {
|
|
Type *Ty = VL[0]->getType();
|
|
for (int i = 1, e = VL.size(); i < e; i++)
|
|
if (VL[i]->getType() != Ty)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \returns True if Extract{Value,Element} instruction extracts element Idx.
|
|
static Optional<unsigned> getExtractIndex(Instruction *E) {
|
|
unsigned Opcode = E->getOpcode();
|
|
assert((Opcode == Instruction::ExtractElement ||
|
|
Opcode == Instruction::ExtractValue) &&
|
|
"Expected extractelement or extractvalue instruction.");
|
|
if (Opcode == Instruction::ExtractElement) {
|
|
auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
|
|
if (!CI)
|
|
return None;
|
|
return CI->getZExtValue();
|
|
}
|
|
ExtractValueInst *EI = cast<ExtractValueInst>(E);
|
|
if (EI->getNumIndices() != 1)
|
|
return None;
|
|
return *EI->idx_begin();
|
|
}
|
|
|
|
/// \returns True if in-tree use also needs extract. This refers to
|
|
/// possible scalar operand in vectorized instruction.
|
|
static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
|
|
TargetLibraryInfo *TLI) {
|
|
unsigned Opcode = UserInst->getOpcode();
|
|
switch (Opcode) {
|
|
case Instruction::Load: {
|
|
LoadInst *LI = cast<LoadInst>(UserInst);
|
|
return (LI->getPointerOperand() == Scalar);
|
|
}
|
|
case Instruction::Store: {
|
|
StoreInst *SI = cast<StoreInst>(UserInst);
|
|
return (SI->getPointerOperand() == Scalar);
|
|
}
|
|
case Instruction::Call: {
|
|
CallInst *CI = cast<CallInst>(UserInst);
|
|
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
|
|
for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
|
|
if (hasVectorInstrinsicScalarOpd(ID, i))
|
|
return (CI->getArgOperand(i) == Scalar);
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// \returns the AA location that is being access by the instruction.
|
|
static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(I))
|
|
return MemoryLocation::get(SI);
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I))
|
|
return MemoryLocation::get(LI);
|
|
return MemoryLocation();
|
|
}
|
|
|
|
/// \returns True if the instruction is not a volatile or atomic load/store.
|
|
static bool isSimple(Instruction *I) {
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I))
|
|
return LI->isSimple();
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(I))
|
|
return SI->isSimple();
|
|
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
|
|
return !MI->isVolatile();
|
|
return true;
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
namespace slpvectorizer {
|
|
|
|
/// Bottom Up SLP Vectorizer.
|
|
class BoUpSLP {
|
|
struct TreeEntry;
|
|
struct ScheduleData;
|
|
|
|
public:
|
|
using ValueList = SmallVector<Value *, 8>;
|
|
using InstrList = SmallVector<Instruction *, 16>;
|
|
using ValueSet = SmallPtrSet<Value *, 16>;
|
|
using StoreList = SmallVector<StoreInst *, 8>;
|
|
using ExtraValueToDebugLocsMap =
|
|
MapVector<Value *, SmallVector<Instruction *, 2>>;
|
|
|
|
BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
|
|
TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
|
|
DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
|
|
const DataLayout *DL, OptimizationRemarkEmitter *ORE)
|
|
: F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
|
|
DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
|
|
CodeMetrics::collectEphemeralValues(F, AC, EphValues);
|
|
// Use the vector register size specified by the target unless overridden
|
|
// by a command-line option.
|
|
// TODO: It would be better to limit the vectorization factor based on
|
|
// data type rather than just register size. For example, x86 AVX has
|
|
// 256-bit registers, but it does not support integer operations
|
|
// at that width (that requires AVX2).
|
|
if (MaxVectorRegSizeOption.getNumOccurrences())
|
|
MaxVecRegSize = MaxVectorRegSizeOption;
|
|
else
|
|
MaxVecRegSize = TTI->getRegisterBitWidth(true);
|
|
|
|
if (MinVectorRegSizeOption.getNumOccurrences())
|
|
MinVecRegSize = MinVectorRegSizeOption;
|
|
else
|
|
MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
|
|
}
|
|
|
|
/// Vectorize the tree that starts with the elements in \p VL.
|
|
/// Returns the vectorized root.
|
|
Value *vectorizeTree();
|
|
|
|
/// Vectorize the tree but with the list of externally used values \p
|
|
/// ExternallyUsedValues. Values in this MapVector can be replaced but the
|
|
/// generated extractvalue instructions.
|
|
Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
|
|
|
|
/// \returns the cost incurred by unwanted spills and fills, caused by
|
|
/// holding live values over call sites.
|
|
int getSpillCost() const;
|
|
|
|
/// \returns the vectorization cost of the subtree that starts at \p VL.
|
|
/// A negative number means that this is profitable.
|
|
int getTreeCost();
|
|
|
|
/// Construct a vectorizable tree that starts at \p Roots, ignoring users for
|
|
/// the purpose of scheduling and extraction in the \p UserIgnoreLst.
|
|
void buildTree(ArrayRef<Value *> Roots,
|
|
ArrayRef<Value *> UserIgnoreLst = None);
|
|
|
|
/// Construct a vectorizable tree that starts at \p Roots, ignoring users for
|
|
/// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
|
|
/// into account (and updating it, if required) list of externally used
|
|
/// values stored in \p ExternallyUsedValues.
|
|
void buildTree(ArrayRef<Value *> Roots,
|
|
ExtraValueToDebugLocsMap &ExternallyUsedValues,
|
|
ArrayRef<Value *> UserIgnoreLst = None);
|
|
|
|
/// Clear the internal data structures that are created by 'buildTree'.
|
|
void deleteTree() {
|
|
VectorizableTree.clear();
|
|
ScalarToTreeEntry.clear();
|
|
MustGather.clear();
|
|
ExternalUses.clear();
|
|
NumOpsWantToKeepOrder.clear();
|
|
NumOpsWantToKeepOriginalOrder = 0;
|
|
for (auto &Iter : BlocksSchedules) {
|
|
BlockScheduling *BS = Iter.second.get();
|
|
BS->clear();
|
|
}
|
|
MinBWs.clear();
|
|
}
|
|
|
|
unsigned getTreeSize() const { return VectorizableTree.size(); }
|
|
|
|
/// Perform LICM and CSE on the newly generated gather sequences.
|
|
void optimizeGatherSequence();
|
|
|
|
/// \returns The best order of instructions for vectorization.
|
|
Optional<ArrayRef<unsigned>> bestOrder() const {
|
|
auto I = std::max_element(
|
|
NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
|
|
[](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
|
|
const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
|
|
return D1.second < D2.second;
|
|
});
|
|
if (I == NumOpsWantToKeepOrder.end() ||
|
|
I->getSecond() <= NumOpsWantToKeepOriginalOrder)
|
|
return None;
|
|
|
|
return makeArrayRef(I->getFirst());
|
|
}
|
|
|
|
/// \return The vector element size in bits to use when vectorizing the
|
|
/// expression tree ending at \p V. If V is a store, the size is the width of
|
|
/// the stored value. Otherwise, the size is the width of the largest loaded
|
|
/// value reaching V. This method is used by the vectorizer to calculate
|
|
/// vectorization factors.
|
|
unsigned getVectorElementSize(Value *V) const;
|
|
|
|
/// Compute the minimum type sizes required to represent the entries in a
|
|
/// vectorizable tree.
|
|
void computeMinimumValueSizes();
|
|
|
|
// \returns maximum vector register size as set by TTI or overridden by cl::opt.
|
|
unsigned getMaxVecRegSize() const {
|
|
return MaxVecRegSize;
|
|
}
|
|
|
|
// \returns minimum vector register size as set by cl::opt.
|
|
unsigned getMinVecRegSize() const {
|
|
return MinVecRegSize;
|
|
}
|
|
|
|
/// Check if homogeneous aggregate is isomorphic to some VectorType.
|
|
/// Accepts homogeneous multidimensional aggregate of scalars/vectors like
|
|
/// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
|
|
/// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
|
|
///
|
|
/// \returns number of elements in vector if isomorphism exists, 0 otherwise.
|
|
unsigned canMapToVector(Type *T, const DataLayout &DL) const;
|
|
|
|
/// \returns True if the VectorizableTree is both tiny and not fully
|
|
/// vectorizable. We do not vectorize such trees.
|
|
bool isTreeTinyAndNotFullyVectorizable() const;
|
|
|
|
/// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
|
|
/// can be load combined in the backend. Load combining may not be allowed in
|
|
/// the IR optimizer, so we do not want to alter the pattern. For example,
|
|
/// partially transforming a scalar bswap() pattern into vector code is
|
|
/// effectively impossible for the backend to undo.
|
|
/// TODO: If load combining is allowed in the IR optimizer, this analysis
|
|
/// may not be necessary.
|
|
bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const;
|
|
|
|
OptimizationRemarkEmitter *getORE() { return ORE; }
|
|
|
|
/// This structure holds any data we need about the edges being traversed
|
|
/// during buildTree_rec(). We keep track of:
|
|
/// (i) the user TreeEntry index, and
|
|
/// (ii) the index of the edge.
|
|
struct EdgeInfo {
|
|
EdgeInfo() = default;
|
|
EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
|
|
: UserTE(UserTE), EdgeIdx(EdgeIdx) {}
|
|
/// The user TreeEntry.
|
|
TreeEntry *UserTE = nullptr;
|
|
/// The operand index of the use.
|
|
unsigned EdgeIdx = UINT_MAX;
|
|
#ifndef NDEBUG
|
|
friend inline raw_ostream &operator<<(raw_ostream &OS,
|
|
const BoUpSLP::EdgeInfo &EI) {
|
|
EI.dump(OS);
|
|
return OS;
|
|
}
|
|
/// Debug print.
|
|
void dump(raw_ostream &OS) const {
|
|
OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
|
|
<< " EdgeIdx:" << EdgeIdx << "}";
|
|
}
|
|
LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
|
|
#endif
|
|
};
|
|
|
|
/// A helper data structure to hold the operands of a vector of instructions.
|
|
/// This supports a fixed vector length for all operand vectors.
|
|
class VLOperands {
|
|
/// For each operand we need (i) the value, and (ii) the opcode that it
|
|
/// would be attached to if the expression was in a left-linearized form.
|
|
/// This is required to avoid illegal operand reordering.
|
|
/// For example:
|
|
/// \verbatim
|
|
/// 0 Op1
|
|
/// |/
|
|
/// Op1 Op2 Linearized + Op2
|
|
/// \ / ----------> |/
|
|
/// - -
|
|
///
|
|
/// Op1 - Op2 (0 + Op1) - Op2
|
|
/// \endverbatim
|
|
///
|
|
/// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
|
|
///
|
|
/// Another way to think of this is to track all the operations across the
|
|
/// path from the operand all the way to the root of the tree and to
|
|
/// calculate the operation that corresponds to this path. For example, the
|
|
/// path from Op2 to the root crosses the RHS of the '-', therefore the
|
|
/// corresponding operation is a '-' (which matches the one in the
|
|
/// linearized tree, as shown above).
|
|
///
|
|
/// For lack of a better term, we refer to this operation as Accumulated
|
|
/// Path Operation (APO).
|
|
struct OperandData {
|
|
OperandData() = default;
|
|
OperandData(Value *V, bool APO, bool IsUsed)
|
|
: V(V), APO(APO), IsUsed(IsUsed) {}
|
|
/// The operand value.
|
|
Value *V = nullptr;
|
|
/// TreeEntries only allow a single opcode, or an alternate sequence of
|
|
/// them (e.g, +, -). Therefore, we can safely use a boolean value for the
|
|
/// APO. It is set to 'true' if 'V' is attached to an inverse operation
|
|
/// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
|
|
/// (e.g., Add/Mul)
|
|
bool APO = false;
|
|
/// Helper data for the reordering function.
|
|
bool IsUsed = false;
|
|
};
|
|
|
|
/// During operand reordering, we are trying to select the operand at lane
|
|
/// that matches best with the operand at the neighboring lane. Our
|
|
/// selection is based on the type of value we are looking for. For example,
|
|
/// if the neighboring lane has a load, we need to look for a load that is
|
|
/// accessing a consecutive address. These strategies are summarized in the
|
|
/// 'ReorderingMode' enumerator.
|
|
enum class ReorderingMode {
|
|
Load, ///< Matching loads to consecutive memory addresses
|
|
Opcode, ///< Matching instructions based on opcode (same or alternate)
|
|
Constant, ///< Matching constants
|
|
Splat, ///< Matching the same instruction multiple times (broadcast)
|
|
Failed, ///< We failed to create a vectorizable group
|
|
};
|
|
|
|
using OperandDataVec = SmallVector<OperandData, 2>;
|
|
|
|
/// A vector of operand vectors.
|
|
SmallVector<OperandDataVec, 4> OpsVec;
|
|
|
|
const DataLayout &DL;
|
|
ScalarEvolution &SE;
|
|
const BoUpSLP &R;
|
|
|
|
/// \returns the operand data at \p OpIdx and \p Lane.
|
|
OperandData &getData(unsigned OpIdx, unsigned Lane) {
|
|
return OpsVec[OpIdx][Lane];
|
|
}
|
|
|
|
/// \returns the operand data at \p OpIdx and \p Lane. Const version.
|
|
const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
|
|
return OpsVec[OpIdx][Lane];
|
|
}
|
|
|
|
/// Clears the used flag for all entries.
|
|
void clearUsed() {
|
|
for (unsigned OpIdx = 0, NumOperands = getNumOperands();
|
|
OpIdx != NumOperands; ++OpIdx)
|
|
for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
|
|
++Lane)
|
|
OpsVec[OpIdx][Lane].IsUsed = false;
|
|
}
|
|
|
|
/// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
|
|
void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
|
|
std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
|
|
}
|
|
|
|
// The hard-coded scores listed here are not very important. When computing
|
|
// the scores of matching one sub-tree with another, we are basically
|
|
// counting the number of values that are matching. So even if all scores
|
|
// are set to 1, we would still get a decent matching result.
|
|
// However, sometimes we have to break ties. For example we may have to
|
|
// choose between matching loads vs matching opcodes. This is what these
|
|
// scores are helping us with: they provide the order of preference.
|
|
|
|
/// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
|
|
static const int ScoreConsecutiveLoads = 3;
|
|
/// ExtractElementInst from same vector and consecutive indexes.
|
|
static const int ScoreConsecutiveExtracts = 3;
|
|
/// Constants.
|
|
static const int ScoreConstants = 2;
|
|
/// Instructions with the same opcode.
|
|
static const int ScoreSameOpcode = 2;
|
|
/// Instructions with alt opcodes (e.g, add + sub).
|
|
static const int ScoreAltOpcodes = 1;
|
|
/// Identical instructions (a.k.a. splat or broadcast).
|
|
static const int ScoreSplat = 1;
|
|
/// Matching with an undef is preferable to failing.
|
|
static const int ScoreUndef = 1;
|
|
/// Score for failing to find a decent match.
|
|
static const int ScoreFail = 0;
|
|
/// User exteranl to the vectorized code.
|
|
static const int ExternalUseCost = 1;
|
|
/// The user is internal but in a different lane.
|
|
static const int UserInDiffLaneCost = ExternalUseCost;
|
|
|
|
/// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
|
|
static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
|
|
ScalarEvolution &SE) {
|
|
auto *LI1 = dyn_cast<LoadInst>(V1);
|
|
auto *LI2 = dyn_cast<LoadInst>(V2);
|
|
if (LI1 && LI2)
|
|
return isConsecutiveAccess(LI1, LI2, DL, SE)
|
|
? VLOperands::ScoreConsecutiveLoads
|
|
: VLOperands::ScoreFail;
|
|
|
|
auto *C1 = dyn_cast<Constant>(V1);
|
|
auto *C2 = dyn_cast<Constant>(V2);
|
|
if (C1 && C2)
|
|
return VLOperands::ScoreConstants;
|
|
|
|
// Extracts from consecutive indexes of the same vector better score as
|
|
// the extracts could be optimized away.
|
|
Value *EV;
|
|
ConstantInt *Ex1Idx, *Ex2Idx;
|
|
if (match(V1, m_ExtractElement(m_Value(EV), m_ConstantInt(Ex1Idx))) &&
|
|
match(V2, m_ExtractElement(m_Deferred(EV), m_ConstantInt(Ex2Idx))) &&
|
|
Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue())
|
|
return VLOperands::ScoreConsecutiveExtracts;
|
|
|
|
auto *I1 = dyn_cast<Instruction>(V1);
|
|
auto *I2 = dyn_cast<Instruction>(V2);
|
|
if (I1 && I2) {
|
|
if (I1 == I2)
|
|
return VLOperands::ScoreSplat;
|
|
InstructionsState S = getSameOpcode({I1, I2});
|
|
// Note: Only consider instructions with <= 2 operands to avoid
|
|
// complexity explosion.
|
|
if (S.getOpcode() && S.MainOp->getNumOperands() <= 2)
|
|
return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
|
|
: VLOperands::ScoreSameOpcode;
|
|
}
|
|
|
|
if (isa<UndefValue>(V2))
|
|
return VLOperands::ScoreUndef;
|
|
|
|
return VLOperands::ScoreFail;
|
|
}
|
|
|
|
/// Holds the values and their lane that are taking part in the look-ahead
|
|
/// score calculation. This is used in the external uses cost calculation.
|
|
SmallDenseMap<Value *, int> InLookAheadValues;
|
|
|
|
/// \Returns the additinal cost due to uses of \p LHS and \p RHS that are
|
|
/// either external to the vectorized code, or require shuffling.
|
|
int getExternalUsesCost(const std::pair<Value *, int> &LHS,
|
|
const std::pair<Value *, int> &RHS) {
|
|
int Cost = 0;
|
|
std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}};
|
|
for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) {
|
|
Value *V = Values[Idx].first;
|
|
// Calculate the absolute lane, using the minimum relative lane of LHS
|
|
// and RHS as base and Idx as the offset.
|
|
int Ln = std::min(LHS.second, RHS.second) + Idx;
|
|
assert(Ln >= 0 && "Bad lane calculation");
|
|
unsigned UsersBudget = LookAheadUsersBudget;
|
|
for (User *U : V->users()) {
|
|
if (const TreeEntry *UserTE = R.getTreeEntry(U)) {
|
|
// The user is in the VectorizableTree. Check if we need to insert.
|
|
auto It = llvm::find(UserTE->Scalars, U);
|
|
assert(It != UserTE->Scalars.end() && "U is in UserTE");
|
|
int UserLn = std::distance(UserTE->Scalars.begin(), It);
|
|
assert(UserLn >= 0 && "Bad lane");
|
|
if (UserLn != Ln)
|
|
Cost += UserInDiffLaneCost;
|
|
} else {
|
|
// Check if the user is in the look-ahead code.
|
|
auto It2 = InLookAheadValues.find(U);
|
|
if (It2 != InLookAheadValues.end()) {
|
|
// The user is in the look-ahead code. Check the lane.
|
|
if (It2->second != Ln)
|
|
Cost += UserInDiffLaneCost;
|
|
} else {
|
|
// The user is neither in SLP tree nor in the look-ahead code.
|
|
Cost += ExternalUseCost;
|
|
}
|
|
}
|
|
// Limit the number of visited uses to cap compilation time.
|
|
if (--UsersBudget == 0)
|
|
break;
|
|
}
|
|
}
|
|
return Cost;
|
|
}
|
|
|
|
/// Go through the operands of \p LHS and \p RHS recursively until \p
|
|
/// MaxLevel, and return the cummulative score. For example:
|
|
/// \verbatim
|
|
/// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1]
|
|
/// \ / \ / \ / \ /
|
|
/// + + + +
|
|
/// G1 G2 G3 G4
|
|
/// \endverbatim
|
|
/// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
|
|
/// each level recursively, accumulating the score. It starts from matching
|
|
/// the additions at level 0, then moves on to the loads (level 1). The
|
|
/// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
|
|
/// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
|
|
/// {A[0],C[0]} has a score of VLOperands::ScoreFail.
|
|
/// Please note that the order of the operands does not matter, as we
|
|
/// evaluate the score of all profitable combinations of operands. In
|
|
/// other words the score of G1 and G4 is the same as G1 and G2. This
|
|
/// heuristic is based on ideas described in:
|
|
/// Look-ahead SLP: Auto-vectorization in the presence of commutative
|
|
/// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
|
|
/// Luís F. W. Góes
|
|
int getScoreAtLevelRec(const std::pair<Value *, int> &LHS,
|
|
const std::pair<Value *, int> &RHS, int CurrLevel,
|
|
int MaxLevel) {
|
|
|
|
Value *V1 = LHS.first;
|
|
Value *V2 = RHS.first;
|
|
// Get the shallow score of V1 and V2.
|
|
int ShallowScoreAtThisLevel =
|
|
std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) -
|
|
getExternalUsesCost(LHS, RHS));
|
|
int Lane1 = LHS.second;
|
|
int Lane2 = RHS.second;
|
|
|
|
// If reached MaxLevel,
|
|
// or if V1 and V2 are not instructions,
|
|
// or if they are SPLAT,
|
|
// or if they are not consecutive, early return the current cost.
|
|
auto *I1 = dyn_cast<Instruction>(V1);
|
|
auto *I2 = dyn_cast<Instruction>(V2);
|
|
if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
|
|
ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
|
|
(isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel))
|
|
return ShallowScoreAtThisLevel;
|
|
assert(I1 && I2 && "Should have early exited.");
|
|
|
|
// Keep track of in-tree values for determining the external-use cost.
|
|
InLookAheadValues[V1] = Lane1;
|
|
InLookAheadValues[V2] = Lane2;
|
|
|
|
// Contains the I2 operand indexes that got matched with I1 operands.
|
|
SmallSet<unsigned, 4> Op2Used;
|
|
|
|
// Recursion towards the operands of I1 and I2. We are trying all possbile
|
|
// operand pairs, and keeping track of the best score.
|
|
for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
|
|
OpIdx1 != NumOperands1; ++OpIdx1) {
|
|
// Try to pair op1I with the best operand of I2.
|
|
int MaxTmpScore = 0;
|
|
unsigned MaxOpIdx2 = 0;
|
|
bool FoundBest = false;
|
|
// If I2 is commutative try all combinations.
|
|
unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
|
|
unsigned ToIdx = isCommutative(I2)
|
|
? I2->getNumOperands()
|
|
: std::min(I2->getNumOperands(), OpIdx1 + 1);
|
|
assert(FromIdx <= ToIdx && "Bad index");
|
|
for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
|
|
// Skip operands already paired with OpIdx1.
|
|
if (Op2Used.count(OpIdx2))
|
|
continue;
|
|
// Recursively calculate the cost at each level
|
|
int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1},
|
|
{I2->getOperand(OpIdx2), Lane2},
|
|
CurrLevel + 1, MaxLevel);
|
|
// Look for the best score.
|
|
if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
|
|
MaxTmpScore = TmpScore;
|
|
MaxOpIdx2 = OpIdx2;
|
|
FoundBest = true;
|
|
}
|
|
}
|
|
if (FoundBest) {
|
|
// Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
|
|
Op2Used.insert(MaxOpIdx2);
|
|
ShallowScoreAtThisLevel += MaxTmpScore;
|
|
}
|
|
}
|
|
return ShallowScoreAtThisLevel;
|
|
}
|
|
|
|
/// \Returns the look-ahead score, which tells us how much the sub-trees
|
|
/// rooted at \p LHS and \p RHS match, the more they match the higher the
|
|
/// score. This helps break ties in an informed way when we cannot decide on
|
|
/// the order of the operands by just considering the immediate
|
|
/// predecessors.
|
|
int getLookAheadScore(const std::pair<Value *, int> &LHS,
|
|
const std::pair<Value *, int> &RHS) {
|
|
InLookAheadValues.clear();
|
|
return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth);
|
|
}
|
|
|
|
// Search all operands in Ops[*][Lane] for the one that matches best
|
|
// Ops[OpIdx][LastLane] and return its opreand index.
|
|
// If no good match can be found, return None.
|
|
Optional<unsigned>
|
|
getBestOperand(unsigned OpIdx, int Lane, int LastLane,
|
|
ArrayRef<ReorderingMode> ReorderingModes) {
|
|
unsigned NumOperands = getNumOperands();
|
|
|
|
// The operand of the previous lane at OpIdx.
|
|
Value *OpLastLane = getData(OpIdx, LastLane).V;
|
|
|
|
// Our strategy mode for OpIdx.
|
|
ReorderingMode RMode = ReorderingModes[OpIdx];
|
|
|
|
// The linearized opcode of the operand at OpIdx, Lane.
|
|
bool OpIdxAPO = getData(OpIdx, Lane).APO;
|
|
|
|
// The best operand index and its score.
|
|
// Sometimes we have more than one option (e.g., Opcode and Undefs), so we
|
|
// are using the score to differentiate between the two.
|
|
struct BestOpData {
|
|
Optional<unsigned> Idx = None;
|
|
unsigned Score = 0;
|
|
} BestOp;
|
|
|
|
// Iterate through all unused operands and look for the best.
|
|
for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
|
|
// Get the operand at Idx and Lane.
|
|
OperandData &OpData = getData(Idx, Lane);
|
|
Value *Op = OpData.V;
|
|
bool OpAPO = OpData.APO;
|
|
|
|
// Skip already selected operands.
|
|
if (OpData.IsUsed)
|
|
continue;
|
|
|
|
// Skip if we are trying to move the operand to a position with a
|
|
// different opcode in the linearized tree form. This would break the
|
|
// semantics.
|
|
if (OpAPO != OpIdxAPO)
|
|
continue;
|
|
|
|
// Look for an operand that matches the current mode.
|
|
switch (RMode) {
|
|
case ReorderingMode::Load:
|
|
case ReorderingMode::Constant:
|
|
case ReorderingMode::Opcode: {
|
|
bool LeftToRight = Lane > LastLane;
|
|
Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
|
|
Value *OpRight = (LeftToRight) ? Op : OpLastLane;
|
|
unsigned Score =
|
|
getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane});
|
|
if (Score > BestOp.Score) {
|
|
BestOp.Idx = Idx;
|
|
BestOp.Score = Score;
|
|
}
|
|
break;
|
|
}
|
|
case ReorderingMode::Splat:
|
|
if (Op == OpLastLane)
|
|
BestOp.Idx = Idx;
|
|
break;
|
|
case ReorderingMode::Failed:
|
|
return None;
|
|
}
|
|
}
|
|
|
|
if (BestOp.Idx) {
|
|
getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
|
|
return BestOp.Idx;
|
|
}
|
|
// If we could not find a good match return None.
|
|
return None;
|
|
}
|
|
|
|
/// Helper for reorderOperandVecs. \Returns the lane that we should start
|
|
/// reordering from. This is the one which has the least number of operands
|
|
/// that can freely move about.
|
|
unsigned getBestLaneToStartReordering() const {
|
|
unsigned BestLane = 0;
|
|
unsigned Min = UINT_MAX;
|
|
for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
|
|
++Lane) {
|
|
unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
|
|
if (NumFreeOps < Min) {
|
|
Min = NumFreeOps;
|
|
BestLane = Lane;
|
|
}
|
|
}
|
|
return BestLane;
|
|
}
|
|
|
|
/// \Returns the maximum number of operands that are allowed to be reordered
|
|
/// for \p Lane. This is used as a heuristic for selecting the first lane to
|
|
/// start operand reordering.
|
|
unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
|
|
unsigned CntTrue = 0;
|
|
unsigned NumOperands = getNumOperands();
|
|
// Operands with the same APO can be reordered. We therefore need to count
|
|
// how many of them we have for each APO, like this: Cnt[APO] = x.
|
|
// Since we only have two APOs, namely true and false, we can avoid using
|
|
// a map. Instead we can simply count the number of operands that
|
|
// correspond to one of them (in this case the 'true' APO), and calculate
|
|
// the other by subtracting it from the total number of operands.
|
|
for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
|
|
if (getData(OpIdx, Lane).APO)
|
|
++CntTrue;
|
|
unsigned CntFalse = NumOperands - CntTrue;
|
|
return std::max(CntTrue, CntFalse);
|
|
}
|
|
|
|
/// Go through the instructions in VL and append their operands.
|
|
void appendOperandsOfVL(ArrayRef<Value *> VL) {
|
|
assert(!VL.empty() && "Bad VL");
|
|
assert((empty() || VL.size() == getNumLanes()) &&
|
|
"Expected same number of lanes");
|
|
assert(isa<Instruction>(VL[0]) && "Expected instruction");
|
|
unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
|
|
OpsVec.resize(NumOperands);
|
|
unsigned NumLanes = VL.size();
|
|
for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
|
|
OpsVec[OpIdx].resize(NumLanes);
|
|
for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
|
|
assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
|
|
// Our tree has just 3 nodes: the root and two operands.
|
|
// It is therefore trivial to get the APO. We only need to check the
|
|
// opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
|
|
// RHS operand. The LHS operand of both add and sub is never attached
|
|
// to an inversese operation in the linearized form, therefore its APO
|
|
// is false. The RHS is true only if VL[Lane] is an inverse operation.
|
|
|
|
// Since operand reordering is performed on groups of commutative
|
|
// operations or alternating sequences (e.g., +, -), we can safely
|
|
// tell the inverse operations by checking commutativity.
|
|
bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
|
|
bool APO = (OpIdx == 0) ? false : IsInverseOperation;
|
|
OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
|
|
APO, false};
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \returns the number of operands.
|
|
unsigned getNumOperands() const { return OpsVec.size(); }
|
|
|
|
/// \returns the number of lanes.
|
|
unsigned getNumLanes() const { return OpsVec[0].size(); }
|
|
|
|
/// \returns the operand value at \p OpIdx and \p Lane.
|
|
Value *getValue(unsigned OpIdx, unsigned Lane) const {
|
|
return getData(OpIdx, Lane).V;
|
|
}
|
|
|
|
/// \returns true if the data structure is empty.
|
|
bool empty() const { return OpsVec.empty(); }
|
|
|
|
/// Clears the data.
|
|
void clear() { OpsVec.clear(); }
|
|
|
|
/// \Returns true if there are enough operands identical to \p Op to fill
|
|
/// the whole vector.
|
|
/// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
|
|
bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
|
|
bool OpAPO = getData(OpIdx, Lane).APO;
|
|
for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
|
|
if (Ln == Lane)
|
|
continue;
|
|
// This is set to true if we found a candidate for broadcast at Lane.
|
|
bool FoundCandidate = false;
|
|
for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
|
|
OperandData &Data = getData(OpI, Ln);
|
|
if (Data.APO != OpAPO || Data.IsUsed)
|
|
continue;
|
|
if (Data.V == Op) {
|
|
FoundCandidate = true;
|
|
Data.IsUsed = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!FoundCandidate)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
public:
|
|
/// Initialize with all the operands of the instruction vector \p RootVL.
|
|
VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
|
|
ScalarEvolution &SE, const BoUpSLP &R)
|
|
: DL(DL), SE(SE), R(R) {
|
|
// Append all the operands of RootVL.
|
|
appendOperandsOfVL(RootVL);
|
|
}
|
|
|
|
/// \Returns a value vector with the operands across all lanes for the
|
|
/// opearnd at \p OpIdx.
|
|
ValueList getVL(unsigned OpIdx) const {
|
|
ValueList OpVL(OpsVec[OpIdx].size());
|
|
assert(OpsVec[OpIdx].size() == getNumLanes() &&
|
|
"Expected same num of lanes across all operands");
|
|
for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
|
|
OpVL[Lane] = OpsVec[OpIdx][Lane].V;
|
|
return OpVL;
|
|
}
|
|
|
|
// Performs operand reordering for 2 or more operands.
|
|
// The original operands are in OrigOps[OpIdx][Lane].
|
|
// The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
|
|
void reorder() {
|
|
unsigned NumOperands = getNumOperands();
|
|
unsigned NumLanes = getNumLanes();
|
|
// Each operand has its own mode. We are using this mode to help us select
|
|
// the instructions for each lane, so that they match best with the ones
|
|
// we have selected so far.
|
|
SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
|
|
|
|
// This is a greedy single-pass algorithm. We are going over each lane
|
|
// once and deciding on the best order right away with no back-tracking.
|
|
// However, in order to increase its effectiveness, we start with the lane
|
|
// that has operands that can move the least. For example, given the
|
|
// following lanes:
|
|
// Lane 0 : A[0] = B[0] + C[0] // Visited 3rd
|
|
// Lane 1 : A[1] = C[1] - B[1] // Visited 1st
|
|
// Lane 2 : A[2] = B[2] + C[2] // Visited 2nd
|
|
// Lane 3 : A[3] = C[3] - B[3] // Visited 4th
|
|
// we will start at Lane 1, since the operands of the subtraction cannot
|
|
// be reordered. Then we will visit the rest of the lanes in a circular
|
|
// fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
|
|
|
|
// Find the first lane that we will start our search from.
|
|
unsigned FirstLane = getBestLaneToStartReordering();
|
|
|
|
// Initialize the modes.
|
|
for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
|
|
Value *OpLane0 = getValue(OpIdx, FirstLane);
|
|
// Keep track if we have instructions with all the same opcode on one
|
|
// side.
|
|
if (isa<LoadInst>(OpLane0))
|
|
ReorderingModes[OpIdx] = ReorderingMode::Load;
|
|
else if (isa<Instruction>(OpLane0)) {
|
|
// Check if OpLane0 should be broadcast.
|
|
if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
|
|
ReorderingModes[OpIdx] = ReorderingMode::Splat;
|
|
else
|
|
ReorderingModes[OpIdx] = ReorderingMode::Opcode;
|
|
}
|
|
else if (isa<Constant>(OpLane0))
|
|
ReorderingModes[OpIdx] = ReorderingMode::Constant;
|
|
else if (isa<Argument>(OpLane0))
|
|
// Our best hope is a Splat. It may save some cost in some cases.
|
|
ReorderingModes[OpIdx] = ReorderingMode::Splat;
|
|
else
|
|
// NOTE: This should be unreachable.
|
|
ReorderingModes[OpIdx] = ReorderingMode::Failed;
|
|
}
|
|
|
|
// If the initial strategy fails for any of the operand indexes, then we
|
|
// perform reordering again in a second pass. This helps avoid assigning
|
|
// high priority to the failed strategy, and should improve reordering for
|
|
// the non-failed operand indexes.
|
|
for (int Pass = 0; Pass != 2; ++Pass) {
|
|
// Skip the second pass if the first pass did not fail.
|
|
bool StrategyFailed = false;
|
|
// Mark all operand data as free to use.
|
|
clearUsed();
|
|
// We keep the original operand order for the FirstLane, so reorder the
|
|
// rest of the lanes. We are visiting the nodes in a circular fashion,
|
|
// using FirstLane as the center point and increasing the radius
|
|
// distance.
|
|
for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
|
|
// Visit the lane on the right and then the lane on the left.
|
|
for (int Direction : {+1, -1}) {
|
|
int Lane = FirstLane + Direction * Distance;
|
|
if (Lane < 0 || Lane >= (int)NumLanes)
|
|
continue;
|
|
int LastLane = Lane - Direction;
|
|
assert(LastLane >= 0 && LastLane < (int)NumLanes &&
|
|
"Out of bounds");
|
|
// Look for a good match for each operand.
|
|
for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
|
|
// Search for the operand that matches SortedOps[OpIdx][Lane-1].
|
|
Optional<unsigned> BestIdx =
|
|
getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
|
|
// By not selecting a value, we allow the operands that follow to
|
|
// select a better matching value. We will get a non-null value in
|
|
// the next run of getBestOperand().
|
|
if (BestIdx) {
|
|
// Swap the current operand with the one returned by
|
|
// getBestOperand().
|
|
swap(OpIdx, BestIdx.getValue(), Lane);
|
|
} else {
|
|
// We failed to find a best operand, set mode to 'Failed'.
|
|
ReorderingModes[OpIdx] = ReorderingMode::Failed;
|
|
// Enable the second pass.
|
|
StrategyFailed = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Skip second pass if the strategy did not fail.
|
|
if (!StrategyFailed)
|
|
break;
|
|
}
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
|
|
switch (RMode) {
|
|
case ReorderingMode::Load:
|
|
return "Load";
|
|
case ReorderingMode::Opcode:
|
|
return "Opcode";
|
|
case ReorderingMode::Constant:
|
|
return "Constant";
|
|
case ReorderingMode::Splat:
|
|
return "Splat";
|
|
case ReorderingMode::Failed:
|
|
return "Failed";
|
|
}
|
|
llvm_unreachable("Unimplemented Reordering Type");
|
|
}
|
|
|
|
LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
|
|
raw_ostream &OS) {
|
|
return OS << getModeStr(RMode);
|
|
}
|
|
|
|
/// Debug print.
|
|
LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
|
|
printMode(RMode, dbgs());
|
|
}
|
|
|
|
friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
|
|
return printMode(RMode, OS);
|
|
}
|
|
|
|
LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
|
|
const unsigned Indent = 2;
|
|
unsigned Cnt = 0;
|
|
for (const OperandDataVec &OpDataVec : OpsVec) {
|
|
OS << "Operand " << Cnt++ << "\n";
|
|
for (const OperandData &OpData : OpDataVec) {
|
|
OS.indent(Indent) << "{";
|
|
if (Value *V = OpData.V)
|
|
OS << *V;
|
|
else
|
|
OS << "null";
|
|
OS << ", APO:" << OpData.APO << "}\n";
|
|
}
|
|
OS << "\n";
|
|
}
|
|
return OS;
|
|
}
|
|
|
|
/// Debug print.
|
|
LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
|
|
#endif
|
|
};
|
|
|
|
/// Checks if the instruction is marked for deletion.
|
|
bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
|
|
|
|
/// Marks values operands for later deletion by replacing them with Undefs.
|
|
void eraseInstructions(ArrayRef<Value *> AV);
|
|
|
|
~BoUpSLP();
|
|
|
|
private:
|
|
/// Checks if all users of \p I are the part of the vectorization tree.
|
|
bool areAllUsersVectorized(Instruction *I) const;
|
|
|
|
/// \returns the cost of the vectorizable entry.
|
|
int getEntryCost(TreeEntry *E);
|
|
|
|
/// This is the recursive part of buildTree.
|
|
void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
|
|
const EdgeInfo &EI);
|
|
|
|
/// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
|
|
/// be vectorized to use the original vector (or aggregate "bitcast" to a
|
|
/// vector) and sets \p CurrentOrder to the identity permutation; otherwise
|
|
/// returns false, setting \p CurrentOrder to either an empty vector or a
|
|
/// non-identity permutation that allows to reuse extract instructions.
|
|
bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
|
|
SmallVectorImpl<unsigned> &CurrentOrder) const;
|
|
|
|
/// Vectorize a single entry in the tree.
|
|
Value *vectorizeTree(TreeEntry *E);
|
|
|
|
/// Vectorize a single entry in the tree, starting in \p VL.
|
|
Value *vectorizeTree(ArrayRef<Value *> VL);
|
|
|
|
/// \returns the scalarization cost for this type. Scalarization in this
|
|
/// context means the creation of vectors from a group of scalars.
|
|
int getGatherCost(VectorType *Ty,
|
|
const DenseSet<unsigned> &ShuffledIndices) const;
|
|
|
|
/// \returns the scalarization cost for this list of values. Assuming that
|
|
/// this subtree gets vectorized, we may need to extract the values from the
|
|
/// roots. This method calculates the cost of extracting the values.
|
|
int getGatherCost(ArrayRef<Value *> VL) const;
|
|
|
|
/// Set the Builder insert point to one after the last instruction in
|
|
/// the bundle
|
|
void setInsertPointAfterBundle(TreeEntry *E);
|
|
|
|
/// \returns a vector from a collection of scalars in \p VL.
|
|
Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
|
|
|
|
/// \returns whether the VectorizableTree is fully vectorizable and will
|
|
/// be beneficial even the tree height is tiny.
|
|
bool isFullyVectorizableTinyTree() const;
|
|
|
|
/// Reorder commutative or alt operands to get better probability of
|
|
/// generating vectorized code.
|
|
static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
|
|
SmallVectorImpl<Value *> &Left,
|
|
SmallVectorImpl<Value *> &Right,
|
|
const DataLayout &DL,
|
|
ScalarEvolution &SE,
|
|
const BoUpSLP &R);
|
|
struct TreeEntry {
|
|
using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
|
|
TreeEntry(VecTreeTy &Container) : Container(Container) {}
|
|
|
|
/// \returns true if the scalars in VL are equal to this entry.
|
|
bool isSame(ArrayRef<Value *> VL) const {
|
|
if (VL.size() == Scalars.size())
|
|
return std::equal(VL.begin(), VL.end(), Scalars.begin());
|
|
return VL.size() == ReuseShuffleIndices.size() &&
|
|
std::equal(
|
|
VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
|
|
[this](Value *V, int Idx) { return V == Scalars[Idx]; });
|
|
}
|
|
|
|
/// A vector of scalars.
|
|
ValueList Scalars;
|
|
|
|
/// The Scalars are vectorized into this value. It is initialized to Null.
|
|
Value *VectorizedValue = nullptr;
|
|
|
|
/// Do we need to gather this sequence ?
|
|
enum EntryState { Vectorize, NeedToGather };
|
|
EntryState State;
|
|
|
|
/// Does this sequence require some shuffling?
|
|
SmallVector<int, 4> ReuseShuffleIndices;
|
|
|
|
/// Does this entry require reordering?
|
|
ArrayRef<unsigned> ReorderIndices;
|
|
|
|
/// Points back to the VectorizableTree.
|
|
///
|
|
/// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has
|
|
/// to be a pointer and needs to be able to initialize the child iterator.
|
|
/// Thus we need a reference back to the container to translate the indices
|
|
/// to entries.
|
|
VecTreeTy &Container;
|
|
|
|
/// The TreeEntry index containing the user of this entry. We can actually
|
|
/// have multiple users so the data structure is not truly a tree.
|
|
SmallVector<EdgeInfo, 1> UserTreeIndices;
|
|
|
|
/// The index of this treeEntry in VectorizableTree.
|
|
int Idx = -1;
|
|
|
|
private:
|
|
/// The operands of each instruction in each lane Operands[op_index][lane].
|
|
/// Note: This helps avoid the replication of the code that performs the
|
|
/// reordering of operands during buildTree_rec() and vectorizeTree().
|
|
SmallVector<ValueList, 2> Operands;
|
|
|
|
/// The main/alternate instruction.
|
|
Instruction *MainOp = nullptr;
|
|
Instruction *AltOp = nullptr;
|
|
|
|
public:
|
|
/// Set this bundle's \p OpIdx'th operand to \p OpVL.
|
|
void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
|
|
if (Operands.size() < OpIdx + 1)
|
|
Operands.resize(OpIdx + 1);
|
|
assert(Operands[OpIdx].size() == 0 && "Already resized?");
|
|
Operands[OpIdx].resize(Scalars.size());
|
|
for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
|
|
Operands[OpIdx][Lane] = OpVL[Lane];
|
|
}
|
|
|
|
/// Set the operands of this bundle in their original order.
|
|
void setOperandsInOrder() {
|
|
assert(Operands.empty() && "Already initialized?");
|
|
auto *I0 = cast<Instruction>(Scalars[0]);
|
|
Operands.resize(I0->getNumOperands());
|
|
unsigned NumLanes = Scalars.size();
|
|
for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
|
|
OpIdx != NumOperands; ++OpIdx) {
|
|
Operands[OpIdx].resize(NumLanes);
|
|
for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
|
|
auto *I = cast<Instruction>(Scalars[Lane]);
|
|
assert(I->getNumOperands() == NumOperands &&
|
|
"Expected same number of operands");
|
|
Operands[OpIdx][Lane] = I->getOperand(OpIdx);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \returns the \p OpIdx operand of this TreeEntry.
|
|
ValueList &getOperand(unsigned OpIdx) {
|
|
assert(OpIdx < Operands.size() && "Off bounds");
|
|
return Operands[OpIdx];
|
|
}
|
|
|
|
/// \returns the number of operands.
|
|
unsigned getNumOperands() const { return Operands.size(); }
|
|
|
|
/// \return the single \p OpIdx operand.
|
|
Value *getSingleOperand(unsigned OpIdx) const {
|
|
assert(OpIdx < Operands.size() && "Off bounds");
|
|
assert(!Operands[OpIdx].empty() && "No operand available");
|
|
return Operands[OpIdx][0];
|
|
}
|
|
|
|
/// Some of the instructions in the list have alternate opcodes.
|
|
bool isAltShuffle() const {
|
|
return getOpcode() != getAltOpcode();
|
|
}
|
|
|
|
bool isOpcodeOrAlt(Instruction *I) const {
|
|
unsigned CheckedOpcode = I->getOpcode();
|
|
return (getOpcode() == CheckedOpcode ||
|
|
getAltOpcode() == CheckedOpcode);
|
|
}
|
|
|
|
/// Chooses the correct key for scheduling data. If \p Op has the same (or
|
|
/// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
|
|
/// \p OpValue.
|
|
Value *isOneOf(Value *Op) const {
|
|
auto *I = dyn_cast<Instruction>(Op);
|
|
if (I && isOpcodeOrAlt(I))
|
|
return Op;
|
|
return MainOp;
|
|
}
|
|
|
|
void setOperations(const InstructionsState &S) {
|
|
MainOp = S.MainOp;
|
|
AltOp = S.AltOp;
|
|
}
|
|
|
|
Instruction *getMainOp() const {
|
|
return MainOp;
|
|
}
|
|
|
|
Instruction *getAltOp() const {
|
|
return AltOp;
|
|
}
|
|
|
|
/// The main/alternate opcodes for the list of instructions.
|
|
unsigned getOpcode() const {
|
|
return MainOp ? MainOp->getOpcode() : 0;
|
|
}
|
|
|
|
unsigned getAltOpcode() const {
|
|
return AltOp ? AltOp->getOpcode() : 0;
|
|
}
|
|
|
|
/// Update operations state of this entry if reorder occurred.
|
|
bool updateStateIfReorder() {
|
|
if (ReorderIndices.empty())
|
|
return false;
|
|
InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
|
|
setOperations(S);
|
|
return true;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/// Debug printer.
|
|
LLVM_DUMP_METHOD void dump() const {
|
|
dbgs() << Idx << ".\n";
|
|
for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
|
|
dbgs() << "Operand " << OpI << ":\n";
|
|
for (const Value *V : Operands[OpI])
|
|
dbgs().indent(2) << *V << "\n";
|
|
}
|
|
dbgs() << "Scalars: \n";
|
|
for (Value *V : Scalars)
|
|
dbgs().indent(2) << *V << "\n";
|
|
dbgs() << "State: ";
|
|
switch (State) {
|
|
case Vectorize:
|
|
dbgs() << "Vectorize\n";
|
|
break;
|
|
case NeedToGather:
|
|
dbgs() << "NeedToGather\n";
|
|
break;
|
|
}
|
|
dbgs() << "MainOp: ";
|
|
if (MainOp)
|
|
dbgs() << *MainOp << "\n";
|
|
else
|
|
dbgs() << "NULL\n";
|
|
dbgs() << "AltOp: ";
|
|
if (AltOp)
|
|
dbgs() << *AltOp << "\n";
|
|
else
|
|
dbgs() << "NULL\n";
|
|
dbgs() << "VectorizedValue: ";
|
|
if (VectorizedValue)
|
|
dbgs() << *VectorizedValue << "\n";
|
|
else
|
|
dbgs() << "NULL\n";
|
|
dbgs() << "ReuseShuffleIndices: ";
|
|
if (ReuseShuffleIndices.empty())
|
|
dbgs() << "Emtpy";
|
|
else
|
|
for (unsigned ReuseIdx : ReuseShuffleIndices)
|
|
dbgs() << ReuseIdx << ", ";
|
|
dbgs() << "\n";
|
|
dbgs() << "ReorderIndices: ";
|
|
for (unsigned ReorderIdx : ReorderIndices)
|
|
dbgs() << ReorderIdx << ", ";
|
|
dbgs() << "\n";
|
|
dbgs() << "UserTreeIndices: ";
|
|
for (const auto &EInfo : UserTreeIndices)
|
|
dbgs() << EInfo << ", ";
|
|
dbgs() << "\n";
|
|
}
|
|
#endif
|
|
};
|
|
|
|
/// Create a new VectorizableTree entry.
|
|
TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
|
|
const InstructionsState &S,
|
|
const EdgeInfo &UserTreeIdx,
|
|
ArrayRef<unsigned> ReuseShuffleIndices = None,
|
|
ArrayRef<unsigned> ReorderIndices = None) {
|
|
bool Vectorized = (bool)Bundle;
|
|
VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
|
|
TreeEntry *Last = VectorizableTree.back().get();
|
|
Last->Idx = VectorizableTree.size() - 1;
|
|
Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
|
|
Last->State = Vectorized ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
|
|
Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
|
|
ReuseShuffleIndices.end());
|
|
Last->ReorderIndices = ReorderIndices;
|
|
Last->setOperations(S);
|
|
if (Vectorized) {
|
|
for (int i = 0, e = VL.size(); i != e; ++i) {
|
|
assert(!getTreeEntry(VL[i]) && "Scalar already in tree!");
|
|
ScalarToTreeEntry[VL[i]] = Last;
|
|
}
|
|
// Update the scheduler bundle to point to this TreeEntry.
|
|
unsigned Lane = 0;
|
|
for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
|
|
BundleMember = BundleMember->NextInBundle) {
|
|
BundleMember->TE = Last;
|
|
BundleMember->Lane = Lane;
|
|
++Lane;
|
|
}
|
|
assert((!Bundle.getValue() || Lane == VL.size()) &&
|
|
"Bundle and VL out of sync");
|
|
} else {
|
|
MustGather.insert(VL.begin(), VL.end());
|
|
}
|
|
|
|
if (UserTreeIdx.UserTE)
|
|
Last->UserTreeIndices.push_back(UserTreeIdx);
|
|
|
|
return Last;
|
|
}
|
|
|
|
/// -- Vectorization State --
|
|
/// Holds all of the tree entries.
|
|
TreeEntry::VecTreeTy VectorizableTree;
|
|
|
|
#ifndef NDEBUG
|
|
/// Debug printer.
|
|
LLVM_DUMP_METHOD void dumpVectorizableTree() const {
|
|
for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
|
|
VectorizableTree[Id]->dump();
|
|
dbgs() << "\n";
|
|
}
|
|
}
|
|
#endif
|
|
|
|
TreeEntry *getTreeEntry(Value *V) {
|
|
auto I = ScalarToTreeEntry.find(V);
|
|
if (I != ScalarToTreeEntry.end())
|
|
return I->second;
|
|
return nullptr;
|
|
}
|
|
|
|
const TreeEntry *getTreeEntry(Value *V) const {
|
|
auto I = ScalarToTreeEntry.find(V);
|
|
if (I != ScalarToTreeEntry.end())
|
|
return I->second;
|
|
return nullptr;
|
|
}
|
|
|
|
/// Maps a specific scalar to its tree entry.
|
|
SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
|
|
|
|
/// A list of scalars that we found that we need to keep as scalars.
|
|
ValueSet MustGather;
|
|
|
|
/// This POD struct describes one external user in the vectorized tree.
|
|
struct ExternalUser {
|
|
ExternalUser(Value *S, llvm::User *U, int L)
|
|
: Scalar(S), User(U), Lane(L) {}
|
|
|
|
// Which scalar in our function.
|
|
Value *Scalar;
|
|
|
|
// Which user that uses the scalar.
|
|
llvm::User *User;
|
|
|
|
// Which lane does the scalar belong to.
|
|
int Lane;
|
|
};
|
|
using UserList = SmallVector<ExternalUser, 16>;
|
|
|
|
/// Checks if two instructions may access the same memory.
|
|
///
|
|
/// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
|
|
/// is invariant in the calling loop.
|
|
bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
|
|
Instruction *Inst2) {
|
|
// First check if the result is already in the cache.
|
|
AliasCacheKey key = std::make_pair(Inst1, Inst2);
|
|
Optional<bool> &result = AliasCache[key];
|
|
if (result.hasValue()) {
|
|
return result.getValue();
|
|
}
|
|
MemoryLocation Loc2 = getLocation(Inst2, AA);
|
|
bool aliased = true;
|
|
if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
|
|
// Do the alias check.
|
|
aliased = AA->alias(Loc1, Loc2);
|
|
}
|
|
// Store the result in the cache.
|
|
result = aliased;
|
|
return aliased;
|
|
}
|
|
|
|
using AliasCacheKey = std::pair<Instruction *, Instruction *>;
|
|
|
|
/// Cache for alias results.
|
|
/// TODO: consider moving this to the AliasAnalysis itself.
|
|
DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
|
|
|
|
/// Removes an instruction from its block and eventually deletes it.
|
|
/// It's like Instruction::eraseFromParent() except that the actual deletion
|
|
/// is delayed until BoUpSLP is destructed.
|
|
/// This is required to ensure that there are no incorrect collisions in the
|
|
/// AliasCache, which can happen if a new instruction is allocated at the
|
|
/// same address as a previously deleted instruction.
|
|
void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
|
|
auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
|
|
It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
|
|
}
|
|
|
|
/// Temporary store for deleted instructions. Instructions will be deleted
|
|
/// eventually when the BoUpSLP is destructed.
|
|
DenseMap<Instruction *, bool> DeletedInstructions;
|
|
|
|
/// A list of values that need to extracted out of the tree.
|
|
/// This list holds pairs of (Internal Scalar : External User). External User
|
|
/// can be nullptr, it means that this Internal Scalar will be used later,
|
|
/// after vectorization.
|
|
UserList ExternalUses;
|
|
|
|
/// Values used only by @llvm.assume calls.
|
|
SmallPtrSet<const Value *, 32> EphValues;
|
|
|
|
/// Holds all of the instructions that we gathered.
|
|
SetVector<Instruction *> GatherSeq;
|
|
|
|
/// A list of blocks that we are going to CSE.
|
|
SetVector<BasicBlock *> CSEBlocks;
|
|
|
|
/// Contains all scheduling relevant data for an instruction.
|
|
/// A ScheduleData either represents a single instruction or a member of an
|
|
/// instruction bundle (= a group of instructions which is combined into a
|
|
/// vector instruction).
|
|
struct ScheduleData {
|
|
// The initial value for the dependency counters. It means that the
|
|
// dependencies are not calculated yet.
|
|
enum { InvalidDeps = -1 };
|
|
|
|
ScheduleData() = default;
|
|
|
|
void init(int BlockSchedulingRegionID, Value *OpVal) {
|
|
FirstInBundle = this;
|
|
NextInBundle = nullptr;
|
|
NextLoadStore = nullptr;
|
|
IsScheduled = false;
|
|
SchedulingRegionID = BlockSchedulingRegionID;
|
|
UnscheduledDepsInBundle = UnscheduledDeps;
|
|
clearDependencies();
|
|
OpValue = OpVal;
|
|
TE = nullptr;
|
|
Lane = -1;
|
|
}
|
|
|
|
/// Returns true if the dependency information has been calculated.
|
|
bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
|
|
|
|
/// Returns true for single instructions and for bundle representatives
|
|
/// (= the head of a bundle).
|
|
bool isSchedulingEntity() const { return FirstInBundle == this; }
|
|
|
|
/// Returns true if it represents an instruction bundle and not only a
|
|
/// single instruction.
|
|
bool isPartOfBundle() const {
|
|
return NextInBundle != nullptr || FirstInBundle != this;
|
|
}
|
|
|
|
/// Returns true if it is ready for scheduling, i.e. it has no more
|
|
/// unscheduled depending instructions/bundles.
|
|
bool isReady() const {
|
|
assert(isSchedulingEntity() &&
|
|
"can't consider non-scheduling entity for ready list");
|
|
return UnscheduledDepsInBundle == 0 && !IsScheduled;
|
|
}
|
|
|
|
/// Modifies the number of unscheduled dependencies, also updating it for
|
|
/// the whole bundle.
|
|
int incrementUnscheduledDeps(int Incr) {
|
|
UnscheduledDeps += Incr;
|
|
return FirstInBundle->UnscheduledDepsInBundle += Incr;
|
|
}
|
|
|
|
/// Sets the number of unscheduled dependencies to the number of
|
|
/// dependencies.
|
|
void resetUnscheduledDeps() {
|
|
incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
|
|
}
|
|
|
|
/// Clears all dependency information.
|
|
void clearDependencies() {
|
|
Dependencies = InvalidDeps;
|
|
resetUnscheduledDeps();
|
|
MemoryDependencies.clear();
|
|
}
|
|
|
|
void dump(raw_ostream &os) const {
|
|
if (!isSchedulingEntity()) {
|
|
os << "/ " << *Inst;
|
|
} else if (NextInBundle) {
|
|
os << '[' << *Inst;
|
|
ScheduleData *SD = NextInBundle;
|
|
while (SD) {
|
|
os << ';' << *SD->Inst;
|
|
SD = SD->NextInBundle;
|
|
}
|
|
os << ']';
|
|
} else {
|
|
os << *Inst;
|
|
}
|
|
}
|
|
|
|
Instruction *Inst = nullptr;
|
|
|
|
/// Points to the head in an instruction bundle (and always to this for
|
|
/// single instructions).
|
|
ScheduleData *FirstInBundle = nullptr;
|
|
|
|
/// Single linked list of all instructions in a bundle. Null if it is a
|
|
/// single instruction.
|
|
ScheduleData *NextInBundle = nullptr;
|
|
|
|
/// Single linked list of all memory instructions (e.g. load, store, call)
|
|
/// in the block - until the end of the scheduling region.
|
|
ScheduleData *NextLoadStore = nullptr;
|
|
|
|
/// The dependent memory instructions.
|
|
/// This list is derived on demand in calculateDependencies().
|
|
SmallVector<ScheduleData *, 4> MemoryDependencies;
|
|
|
|
/// This ScheduleData is in the current scheduling region if this matches
|
|
/// the current SchedulingRegionID of BlockScheduling.
|
|
int SchedulingRegionID = 0;
|
|
|
|
/// Used for getting a "good" final ordering of instructions.
|
|
int SchedulingPriority = 0;
|
|
|
|
/// The number of dependencies. Constitutes of the number of users of the
|
|
/// instruction plus the number of dependent memory instructions (if any).
|
|
/// This value is calculated on demand.
|
|
/// If InvalidDeps, the number of dependencies is not calculated yet.
|
|
int Dependencies = InvalidDeps;
|
|
|
|
/// The number of dependencies minus the number of dependencies of scheduled
|
|
/// instructions. As soon as this is zero, the instruction/bundle gets ready
|
|
/// for scheduling.
|
|
/// Note that this is negative as long as Dependencies is not calculated.
|
|
int UnscheduledDeps = InvalidDeps;
|
|
|
|
/// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
|
|
/// single instructions.
|
|
int UnscheduledDepsInBundle = InvalidDeps;
|
|
|
|
/// True if this instruction is scheduled (or considered as scheduled in the
|
|
/// dry-run).
|
|
bool IsScheduled = false;
|
|
|
|
/// Opcode of the current instruction in the schedule data.
|
|
Value *OpValue = nullptr;
|
|
|
|
/// The TreeEntry that this instruction corresponds to.
|
|
TreeEntry *TE = nullptr;
|
|
|
|
/// The lane of this node in the TreeEntry.
|
|
int Lane = -1;
|
|
};
|
|
|
|
#ifndef NDEBUG
|
|
friend inline raw_ostream &operator<<(raw_ostream &os,
|
|
const BoUpSLP::ScheduleData &SD) {
|
|
SD.dump(os);
|
|
return os;
|
|
}
|
|
#endif
|
|
|
|
friend struct GraphTraits<BoUpSLP *>;
|
|
friend struct DOTGraphTraits<BoUpSLP *>;
|
|
|
|
/// Contains all scheduling data for a basic block.
|
|
struct BlockScheduling {
|
|
BlockScheduling(BasicBlock *BB)
|
|
: BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
|
|
|
|
void clear() {
|
|
ReadyInsts.clear();
|
|
ScheduleStart = nullptr;
|
|
ScheduleEnd = nullptr;
|
|
FirstLoadStoreInRegion = nullptr;
|
|
LastLoadStoreInRegion = nullptr;
|
|
|
|
// Reduce the maximum schedule region size by the size of the
|
|
// previous scheduling run.
|
|
ScheduleRegionSizeLimit -= ScheduleRegionSize;
|
|
if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
|
|
ScheduleRegionSizeLimit = MinScheduleRegionSize;
|
|
ScheduleRegionSize = 0;
|
|
|
|
// Make a new scheduling region, i.e. all existing ScheduleData is not
|
|
// in the new region yet.
|
|
++SchedulingRegionID;
|
|
}
|
|
|
|
ScheduleData *getScheduleData(Value *V) {
|
|
ScheduleData *SD = ScheduleDataMap[V];
|
|
if (SD && SD->SchedulingRegionID == SchedulingRegionID)
|
|
return SD;
|
|
return nullptr;
|
|
}
|
|
|
|
ScheduleData *getScheduleData(Value *V, Value *Key) {
|
|
if (V == Key)
|
|
return getScheduleData(V);
|
|
auto I = ExtraScheduleDataMap.find(V);
|
|
if (I != ExtraScheduleDataMap.end()) {
|
|
ScheduleData *SD = I->second[Key];
|
|
if (SD && SD->SchedulingRegionID == SchedulingRegionID)
|
|
return SD;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool isInSchedulingRegion(ScheduleData *SD) const {
|
|
return SD->SchedulingRegionID == SchedulingRegionID;
|
|
}
|
|
|
|
/// Marks an instruction as scheduled and puts all dependent ready
|
|
/// instructions into the ready-list.
|
|
template <typename ReadyListType>
|
|
void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
|
|
SD->IsScheduled = true;
|
|
LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n");
|
|
|
|
ScheduleData *BundleMember = SD;
|
|
while (BundleMember) {
|
|
if (BundleMember->Inst != BundleMember->OpValue) {
|
|
BundleMember = BundleMember->NextInBundle;
|
|
continue;
|
|
}
|
|
// Handle the def-use chain dependencies.
|
|
|
|
// Decrement the unscheduled counter and insert to ready list if ready.
|
|
auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
|
|
doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
|
|
if (OpDef && OpDef->hasValidDependencies() &&
|
|
OpDef->incrementUnscheduledDeps(-1) == 0) {
|
|
// There are no more unscheduled dependencies after
|
|
// decrementing, so we can put the dependent instruction
|
|
// into the ready list.
|
|
ScheduleData *DepBundle = OpDef->FirstInBundle;
|
|
assert(!DepBundle->IsScheduled &&
|
|
"already scheduled bundle gets ready");
|
|
ReadyList.insert(DepBundle);
|
|
LLVM_DEBUG(dbgs()
|
|
<< "SLP: gets ready (def): " << *DepBundle << "\n");
|
|
}
|
|
});
|
|
};
|
|
|
|
// If BundleMember is a vector bundle, its operands may have been
|
|
// reordered duiring buildTree(). We therefore need to get its operands
|
|
// through the TreeEntry.
|
|
if (TreeEntry *TE = BundleMember->TE) {
|
|
int Lane = BundleMember->Lane;
|
|
assert(Lane >= 0 && "Lane not set");
|
|
|
|
// Since vectorization tree is being built recursively this assertion
|
|
// ensures that the tree entry has all operands set before reaching
|
|
// this code. Couple of exceptions known at the moment are extracts
|
|
// where their second (immediate) operand is not added. Since
|
|
// immediates do not affect scheduler behavior this is considered
|
|
// okay.
|
|
auto *In = TE->getMainOp();
|
|
assert(In &&
|
|
(isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||
|
|
In->getNumOperands() == TE->getNumOperands()) &&
|
|
"Missed TreeEntry operands?");
|
|
(void)In; // fake use to avoid build failure when assertions disabled
|
|
|
|
for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
|
|
OpIdx != NumOperands; ++OpIdx)
|
|
if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
|
|
DecrUnsched(I);
|
|
} else {
|
|
// If BundleMember is a stand-alone instruction, no operand reordering
|
|
// has taken place, so we directly access its operands.
|
|
for (Use &U : BundleMember->Inst->operands())
|
|
if (auto *I = dyn_cast<Instruction>(U.get()))
|
|
DecrUnsched(I);
|
|
}
|
|
// Handle the memory dependencies.
|
|
for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
|
|
if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
|
|
// There are no more unscheduled dependencies after decrementing,
|
|
// so we can put the dependent instruction into the ready list.
|
|
ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
|
|
assert(!DepBundle->IsScheduled &&
|
|
"already scheduled bundle gets ready");
|
|
ReadyList.insert(DepBundle);
|
|
LLVM_DEBUG(dbgs()
|
|
<< "SLP: gets ready (mem): " << *DepBundle << "\n");
|
|
}
|
|
}
|
|
BundleMember = BundleMember->NextInBundle;
|
|
}
|
|
}
|
|
|
|
void doForAllOpcodes(Value *V,
|
|
function_ref<void(ScheduleData *SD)> Action) {
|
|
if (ScheduleData *SD = getScheduleData(V))
|
|
Action(SD);
|
|
auto I = ExtraScheduleDataMap.find(V);
|
|
if (I != ExtraScheduleDataMap.end())
|
|
for (auto &P : I->second)
|
|
if (P.second->SchedulingRegionID == SchedulingRegionID)
|
|
Action(P.second);
|
|
}
|
|
|
|
/// Put all instructions into the ReadyList which are ready for scheduling.
|
|
template <typename ReadyListType>
|
|
void initialFillReadyList(ReadyListType &ReadyList) {
|
|
for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
|
|
doForAllOpcodes(I, [&](ScheduleData *SD) {
|
|
if (SD->isSchedulingEntity() && SD->isReady()) {
|
|
ReadyList.insert(SD);
|
|
LLVM_DEBUG(dbgs()
|
|
<< "SLP: initially in ready list: " << *I << "\n");
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
/// Checks if a bundle of instructions can be scheduled, i.e. has no
|
|
/// cyclic dependencies. This is only a dry-run, no instructions are
|
|
/// actually moved at this stage.
|
|
/// \returns the scheduling bundle. The returned Optional value is non-None
|
|
/// if \p VL is allowed to be scheduled.
|
|
Optional<ScheduleData *>
|
|
tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
|
|
const InstructionsState &S);
|
|
|
|
/// Un-bundles a group of instructions.
|
|
void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
|
|
|
|
/// Allocates schedule data chunk.
|
|
ScheduleData *allocateScheduleDataChunks();
|
|
|
|
/// Extends the scheduling region so that V is inside the region.
|
|
/// \returns true if the region size is within the limit.
|
|
bool extendSchedulingRegion(Value *V, const InstructionsState &S);
|
|
|
|
/// Initialize the ScheduleData structures for new instructions in the
|
|
/// scheduling region.
|
|
void initScheduleData(Instruction *FromI, Instruction *ToI,
|
|
ScheduleData *PrevLoadStore,
|
|
ScheduleData *NextLoadStore);
|
|
|
|
/// Updates the dependency information of a bundle and of all instructions/
|
|
/// bundles which depend on the original bundle.
|
|
void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
|
|
BoUpSLP *SLP);
|
|
|
|
/// Sets all instruction in the scheduling region to un-scheduled.
|
|
void resetSchedule();
|
|
|
|
BasicBlock *BB;
|
|
|
|
/// Simple memory allocation for ScheduleData.
|
|
std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
|
|
|
|
/// The size of a ScheduleData array in ScheduleDataChunks.
|
|
int ChunkSize;
|
|
|
|
/// The allocator position in the current chunk, which is the last entry
|
|
/// of ScheduleDataChunks.
|
|
int ChunkPos;
|
|
|
|
/// Attaches ScheduleData to Instruction.
|
|
/// Note that the mapping survives during all vectorization iterations, i.e.
|
|
/// ScheduleData structures are recycled.
|
|
DenseMap<Value *, ScheduleData *> ScheduleDataMap;
|
|
|
|
/// Attaches ScheduleData to Instruction with the leading key.
|
|
DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
|
|
ExtraScheduleDataMap;
|
|
|
|
struct ReadyList : SmallVector<ScheduleData *, 8> {
|
|
void insert(ScheduleData *SD) { push_back(SD); }
|
|
};
|
|
|
|
/// The ready-list for scheduling (only used for the dry-run).
|
|
ReadyList ReadyInsts;
|
|
|
|
/// The first instruction of the scheduling region.
|
|
Instruction *ScheduleStart = nullptr;
|
|
|
|
/// The first instruction _after_ the scheduling region.
|
|
Instruction *ScheduleEnd = nullptr;
|
|
|
|
/// The first memory accessing instruction in the scheduling region
|
|
/// (can be null).
|
|
ScheduleData *FirstLoadStoreInRegion = nullptr;
|
|
|
|
/// The last memory accessing instruction in the scheduling region
|
|
/// (can be null).
|
|
ScheduleData *LastLoadStoreInRegion = nullptr;
|
|
|
|
/// The current size of the scheduling region.
|
|
int ScheduleRegionSize = 0;
|
|
|
|
/// The maximum size allowed for the scheduling region.
|
|
int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
|
|
|
|
/// The ID of the scheduling region. For a new vectorization iteration this
|
|
/// is incremented which "removes" all ScheduleData from the region.
|
|
// Make sure that the initial SchedulingRegionID is greater than the
|
|
// initial SchedulingRegionID in ScheduleData (which is 0).
|
|
int SchedulingRegionID = 1;
|
|
};
|
|
|
|
/// Attaches the BlockScheduling structures to basic blocks.
|
|
MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
|
|
|
|
/// Performs the "real" scheduling. Done before vectorization is actually
|
|
/// performed in a basic block.
|
|
void scheduleBlock(BlockScheduling *BS);
|
|
|
|
/// List of users to ignore during scheduling and that don't need extracting.
|
|
ArrayRef<Value *> UserIgnoreList;
|
|
|
|
using OrdersType = SmallVector<unsigned, 4>;
|
|
/// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
|
|
/// sorted SmallVectors of unsigned.
|
|
struct OrdersTypeDenseMapInfo {
|
|
static OrdersType getEmptyKey() {
|
|
OrdersType V;
|
|
V.push_back(~1U);
|
|
return V;
|
|
}
|
|
|
|
static OrdersType getTombstoneKey() {
|
|
OrdersType V;
|
|
V.push_back(~2U);
|
|
return V;
|
|
}
|
|
|
|
static unsigned getHashValue(const OrdersType &V) {
|
|
return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
|
|
}
|
|
|
|
static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
|
|
return LHS == RHS;
|
|
}
|
|
};
|
|
|
|
/// Contains orders of operations along with the number of bundles that have
|
|
/// operations in this order. It stores only those orders that require
|
|
/// reordering, if reordering is not required it is counted using \a
|
|
/// NumOpsWantToKeepOriginalOrder.
|
|
DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
|
|
/// Number of bundles that do not require reordering.
|
|
unsigned NumOpsWantToKeepOriginalOrder = 0;
|
|
|
|
// Analysis and block reference.
|
|
Function *F;
|
|
ScalarEvolution *SE;
|
|
TargetTransformInfo *TTI;
|
|
TargetLibraryInfo *TLI;
|
|
AliasAnalysis *AA;
|
|
LoopInfo *LI;
|
|
DominatorTree *DT;
|
|
AssumptionCache *AC;
|
|
DemandedBits *DB;
|
|
const DataLayout *DL;
|
|
OptimizationRemarkEmitter *ORE;
|
|
|
|
unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
|
|
unsigned MinVecRegSize; // Set by cl::opt (default: 128).
|
|
|
|
/// Instruction builder to construct the vectorized tree.
|
|
IRBuilder<> Builder;
|
|
|
|
/// A map of scalar integer values to the smallest bit width with which they
|
|
/// can legally be represented. The values map to (width, signed) pairs,
|
|
/// where "width" indicates the minimum bit width and "signed" is True if the
|
|
/// value must be signed-extended, rather than zero-extended, back to its
|
|
/// original width.
|
|
MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
|
|
};
|
|
|
|
} // end namespace slpvectorizer
|
|
|
|
template <> struct GraphTraits<BoUpSLP *> {
|
|
using TreeEntry = BoUpSLP::TreeEntry;
|
|
|
|
/// NodeRef has to be a pointer per the GraphWriter.
|
|
using NodeRef = TreeEntry *;
|
|
|
|
using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
|
|
|
|
/// Add the VectorizableTree to the index iterator to be able to return
|
|
/// TreeEntry pointers.
|
|
struct ChildIteratorType
|
|
: public iterator_adaptor_base<
|
|
ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
|
|
ContainerTy &VectorizableTree;
|
|
|
|
ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
|
|
ContainerTy &VT)
|
|
: ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
|
|
|
|
NodeRef operator*() { return I->UserTE; }
|
|
};
|
|
|
|
static NodeRef getEntryNode(BoUpSLP &R) {
|
|
return R.VectorizableTree[0].get();
|
|
}
|
|
|
|
static ChildIteratorType child_begin(NodeRef N) {
|
|
return {N->UserTreeIndices.begin(), N->Container};
|
|
}
|
|
|
|
static ChildIteratorType child_end(NodeRef N) {
|
|
return {N->UserTreeIndices.end(), N->Container};
|
|
}
|
|
|
|
/// For the node iterator we just need to turn the TreeEntry iterator into a
|
|
/// TreeEntry* iterator so that it dereferences to NodeRef.
|
|
class nodes_iterator {
|
|
using ItTy = ContainerTy::iterator;
|
|
ItTy It;
|
|
|
|
public:
|
|
nodes_iterator(const ItTy &It2) : It(It2) {}
|
|
NodeRef operator*() { return It->get(); }
|
|
nodes_iterator operator++() {
|
|
++It;
|
|
return *this;
|
|
}
|
|
bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
|
|
};
|
|
|
|
static nodes_iterator nodes_begin(BoUpSLP *R) {
|
|
return nodes_iterator(R->VectorizableTree.begin());
|
|
}
|
|
|
|
static nodes_iterator nodes_end(BoUpSLP *R) {
|
|
return nodes_iterator(R->VectorizableTree.end());
|
|
}
|
|
|
|
static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
|
|
};
|
|
|
|
template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
|
|
using TreeEntry = BoUpSLP::TreeEntry;
|
|
|
|
DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
|
|
|
|
std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
|
|
std::string Str;
|
|
raw_string_ostream OS(Str);
|
|
if (isSplat(Entry->Scalars)) {
|
|
OS << "<splat> " << *Entry->Scalars[0];
|
|
return Str;
|
|
}
|
|
for (auto V : Entry->Scalars) {
|
|
OS << *V;
|
|
if (std::any_of(
|
|
R->ExternalUses.begin(), R->ExternalUses.end(),
|
|
[&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; }))
|
|
OS << " <extract>";
|
|
OS << "\n";
|
|
}
|
|
return Str;
|
|
}
|
|
|
|
static std::string getNodeAttributes(const TreeEntry *Entry,
|
|
const BoUpSLP *) {
|
|
if (Entry->State == TreeEntry::NeedToGather)
|
|
return "color=red";
|
|
return "";
|
|
}
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
BoUpSLP::~BoUpSLP() {
|
|
for (const auto &Pair : DeletedInstructions) {
|
|
// Replace operands of ignored instructions with Undefs in case if they were
|
|
// marked for deletion.
|
|
if (Pair.getSecond()) {
|
|
Value *Undef = UndefValue::get(Pair.getFirst()->getType());
|
|
Pair.getFirst()->replaceAllUsesWith(Undef);
|
|
}
|
|
Pair.getFirst()->dropAllReferences();
|
|
}
|
|
for (const auto &Pair : DeletedInstructions) {
|
|
assert(Pair.getFirst()->use_empty() &&
|
|
"trying to erase instruction with users.");
|
|
Pair.getFirst()->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
|
|
for (auto *V : AV) {
|
|
if (auto *I = dyn_cast<Instruction>(V))
|
|
eraseInstruction(I, /*ReplaceWithUndef=*/true);
|
|
};
|
|
}
|
|
|
|
void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
|
|
ArrayRef<Value *> UserIgnoreLst) {
|
|
ExtraValueToDebugLocsMap ExternallyUsedValues;
|
|
buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
|
|
}
|
|
|
|
void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
|
|
ExtraValueToDebugLocsMap &ExternallyUsedValues,
|
|
ArrayRef<Value *> UserIgnoreLst) {
|
|
deleteTree();
|
|
UserIgnoreList = UserIgnoreLst;
|
|
if (!allSameType(Roots))
|
|
return;
|
|
buildTree_rec(Roots, 0, EdgeInfo());
|
|
|
|
// Collect the values that we need to extract from the tree.
|
|
for (auto &TEPtr : VectorizableTree) {
|
|
TreeEntry *Entry = TEPtr.get();
|
|
|
|
// No need to handle users of gathered values.
|
|
if (Entry->State == TreeEntry::NeedToGather)
|
|
continue;
|
|
|
|
// For each lane:
|
|
for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
|
|
Value *Scalar = Entry->Scalars[Lane];
|
|
int FoundLane = Lane;
|
|
if (!Entry->ReuseShuffleIndices.empty()) {
|
|
FoundLane =
|
|
std::distance(Entry->ReuseShuffleIndices.begin(),
|
|
llvm::find(Entry->ReuseShuffleIndices, FoundLane));
|
|
}
|
|
|
|
// Check if the scalar is externally used as an extra arg.
|
|
auto ExtI = ExternallyUsedValues.find(Scalar);
|
|
if (ExtI != ExternallyUsedValues.end()) {
|
|
LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
|
|
<< Lane << " from " << *Scalar << ".\n");
|
|
ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
|
|
}
|
|
for (User *U : Scalar->users()) {
|
|
LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
|
|
|
|
Instruction *UserInst = dyn_cast<Instruction>(U);
|
|
if (!UserInst)
|
|
continue;
|
|
|
|
// Skip in-tree scalars that become vectors
|
|
if (TreeEntry *UseEntry = getTreeEntry(U)) {
|
|
Value *UseScalar = UseEntry->Scalars[0];
|
|
// Some in-tree scalars will remain as scalar in vectorized
|
|
// instructions. If that is the case, the one in Lane 0 will
|
|
// be used.
|
|
if (UseScalar != U ||
|
|
!InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
|
|
LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
|
|
<< ".\n");
|
|
assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Ignore users in the user ignore list.
|
|
if (is_contained(UserIgnoreList, UserInst))
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
|
|
<< Lane << " from " << *Scalar << ".\n");
|
|
ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
|
|
const EdgeInfo &UserTreeIdx) {
|
|
assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
|
|
|
|
InstructionsState S = getSameOpcode(VL);
|
|
if (Depth == RecursionMaxDepth) {
|
|
LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
|
|
return;
|
|
}
|
|
|
|
// Don't handle vectors.
|
|
if (S.OpValue->getType()->isVectorTy()) {
|
|
LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
|
|
return;
|
|
}
|
|
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
|
|
if (SI->getValueOperand()->getType()->isVectorTy()) {
|
|
LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
|
|
return;
|
|
}
|
|
|
|
// If all of the operands are identical or constant we have a simple solution.
|
|
if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
|
|
LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
|
|
return;
|
|
}
|
|
|
|
// We now know that this is a vector of instructions of the same type from
|
|
// the same block.
|
|
|
|
// Don't vectorize ephemeral values.
|
|
for (Value *V : VL) {
|
|
if (EphValues.count(V)) {
|
|
LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
|
|
<< ") is ephemeral.\n");
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Check if this is a duplicate of another entry.
|
|
if (TreeEntry *E = getTreeEntry(S.OpValue)) {
|
|
LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
|
|
if (!E->isSame(VL)) {
|
|
LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
|
|
return;
|
|
}
|
|
// Record the reuse of the tree node. FIXME, currently this is only used to
|
|
// properly draw the graph rather than for the actual vectorization.
|
|
E->UserTreeIndices.push_back(UserTreeIdx);
|
|
LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
|
|
<< ".\n");
|
|
return;
|
|
}
|
|
|
|
// Check that none of the instructions in the bundle are already in the tree.
|
|
for (Value *V : VL) {
|
|
auto *I = dyn_cast<Instruction>(V);
|
|
if (!I)
|
|
continue;
|
|
if (getTreeEntry(I)) {
|
|
LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
|
|
<< ") is already in tree.\n");
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If any of the scalars is marked as a value that needs to stay scalar, then
|
|
// we need to gather the scalars.
|
|
// The reduction nodes (stored in UserIgnoreList) also should stay scalar.
|
|
for (Value *V : VL) {
|
|
if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
|
|
LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Check that all of the users of the scalars that we want to vectorize are
|
|
// schedulable.
|
|
auto *VL0 = cast<Instruction>(S.OpValue);
|
|
BasicBlock *BB = VL0->getParent();
|
|
|
|
if (!DT->isReachableFromEntry(BB)) {
|
|
// Don't go into unreachable blocks. They may contain instructions with
|
|
// dependency cycles which confuse the final scheduling.
|
|
LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
|
|
return;
|
|
}
|
|
|
|
// Check that every instruction appears once in this bundle.
|
|
SmallVector<unsigned, 4> ReuseShuffleIndicies;
|
|
SmallVector<Value *, 4> UniqueValues;
|
|
DenseMap<Value *, unsigned> UniquePositions;
|
|
for (Value *V : VL) {
|
|
auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
|
|
ReuseShuffleIndicies.emplace_back(Res.first->second);
|
|
if (Res.second)
|
|
UniqueValues.emplace_back(V);
|
|
}
|
|
size_t NumUniqueScalarValues = UniqueValues.size();
|
|
if (NumUniqueScalarValues == VL.size()) {
|
|
ReuseShuffleIndicies.clear();
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
|
|
if (NumUniqueScalarValues <= 1 ||
|
|
!llvm::isPowerOf2_32(NumUniqueScalarValues)) {
|
|
LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
|
|
return;
|
|
}
|
|
VL = UniqueValues;
|
|
}
|
|
|
|
auto &BSRef = BlocksSchedules[BB];
|
|
if (!BSRef)
|
|
BSRef = std::make_unique<BlockScheduling>(BB);
|
|
|
|
BlockScheduling &BS = *BSRef.get();
|
|
|
|
Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
|
|
if (!Bundle) {
|
|
LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
|
|
assert((!BS.getScheduleData(VL0) ||
|
|
!BS.getScheduleData(VL0)->isPartOfBundle()) &&
|
|
"tryScheduleBundle should cancelScheduling on failure");
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
return;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
|
|
|
|
unsigned ShuffleOrOp = S.isAltShuffle() ?
|
|
(unsigned) Instruction::ShuffleVector : S.getOpcode();
|
|
switch (ShuffleOrOp) {
|
|
case Instruction::PHI: {
|
|
auto *PH = cast<PHINode>(VL0);
|
|
|
|
// Check for terminator values (e.g. invoke).
|
|
for (unsigned j = 0; j < VL.size(); ++j)
|
|
for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
|
|
Instruction *Term = dyn_cast<Instruction>(
|
|
cast<PHINode>(VL[j])->getIncomingValueForBlock(
|
|
PH->getIncomingBlock(i)));
|
|
if (Term && Term->isTerminator()) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "SLP: Need to swizzle PHINodes (terminator use).\n");
|
|
BS.cancelScheduling(VL, VL0);
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
return;
|
|
}
|
|
}
|
|
|
|
TreeEntry *TE =
|
|
newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
|
|
LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
|
|
|
|
// Keeps the reordered operands to avoid code duplication.
|
|
SmallVector<ValueList, 2> OperandsVec;
|
|
for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
|
|
ValueList Operands;
|
|
// Prepare the operand vector.
|
|
for (Value *j : VL)
|
|
Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
|
|
PH->getIncomingBlock(i)));
|
|
TE->setOperand(i, Operands);
|
|
OperandsVec.push_back(Operands);
|
|
}
|
|
for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
|
|
buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
|
|
return;
|
|
}
|
|
case Instruction::ExtractValue:
|
|
case Instruction::ExtractElement: {
|
|
OrdersType CurrentOrder;
|
|
bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
|
|
if (Reuse) {
|
|
LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
|
|
++NumOpsWantToKeepOriginalOrder;
|
|
newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
// This is a special case, as it does not gather, but at the same time
|
|
// we are not extending buildTree_rec() towards the operands.
|
|
ValueList Op0;
|
|
Op0.assign(VL.size(), VL0->getOperand(0));
|
|
VectorizableTree.back()->setOperand(0, Op0);
|
|
return;
|
|
}
|
|
if (!CurrentOrder.empty()) {
|
|
LLVM_DEBUG({
|
|
dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
|
|
"with order";
|
|
for (unsigned Idx : CurrentOrder)
|
|
dbgs() << " " << Idx;
|
|
dbgs() << "\n";
|
|
});
|
|
// Insert new order with initial value 0, if it does not exist,
|
|
// otherwise return the iterator to the existing one.
|
|
auto StoredCurrentOrderAndNum =
|
|
NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
|
|
++StoredCurrentOrderAndNum->getSecond();
|
|
newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies,
|
|
StoredCurrentOrderAndNum->getFirst());
|
|
// This is a special case, as it does not gather, but at the same time
|
|
// we are not extending buildTree_rec() towards the operands.
|
|
ValueList Op0;
|
|
Op0.assign(VL.size(), VL0->getOperand(0));
|
|
VectorizableTree.back()->setOperand(0, Op0);
|
|
return;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
BS.cancelScheduling(VL, VL0);
|
|
return;
|
|
}
|
|
case Instruction::Load: {
|
|
// Check that a vectorized load would load the same memory as a scalar
|
|
// load. For example, we don't want to vectorize loads that are smaller
|
|
// than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
|
|
// treats loading/storing it as an i8 struct. If we vectorize loads/stores
|
|
// from such a struct, we read/write packed bits disagreeing with the
|
|
// unvectorized version.
|
|
Type *ScalarTy = VL0->getType();
|
|
|
|
if (DL->getTypeSizeInBits(ScalarTy) !=
|
|
DL->getTypeAllocSizeInBits(ScalarTy)) {
|
|
BS.cancelScheduling(VL, VL0);
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
|
|
return;
|
|
}
|
|
|
|
// Make sure all loads in the bundle are simple - we can't vectorize
|
|
// atomic or volatile loads.
|
|
SmallVector<Value *, 4> PointerOps(VL.size());
|
|
auto POIter = PointerOps.begin();
|
|
for (Value *V : VL) {
|
|
auto *L = cast<LoadInst>(V);
|
|
if (!L->isSimple()) {
|
|
BS.cancelScheduling(VL, VL0);
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
|
|
return;
|
|
}
|
|
*POIter = L->getPointerOperand();
|
|
++POIter;
|
|
}
|
|
|
|
OrdersType CurrentOrder;
|
|
// Check the order of pointer operands.
|
|
if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
|
|
Value *Ptr0;
|
|
Value *PtrN;
|
|
if (CurrentOrder.empty()) {
|
|
Ptr0 = PointerOps.front();
|
|
PtrN = PointerOps.back();
|
|
} else {
|
|
Ptr0 = PointerOps[CurrentOrder.front()];
|
|
PtrN = PointerOps[CurrentOrder.back()];
|
|
}
|
|
const SCEV *Scev0 = SE->getSCEV(Ptr0);
|
|
const SCEV *ScevN = SE->getSCEV(PtrN);
|
|
const auto *Diff =
|
|
dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
|
|
uint64_t Size = DL->getTypeAllocSize(ScalarTy);
|
|
// Check that the sorted loads are consecutive.
|
|
if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) {
|
|
if (CurrentOrder.empty()) {
|
|
// Original loads are consecutive and does not require reordering.
|
|
++NumOpsWantToKeepOriginalOrder;
|
|
TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
|
|
UserTreeIdx, ReuseShuffleIndicies);
|
|
TE->setOperandsInOrder();
|
|
LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
|
|
} else {
|
|
// Need to reorder.
|
|
auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
|
|
++I->getSecond();
|
|
TreeEntry *TE =
|
|
newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies, I->getFirst());
|
|
TE->setOperandsInOrder();
|
|
LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
|
|
BS.cancelScheduling(VL, VL0);
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
return;
|
|
}
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::FPExt:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::SIToFP:
|
|
case Instruction::UIToFP:
|
|
case Instruction::Trunc:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::BitCast: {
|
|
Type *SrcTy = VL0->getOperand(0)->getType();
|
|
for (Value *V : VL) {
|
|
Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
|
|
if (Ty != SrcTy || !isValidElementType(Ty)) {
|
|
BS.cancelScheduling(VL, VL0);
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
LLVM_DEBUG(dbgs()
|
|
<< "SLP: Gathering casts with different src types.\n");
|
|
return;
|
|
}
|
|
}
|
|
TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
|
|
|
|
TE->setOperandsInOrder();
|
|
for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
|
|
ValueList Operands;
|
|
// Prepare the operand vector.
|
|
for (Value *V : VL)
|
|
Operands.push_back(cast<Instruction>(V)->getOperand(i));
|
|
|
|
buildTree_rec(Operands, Depth + 1, {TE, i});
|
|
}
|
|
return;
|
|
}
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp: {
|
|
// Check that all of the compares have the same predicate.
|
|
CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
|
|
CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
|
|
Type *ComparedTy = VL0->getOperand(0)->getType();
|
|
for (Value *V : VL) {
|
|
CmpInst *Cmp = cast<CmpInst>(V);
|
|
if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
|
|
Cmp->getOperand(0)->getType() != ComparedTy) {
|
|
BS.cancelScheduling(VL, VL0);
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
LLVM_DEBUG(dbgs()
|
|
<< "SLP: Gathering cmp with different predicate.\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
|
|
|
|
ValueList Left, Right;
|
|
if (cast<CmpInst>(VL0)->isCommutative()) {
|
|
// Commutative predicate - collect + sort operands of the instructions
|
|
// so that each side is more likely to have the same opcode.
|
|
assert(P0 == SwapP0 && "Commutative Predicate mismatch");
|
|
reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
|
|
} else {
|
|
// Collect operands - commute if it uses the swapped predicate.
|
|
for (Value *V : VL) {
|
|
auto *Cmp = cast<CmpInst>(V);
|
|
Value *LHS = Cmp->getOperand(0);
|
|
Value *RHS = Cmp->getOperand(1);
|
|
if (Cmp->getPredicate() != P0)
|
|
std::swap(LHS, RHS);
|
|
Left.push_back(LHS);
|
|
Right.push_back(RHS);
|
|
}
|
|
}
|
|
TE->setOperand(0, Left);
|
|
TE->setOperand(1, Right);
|
|
buildTree_rec(Left, Depth + 1, {TE, 0});
|
|
buildTree_rec(Right, Depth + 1, {TE, 1});
|
|
return;
|
|
}
|
|
case Instruction::Select:
|
|
case Instruction::FNeg:
|
|
case Instruction::Add:
|
|
case Instruction::FAdd:
|
|
case Instruction::Sub:
|
|
case Instruction::FSub:
|
|
case Instruction::Mul:
|
|
case Instruction::FMul:
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::FDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::FRem:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor: {
|
|
TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
|
|
|
|
// Sort operands of the instructions so that each side is more likely to
|
|
// have the same opcode.
|
|
if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
|
|
ValueList Left, Right;
|
|
reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
|
|
TE->setOperand(0, Left);
|
|
TE->setOperand(1, Right);
|
|
buildTree_rec(Left, Depth + 1, {TE, 0});
|
|
buildTree_rec(Right, Depth + 1, {TE, 1});
|
|
return;
|
|
}
|
|
|
|
TE->setOperandsInOrder();
|
|
for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
|
|
ValueList Operands;
|
|
// Prepare the operand vector.
|
|
for (Value *j : VL)
|
|
Operands.push_back(cast<Instruction>(j)->getOperand(i));
|
|
|
|
buildTree_rec(Operands, Depth + 1, {TE, i});
|
|
}
|
|
return;
|
|
}
|
|
case Instruction::GetElementPtr: {
|
|
// We don't combine GEPs with complicated (nested) indexing.
|
|
for (Value *V : VL) {
|
|
if (cast<Instruction>(V)->getNumOperands() != 2) {
|
|
LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
|
|
BS.cancelScheduling(VL, VL0);
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// We can't combine several GEPs into one vector if they operate on
|
|
// different types.
|
|
Type *Ty0 = VL0->getOperand(0)->getType();
|
|
for (Value *V : VL) {
|
|
Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
|
|
if (Ty0 != CurTy) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "SLP: not-vectorizable GEP (different types).\n");
|
|
BS.cancelScheduling(VL, VL0);
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// We don't combine GEPs with non-constant indexes.
|
|
Type *Ty1 = VL0->getOperand(1)->getType();
|
|
for (Value *V : VL) {
|
|
auto Op = cast<Instruction>(V)->getOperand(1);
|
|
if (!isa<ConstantInt>(Op) ||
|
|
(Op->getType() != Ty1 &&
|
|
Op->getType()->getScalarSizeInBits() >
|
|
DL->getIndexSizeInBits(
|
|
V->getType()->getPointerAddressSpace()))) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "SLP: not-vectorizable GEP (non-constant indexes).\n");
|
|
BS.cancelScheduling(VL, VL0);
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
return;
|
|
}
|
|
}
|
|
|
|
TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
|
|
TE->setOperandsInOrder();
|
|
for (unsigned i = 0, e = 2; i < e; ++i) {
|
|
ValueList Operands;
|
|
// Prepare the operand vector.
|
|
for (Value *V : VL)
|
|
Operands.push_back(cast<Instruction>(V)->getOperand(i));
|
|
|
|
buildTree_rec(Operands, Depth + 1, {TE, i});
|
|
}
|
|
return;
|
|
}
|
|
case Instruction::Store: {
|
|
// Check if the stores are consecutive or if we need to swizzle them.
|
|
llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
|
|
// Make sure all stores in the bundle are simple - we can't vectorize
|
|
// atomic or volatile stores.
|
|
SmallVector<Value *, 4> PointerOps(VL.size());
|
|
ValueList Operands(VL.size());
|
|
auto POIter = PointerOps.begin();
|
|
auto OIter = Operands.begin();
|
|
for (Value *V : VL) {
|
|
auto *SI = cast<StoreInst>(V);
|
|
if (!SI->isSimple()) {
|
|
BS.cancelScheduling(VL, VL0);
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
|
|
return;
|
|
}
|
|
*POIter = SI->getPointerOperand();
|
|
*OIter = SI->getValueOperand();
|
|
++POIter;
|
|
++OIter;
|
|
}
|
|
|
|
OrdersType CurrentOrder;
|
|
// Check the order of pointer operands.
|
|
if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
|
|
Value *Ptr0;
|
|
Value *PtrN;
|
|
if (CurrentOrder.empty()) {
|
|
Ptr0 = PointerOps.front();
|
|
PtrN = PointerOps.back();
|
|
} else {
|
|
Ptr0 = PointerOps[CurrentOrder.front()];
|
|
PtrN = PointerOps[CurrentOrder.back()];
|
|
}
|
|
const SCEV *Scev0 = SE->getSCEV(Ptr0);
|
|
const SCEV *ScevN = SE->getSCEV(PtrN);
|
|
const auto *Diff =
|
|
dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
|
|
uint64_t Size = DL->getTypeAllocSize(ScalarTy);
|
|
// Check that the sorted pointer operands are consecutive.
|
|
if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) {
|
|
if (CurrentOrder.empty()) {
|
|
// Original stores are consecutive and does not require reordering.
|
|
++NumOpsWantToKeepOriginalOrder;
|
|
TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
|
|
UserTreeIdx, ReuseShuffleIndicies);
|
|
TE->setOperandsInOrder();
|
|
buildTree_rec(Operands, Depth + 1, {TE, 0});
|
|
LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
|
|
} else {
|
|
// Need to reorder.
|
|
auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
|
|
++(I->getSecond());
|
|
TreeEntry *TE =
|
|
newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies, I->getFirst());
|
|
TE->setOperandsInOrder();
|
|
buildTree_rec(Operands, Depth + 1, {TE, 0});
|
|
LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
BS.cancelScheduling(VL, VL0);
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
|
|
return;
|
|
}
|
|
case Instruction::Call: {
|
|
// Check if the calls are all to the same vectorizable intrinsic.
|
|
CallInst *CI = cast<CallInst>(VL0);
|
|
// Check if this is an Intrinsic call or something that can be
|
|
// represented by an intrinsic call
|
|
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
|
|
if (!isTriviallyVectorizable(ID)) {
|
|
BS.cancelScheduling(VL, VL0);
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
|
|
return;
|
|
}
|
|
Function *Int = CI->getCalledFunction();
|
|
unsigned NumArgs = CI->getNumArgOperands();
|
|
SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
|
|
for (unsigned j = 0; j != NumArgs; ++j)
|
|
if (hasVectorInstrinsicScalarOpd(ID, j))
|
|
ScalarArgs[j] = CI->getArgOperand(j);
|
|
for (Value *V : VL) {
|
|
CallInst *CI2 = dyn_cast<CallInst>(V);
|
|
if (!CI2 || CI2->getCalledFunction() != Int ||
|
|
getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
|
|
!CI->hasIdenticalOperandBundleSchema(*CI2)) {
|
|
BS.cancelScheduling(VL, VL0);
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
|
|
<< "\n");
|
|
return;
|
|
}
|
|
// Some intrinsics have scalar arguments and should be same in order for
|
|
// them to be vectorized.
|
|
for (unsigned j = 0; j != NumArgs; ++j) {
|
|
if (hasVectorInstrinsicScalarOpd(ID, j)) {
|
|
Value *A1J = CI2->getArgOperand(j);
|
|
if (ScalarArgs[j] != A1J) {
|
|
BS.cancelScheduling(VL, VL0);
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
|
|
<< " argument " << ScalarArgs[j] << "!=" << A1J
|
|
<< "\n");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
// Verify that the bundle operands are identical between the two calls.
|
|
if (CI->hasOperandBundles() &&
|
|
!std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
|
|
CI->op_begin() + CI->getBundleOperandsEndIndex(),
|
|
CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
|
|
BS.cancelScheduling(VL, VL0);
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
|
|
<< *CI << "!=" << *V << '\n');
|
|
return;
|
|
}
|
|
}
|
|
|
|
TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
TE->setOperandsInOrder();
|
|
for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
|
|
ValueList Operands;
|
|
// Prepare the operand vector.
|
|
for (Value *V : VL) {
|
|
auto *CI2 = cast<CallInst>(V);
|
|
Operands.push_back(CI2->getArgOperand(i));
|
|
}
|
|
buildTree_rec(Operands, Depth + 1, {TE, i});
|
|
}
|
|
return;
|
|
}
|
|
case Instruction::ShuffleVector: {
|
|
// If this is not an alternate sequence of opcode like add-sub
|
|
// then do not vectorize this instruction.
|
|
if (!S.isAltShuffle()) {
|
|
BS.cancelScheduling(VL, VL0);
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
|
|
return;
|
|
}
|
|
TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
|
|
|
|
// Reorder operands if reordering would enable vectorization.
|
|
if (isa<BinaryOperator>(VL0)) {
|
|
ValueList Left, Right;
|
|
reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
|
|
TE->setOperand(0, Left);
|
|
TE->setOperand(1, Right);
|
|
buildTree_rec(Left, Depth + 1, {TE, 0});
|
|
buildTree_rec(Right, Depth + 1, {TE, 1});
|
|
return;
|
|
}
|
|
|
|
TE->setOperandsInOrder();
|
|
for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
|
|
ValueList Operands;
|
|
// Prepare the operand vector.
|
|
for (Value *V : VL)
|
|
Operands.push_back(cast<Instruction>(V)->getOperand(i));
|
|
|
|
buildTree_rec(Operands, Depth + 1, {TE, i});
|
|
}
|
|
return;
|
|
}
|
|
default:
|
|
BS.cancelScheduling(VL, VL0);
|
|
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
|
|
ReuseShuffleIndicies);
|
|
LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
|
|
unsigned N = 1;
|
|
Type *EltTy = T;
|
|
|
|
while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
|
|
isa<VectorType>(EltTy)) {
|
|
if (auto *ST = dyn_cast<StructType>(EltTy)) {
|
|
// Check that struct is homogeneous.
|
|
for (const auto *Ty : ST->elements())
|
|
if (Ty != *ST->element_begin())
|
|
return 0;
|
|
N *= ST->getNumElements();
|
|
EltTy = *ST->element_begin();
|
|
} else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
|
|
N *= AT->getNumElements();
|
|
EltTy = AT->getElementType();
|
|
} else {
|
|
auto *VT = cast<VectorType>(EltTy);
|
|
N *= VT->getNumElements();
|
|
EltTy = VT->getElementType();
|
|
}
|
|
}
|
|
|
|
if (!isValidElementType(EltTy))
|
|
return 0;
|
|
uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N));
|
|
if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
|
|
return 0;
|
|
return N;
|
|
}
|
|
|
|
bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
|
|
SmallVectorImpl<unsigned> &CurrentOrder) const {
|
|
Instruction *E0 = cast<Instruction>(OpValue);
|
|
assert(E0->getOpcode() == Instruction::ExtractElement ||
|
|
E0->getOpcode() == Instruction::ExtractValue);
|
|
assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
|
|
// Check if all of the extracts come from the same vector and from the
|
|
// correct offset.
|
|
Value *Vec = E0->getOperand(0);
|
|
|
|
CurrentOrder.clear();
|
|
|
|
// We have to extract from a vector/aggregate with the same number of elements.
|
|
unsigned NElts;
|
|
if (E0->getOpcode() == Instruction::ExtractValue) {
|
|
const DataLayout &DL = E0->getModule()->getDataLayout();
|
|
NElts = canMapToVector(Vec->getType(), DL);
|
|
if (!NElts)
|
|
return false;
|
|
// Check if load can be rewritten as load of vector.
|
|
LoadInst *LI = dyn_cast<LoadInst>(Vec);
|
|
if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
|
|
return false;
|
|
} else {
|
|
NElts = cast<VectorType>(Vec->getType())->getNumElements();
|
|
}
|
|
|
|
if (NElts != VL.size())
|
|
return false;
|
|
|
|
// Check that all of the indices extract from the correct offset.
|
|
bool ShouldKeepOrder = true;
|
|
unsigned E = VL.size();
|
|
// Assign to all items the initial value E + 1 so we can check if the extract
|
|
// instruction index was used already.
|
|
// Also, later we can check that all the indices are used and we have a
|
|
// consecutive access in the extract instructions, by checking that no
|
|
// element of CurrentOrder still has value E + 1.
|
|
CurrentOrder.assign(E, E + 1);
|
|
unsigned I = 0;
|
|
for (; I < E; ++I) {
|
|
auto *Inst = cast<Instruction>(VL[I]);
|
|
if (Inst->getOperand(0) != Vec)
|
|
break;
|
|
Optional<unsigned> Idx = getExtractIndex(Inst);
|
|
if (!Idx)
|
|
break;
|
|
const unsigned ExtIdx = *Idx;
|
|
if (ExtIdx != I) {
|
|
if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
|
|
break;
|
|
ShouldKeepOrder = false;
|
|
CurrentOrder[ExtIdx] = I;
|
|
} else {
|
|
if (CurrentOrder[I] != E + 1)
|
|
break;
|
|
CurrentOrder[I] = I;
|
|
}
|
|
}
|
|
if (I < E) {
|
|
CurrentOrder.clear();
|
|
return false;
|
|
}
|
|
|
|
return ShouldKeepOrder;
|
|
}
|
|
|
|
bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
|
|
return I->hasOneUse() ||
|
|
std::all_of(I->user_begin(), I->user_end(), [this](User *U) {
|
|
return ScalarToTreeEntry.count(U) > 0;
|
|
});
|
|
}
|
|
|
|
static std::pair<unsigned, unsigned>
|
|
getVectorCallCosts(CallInst *CI, VectorType *VecTy, TargetTransformInfo *TTI,
|
|
TargetLibraryInfo *TLI) {
|
|
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
|
|
|
|
// Calculate the cost of the scalar and vector calls.
|
|
FastMathFlags FMF;
|
|
if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
|
|
FMF = FPMO->getFastMathFlags();
|
|
|
|
SmallVector<Value *, 4> Args(CI->arg_operands());
|
|
int IntrinsicCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF,
|
|
VecTy->getNumElements());
|
|
|
|
auto Shape =
|
|
VFShape::get(*CI, {static_cast<unsigned>(VecTy->getNumElements()), false},
|
|
false /*HasGlobalPred*/);
|
|
Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
|
|
int LibCost = IntrinsicCost;
|
|
if (!CI->isNoBuiltin() && VecFunc) {
|
|
// Calculate the cost of the vector library call.
|
|
SmallVector<Type *, 4> VecTys;
|
|
for (Use &Arg : CI->args())
|
|
VecTys.push_back(
|
|
VectorType::get(Arg->getType(), VecTy->getNumElements()));
|
|
|
|
// If the corresponding vector call is cheaper, return its cost.
|
|
LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys);
|
|
}
|
|
return {IntrinsicCost, LibCost};
|
|
}
|
|
|
|
int BoUpSLP::getEntryCost(TreeEntry *E) {
|
|
ArrayRef<Value*> VL = E->Scalars;
|
|
|
|
Type *ScalarTy = VL[0]->getType();
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
|
|
ScalarTy = SI->getValueOperand()->getType();
|
|
else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
|
|
ScalarTy = CI->getOperand(0)->getType();
|
|
VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
|
|
|
|
// If we have computed a smaller type for the expression, update VecTy so
|
|
// that the costs will be accurate.
|
|
if (MinBWs.count(VL[0]))
|
|
VecTy = VectorType::get(
|
|
IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
|
|
|
|
unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
|
|
bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
|
|
int ReuseShuffleCost = 0;
|
|
if (NeedToShuffleReuses) {
|
|
ReuseShuffleCost =
|
|
TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
|
|
}
|
|
if (E->State == TreeEntry::NeedToGather) {
|
|
if (allConstant(VL))
|
|
return 0;
|
|
if (isSplat(VL)) {
|
|
return ReuseShuffleCost +
|
|
TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
|
|
}
|
|
if (E->getOpcode() == Instruction::ExtractElement &&
|
|
allSameType(VL) && allSameBlock(VL)) {
|
|
Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL);
|
|
if (ShuffleKind.hasValue()) {
|
|
int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy);
|
|
for (auto *V : VL) {
|
|
// If all users of instruction are going to be vectorized and this
|
|
// instruction itself is not going to be vectorized, consider this
|
|
// instruction as dead and remove its cost from the final cost of the
|
|
// vectorized tree.
|
|
if (areAllUsersVectorized(cast<Instruction>(V)) &&
|
|
!ScalarToTreeEntry.count(V)) {
|
|
auto *IO = cast<ConstantInt>(
|
|
cast<ExtractElementInst>(V)->getIndexOperand());
|
|
Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
|
|
IO->getZExtValue());
|
|
}
|
|
}
|
|
return ReuseShuffleCost + Cost;
|
|
}
|
|
}
|
|
return ReuseShuffleCost + getGatherCost(VL);
|
|
}
|
|
assert(E->State == TreeEntry::Vectorize && "Unhandled state");
|
|
assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
|
|
Instruction *VL0 = E->getMainOp();
|
|
unsigned ShuffleOrOp =
|
|
E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
|
|
switch (ShuffleOrOp) {
|
|
case Instruction::PHI:
|
|
return 0;
|
|
|
|
case Instruction::ExtractValue:
|
|
case Instruction::ExtractElement: {
|
|
if (NeedToShuffleReuses) {
|
|
unsigned Idx = 0;
|
|
for (unsigned I : E->ReuseShuffleIndices) {
|
|
if (ShuffleOrOp == Instruction::ExtractElement) {
|
|
auto *IO = cast<ConstantInt>(
|
|
cast<ExtractElementInst>(VL[I])->getIndexOperand());
|
|
Idx = IO->getZExtValue();
|
|
ReuseShuffleCost -= TTI->getVectorInstrCost(
|
|
Instruction::ExtractElement, VecTy, Idx);
|
|
} else {
|
|
ReuseShuffleCost -= TTI->getVectorInstrCost(
|
|
Instruction::ExtractElement, VecTy, Idx);
|
|
++Idx;
|
|
}
|
|
}
|
|
Idx = ReuseShuffleNumbers;
|
|
for (Value *V : VL) {
|
|
if (ShuffleOrOp == Instruction::ExtractElement) {
|
|
auto *IO = cast<ConstantInt>(
|
|
cast<ExtractElementInst>(V)->getIndexOperand());
|
|
Idx = IO->getZExtValue();
|
|
} else {
|
|
--Idx;
|
|
}
|
|
ReuseShuffleCost +=
|
|
TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx);
|
|
}
|
|
}
|
|
int DeadCost = ReuseShuffleCost;
|
|
if (!E->ReorderIndices.empty()) {
|
|
// TODO: Merge this shuffle with the ReuseShuffleCost.
|
|
DeadCost += TTI->getShuffleCost(
|
|
TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
|
|
}
|
|
for (unsigned i = 0, e = VL.size(); i < e; ++i) {
|
|
Instruction *E = cast<Instruction>(VL[i]);
|
|
// If all users are going to be vectorized, instruction can be
|
|
// considered as dead.
|
|
// The same, if have only one user, it will be vectorized for sure.
|
|
if (areAllUsersVectorized(E)) {
|
|
// Take credit for instruction that will become dead.
|
|
if (E->hasOneUse()) {
|
|
Instruction *Ext = E->user_back();
|
|
if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
|
|
all_of(Ext->users(),
|
|
[](User *U) { return isa<GetElementPtrInst>(U); })) {
|
|
// Use getExtractWithExtendCost() to calculate the cost of
|
|
// extractelement/ext pair.
|
|
DeadCost -= TTI->getExtractWithExtendCost(
|
|
Ext->getOpcode(), Ext->getType(), VecTy, i);
|
|
// Add back the cost of s|zext which is subtracted separately.
|
|
DeadCost += TTI->getCastInstrCost(
|
|
Ext->getOpcode(), Ext->getType(), E->getType(), Ext);
|
|
continue;
|
|
}
|
|
}
|
|
DeadCost -=
|
|
TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
|
|
}
|
|
}
|
|
return DeadCost;
|
|
}
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::FPExt:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::SIToFP:
|
|
case Instruction::UIToFP:
|
|
case Instruction::Trunc:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::BitCast: {
|
|
Type *SrcTy = VL0->getOperand(0)->getType();
|
|
int ScalarEltCost =
|
|
TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, VL0);
|
|
if (NeedToShuffleReuses) {
|
|
ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
|
|
}
|
|
|
|
// Calculate the cost of this instruction.
|
|
int ScalarCost = VL.size() * ScalarEltCost;
|
|
|
|
VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
|
|
int VecCost = 0;
|
|
// Check if the values are candidates to demote.
|
|
if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
|
|
VecCost = ReuseShuffleCost +
|
|
TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, VL0);
|
|
}
|
|
return VecCost - ScalarCost;
|
|
}
|
|
case Instruction::FCmp:
|
|
case Instruction::ICmp:
|
|
case Instruction::Select: {
|
|
// Calculate the cost of this instruction.
|
|
int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
|
|
Builder.getInt1Ty(), VL0);
|
|
if (NeedToShuffleReuses) {
|
|
ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
|
|
}
|
|
VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
|
|
int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
|
|
int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, VL0);
|
|
return ReuseShuffleCost + VecCost - ScalarCost;
|
|
}
|
|
case Instruction::FNeg:
|
|
case Instruction::Add:
|
|
case Instruction::FAdd:
|
|
case Instruction::Sub:
|
|
case Instruction::FSub:
|
|
case Instruction::Mul:
|
|
case Instruction::FMul:
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::FDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::FRem:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor: {
|
|
// Certain instructions can be cheaper to vectorize if they have a
|
|
// constant second vector operand.
|
|
TargetTransformInfo::OperandValueKind Op1VK =
|
|
TargetTransformInfo::OK_AnyValue;
|
|
TargetTransformInfo::OperandValueKind Op2VK =
|
|
TargetTransformInfo::OK_UniformConstantValue;
|
|
TargetTransformInfo::OperandValueProperties Op1VP =
|
|
TargetTransformInfo::OP_None;
|
|
TargetTransformInfo::OperandValueProperties Op2VP =
|
|
TargetTransformInfo::OP_PowerOf2;
|
|
|
|
// If all operands are exactly the same ConstantInt then set the
|
|
// operand kind to OK_UniformConstantValue.
|
|
// If instead not all operands are constants, then set the operand kind
|
|
// to OK_AnyValue. If all operands are constants but not the same,
|
|
// then set the operand kind to OK_NonUniformConstantValue.
|
|
ConstantInt *CInt0 = nullptr;
|
|
for (unsigned i = 0, e = VL.size(); i < e; ++i) {
|
|
const Instruction *I = cast<Instruction>(VL[i]);
|
|
unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
|
|
ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
|
|
if (!CInt) {
|
|
Op2VK = TargetTransformInfo::OK_AnyValue;
|
|
Op2VP = TargetTransformInfo::OP_None;
|
|
break;
|
|
}
|
|
if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
|
|
!CInt->getValue().isPowerOf2())
|
|
Op2VP = TargetTransformInfo::OP_None;
|
|
if (i == 0) {
|
|
CInt0 = CInt;
|
|
continue;
|
|
}
|
|
if (CInt0 != CInt)
|
|
Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
|
|
}
|
|
|
|
SmallVector<const Value *, 4> Operands(VL0->operand_values());
|
|
int ScalarEltCost = TTI->getArithmeticInstrCost(
|
|
E->getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands, VL0);
|
|
if (NeedToShuffleReuses) {
|
|
ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
|
|
}
|
|
int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
|
|
int VecCost = TTI->getArithmeticInstrCost(
|
|
E->getOpcode(), VecTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands, VL0);
|
|
return ReuseShuffleCost + VecCost - ScalarCost;
|
|
}
|
|
case Instruction::GetElementPtr: {
|
|
TargetTransformInfo::OperandValueKind Op1VK =
|
|
TargetTransformInfo::OK_AnyValue;
|
|
TargetTransformInfo::OperandValueKind Op2VK =
|
|
TargetTransformInfo::OK_UniformConstantValue;
|
|
|
|
int ScalarEltCost =
|
|
TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
|
|
if (NeedToShuffleReuses) {
|
|
ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
|
|
}
|
|
int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
|
|
int VecCost =
|
|
TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
|
|
return ReuseShuffleCost + VecCost - ScalarCost;
|
|
}
|
|
case Instruction::Load: {
|
|
// Cost of wide load - cost of scalar loads.
|
|
MaybeAlign alignment(cast<LoadInst>(VL0)->getAlignment());
|
|
int ScalarEltCost =
|
|
TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0);
|
|
if (NeedToShuffleReuses) {
|
|
ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
|
|
}
|
|
int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
|
|
int VecLdCost =
|
|
TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0);
|
|
if (!E->ReorderIndices.empty()) {
|
|
// TODO: Merge this shuffle with the ReuseShuffleCost.
|
|
VecLdCost += TTI->getShuffleCost(
|
|
TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
|
|
}
|
|
return ReuseShuffleCost + VecLdCost - ScalarLdCost;
|
|
}
|
|
case Instruction::Store: {
|
|
// We know that we can merge the stores. Calculate the cost.
|
|
bool IsReorder = !E->ReorderIndices.empty();
|
|
auto *SI =
|
|
cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
|
|
MaybeAlign Alignment(SI->getAlignment());
|
|
int ScalarEltCost =
|
|
TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0, VL0);
|
|
if (NeedToShuffleReuses)
|
|
ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
|
|
int ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
|
|
int VecStCost = TTI->getMemoryOpCost(Instruction::Store,
|
|
VecTy, Alignment, 0, VL0);
|
|
if (IsReorder) {
|
|
// TODO: Merge this shuffle with the ReuseShuffleCost.
|
|
VecStCost += TTI->getShuffleCost(
|
|
TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
|
|
}
|
|
return ReuseShuffleCost + VecStCost - ScalarStCost;
|
|
}
|
|
case Instruction::Call: {
|
|
CallInst *CI = cast<CallInst>(VL0);
|
|
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
|
|
|
|
// Calculate the cost of the scalar and vector calls.
|
|
SmallVector<Type *, 4> ScalarTys;
|
|
for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op)
|
|
ScalarTys.push_back(CI->getArgOperand(op)->getType());
|
|
|
|
FastMathFlags FMF;
|
|
if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
|
|
FMF = FPMO->getFastMathFlags();
|
|
|
|
int ScalarEltCost =
|
|
TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF);
|
|
if (NeedToShuffleReuses) {
|
|
ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
|
|
}
|
|
int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
|
|
|
|
auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
|
|
int VecCallCost = std::min(VecCallCosts.first, VecCallCosts.second);
|
|
|
|
LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
|
|
<< " (" << VecCallCost << "-" << ScalarCallCost << ")"
|
|
<< " for " << *CI << "\n");
|
|
|
|
return ReuseShuffleCost + VecCallCost - ScalarCallCost;
|
|
}
|
|
case Instruction::ShuffleVector: {
|
|
assert(E->isAltShuffle() &&
|
|
((Instruction::isBinaryOp(E->getOpcode()) &&
|
|
Instruction::isBinaryOp(E->getAltOpcode())) ||
|
|
(Instruction::isCast(E->getOpcode()) &&
|
|
Instruction::isCast(E->getAltOpcode()))) &&
|
|
"Invalid Shuffle Vector Operand");
|
|
int ScalarCost = 0;
|
|
if (NeedToShuffleReuses) {
|
|
for (unsigned Idx : E->ReuseShuffleIndices) {
|
|
Instruction *I = cast<Instruction>(VL[Idx]);
|
|
ReuseShuffleCost -= TTI->getInstructionCost(
|
|
I, TargetTransformInfo::TCK_RecipThroughput);
|
|
}
|
|
for (Value *V : VL) {
|
|
Instruction *I = cast<Instruction>(V);
|
|
ReuseShuffleCost += TTI->getInstructionCost(
|
|
I, TargetTransformInfo::TCK_RecipThroughput);
|
|
}
|
|
}
|
|
for (Value *V : VL) {
|
|
Instruction *I = cast<Instruction>(V);
|
|
assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
|
|
ScalarCost += TTI->getInstructionCost(
|
|
I, TargetTransformInfo::TCK_RecipThroughput);
|
|
}
|
|
// VecCost is equal to sum of the cost of creating 2 vectors
|
|
// and the cost of creating shuffle.
|
|
int VecCost = 0;
|
|
if (Instruction::isBinaryOp(E->getOpcode())) {
|
|
VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy);
|
|
VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy);
|
|
} else {
|
|
Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
|
|
Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
|
|
VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size());
|
|
VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size());
|
|
VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty);
|
|
VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty);
|
|
}
|
|
VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0);
|
|
return ReuseShuffleCost + VecCost - ScalarCost;
|
|
}
|
|
default:
|
|
llvm_unreachable("Unknown instruction");
|
|
}
|
|
}
|
|
|
|
bool BoUpSLP::isFullyVectorizableTinyTree() const {
|
|
LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
|
|
<< VectorizableTree.size() << " is fully vectorizable .\n");
|
|
|
|
// We only handle trees of heights 1 and 2.
|
|
if (VectorizableTree.size() == 1 &&
|
|
VectorizableTree[0]->State == TreeEntry::Vectorize)
|
|
return true;
|
|
|
|
if (VectorizableTree.size() != 2)
|
|
return false;
|
|
|
|
// Handle splat and all-constants stores.
|
|
if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
|
|
(allConstant(VectorizableTree[1]->Scalars) ||
|
|
isSplat(VectorizableTree[1]->Scalars)))
|
|
return true;
|
|
|
|
// Gathering cost would be too much for tiny trees.
|
|
if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
|
|
VectorizableTree[1]->State == TreeEntry::NeedToGather)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const {
|
|
if (RdxOpcode != Instruction::Or)
|
|
return false;
|
|
|
|
unsigned NumElts = VectorizableTree[0]->Scalars.size();
|
|
Value *FirstReduced = VectorizableTree[0]->Scalars[0];
|
|
|
|
// Look past the reduction to find a source value. Arbitrarily follow the
|
|
// path through operand 0 of any 'or'. Also, peek through optional
|
|
// shift-left-by-constant.
|
|
Value *ZextLoad = FirstReduced;
|
|
while (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
|
|
match(ZextLoad, m_Shl(m_Value(), m_Constant())))
|
|
ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0);
|
|
|
|
// Check if the input to the reduction is an extended load.
|
|
Value *LoadPtr;
|
|
if (!match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr)))))
|
|
return false;
|
|
|
|
// Require that the total load bit width is a legal integer type.
|
|
// For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
|
|
// But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
|
|
Type *SrcTy = LoadPtr->getType()->getPointerElementType();
|
|
unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
|
|
LLVMContext &Context = FirstReduced->getContext();
|
|
if (!TTI->isTypeLegal(IntegerType::get(Context, LoadBitWidth)))
|
|
return false;
|
|
|
|
// Everything matched - assume that we can fold the whole sequence using
|
|
// load combining.
|
|
LLVM_DEBUG(dbgs() << "SLP: Assume load combining for scalar reduction of "
|
|
<< *(cast<Instruction>(FirstReduced)) << "\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
|
|
// We can vectorize the tree if its size is greater than or equal to the
|
|
// minimum size specified by the MinTreeSize command line option.
|
|
if (VectorizableTree.size() >= MinTreeSize)
|
|
return false;
|
|
|
|
// If we have a tiny tree (a tree whose size is less than MinTreeSize), we
|
|
// can vectorize it if we can prove it fully vectorizable.
|
|
if (isFullyVectorizableTinyTree())
|
|
return false;
|
|
|
|
assert(VectorizableTree.empty()
|
|
? ExternalUses.empty()
|
|
: true && "We shouldn't have any external users");
|
|
|
|
// Otherwise, we can't vectorize the tree. It is both tiny and not fully
|
|
// vectorizable.
|
|
return true;
|
|
}
|
|
|
|
int BoUpSLP::getSpillCost() const {
|
|
// Walk from the bottom of the tree to the top, tracking which values are
|
|
// live. When we see a call instruction that is not part of our tree,
|
|
// query TTI to see if there is a cost to keeping values live over it
|
|
// (for example, if spills and fills are required).
|
|
unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
|
|
int Cost = 0;
|
|
|
|
SmallPtrSet<Instruction*, 4> LiveValues;
|
|
Instruction *PrevInst = nullptr;
|
|
|
|
for (const auto &TEPtr : VectorizableTree) {
|
|
Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
|
|
if (!Inst)
|
|
continue;
|
|
|
|
if (!PrevInst) {
|
|
PrevInst = Inst;
|
|
continue;
|
|
}
|
|
|
|
// Update LiveValues.
|
|
LiveValues.erase(PrevInst);
|
|
for (auto &J : PrevInst->operands()) {
|
|
if (isa<Instruction>(&*J) && getTreeEntry(&*J))
|
|
LiveValues.insert(cast<Instruction>(&*J));
|
|
}
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << "SLP: #LV: " << LiveValues.size();
|
|
for (auto *X : LiveValues)
|
|
dbgs() << " " << X->getName();
|
|
dbgs() << ", Looking at ";
|
|
Inst->dump();
|
|
});
|
|
|
|
// Now find the sequence of instructions between PrevInst and Inst.
|
|
unsigned NumCalls = 0;
|
|
BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
|
|
PrevInstIt =
|
|
PrevInst->getIterator().getReverse();
|
|
while (InstIt != PrevInstIt) {
|
|
if (PrevInstIt == PrevInst->getParent()->rend()) {
|
|
PrevInstIt = Inst->getParent()->rbegin();
|
|
continue;
|
|
}
|
|
|
|
// Debug information does not impact spill cost.
|
|
if ((isa<CallInst>(&*PrevInstIt) &&
|
|
!isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
|
|
&*PrevInstIt != PrevInst)
|
|
NumCalls++;
|
|
|
|
++PrevInstIt;
|
|
}
|
|
|
|
if (NumCalls) {
|
|
SmallVector<Type*, 4> V;
|
|
for (auto *II : LiveValues)
|
|
V.push_back(VectorType::get(II->getType(), BundleWidth));
|
|
Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
|
|
}
|
|
|
|
PrevInst = Inst;
|
|
}
|
|
|
|
return Cost;
|
|
}
|
|
|
|
int BoUpSLP::getTreeCost() {
|
|
int Cost = 0;
|
|
LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
|
|
<< VectorizableTree.size() << ".\n");
|
|
|
|
unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
|
|
|
|
for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
|
|
TreeEntry &TE = *VectorizableTree[I].get();
|
|
|
|
// We create duplicate tree entries for gather sequences that have multiple
|
|
// uses. However, we should not compute the cost of duplicate sequences.
|
|
// For example, if we have a build vector (i.e., insertelement sequence)
|
|
// that is used by more than one vector instruction, we only need to
|
|
// compute the cost of the insertelement instructions once. The redundant
|
|
// instructions will be eliminated by CSE.
|
|
//
|
|
// We should consider not creating duplicate tree entries for gather
|
|
// sequences, and instead add additional edges to the tree representing
|
|
// their uses. Since such an approach results in fewer total entries,
|
|
// existing heuristics based on tree size may yield different results.
|
|
//
|
|
if (TE.State == TreeEntry::NeedToGather &&
|
|
std::any_of(std::next(VectorizableTree.begin(), I + 1),
|
|
VectorizableTree.end(),
|
|
[TE](const std::unique_ptr<TreeEntry> &EntryPtr) {
|
|
return EntryPtr->State == TreeEntry::NeedToGather &&
|
|
EntryPtr->isSame(TE.Scalars);
|
|
}))
|
|
continue;
|
|
|
|
int C = getEntryCost(&TE);
|
|
LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
|
|
<< " for bundle that starts with " << *TE.Scalars[0]
|
|
<< ".\n");
|
|
Cost += C;
|
|
}
|
|
|
|
SmallPtrSet<Value *, 16> ExtractCostCalculated;
|
|
int ExtractCost = 0;
|
|
for (ExternalUser &EU : ExternalUses) {
|
|
// We only add extract cost once for the same scalar.
|
|
if (!ExtractCostCalculated.insert(EU.Scalar).second)
|
|
continue;
|
|
|
|
// Uses by ephemeral values are free (because the ephemeral value will be
|
|
// removed prior to code generation, and so the extraction will be
|
|
// removed as well).
|
|
if (EphValues.count(EU.User))
|
|
continue;
|
|
|
|
// If we plan to rewrite the tree in a smaller type, we will need to sign
|
|
// extend the extracted value back to the original type. Here, we account
|
|
// for the extract and the added cost of the sign extend if needed.
|
|
auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth);
|
|
auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
|
|
if (MinBWs.count(ScalarRoot)) {
|
|
auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
|
|
auto Extend =
|
|
MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
|
|
VecTy = VectorType::get(MinTy, BundleWidth);
|
|
ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
|
|
VecTy, EU.Lane);
|
|
} else {
|
|
ExtractCost +=
|
|
TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
|
|
}
|
|
}
|
|
|
|
int SpillCost = getSpillCost();
|
|
Cost += SpillCost + ExtractCost;
|
|
|
|
std::string Str;
|
|
{
|
|
raw_string_ostream OS(Str);
|
|
OS << "SLP: Spill Cost = " << SpillCost << ".\n"
|
|
<< "SLP: Extract Cost = " << ExtractCost << ".\n"
|
|
<< "SLP: Total Cost = " << Cost << ".\n";
|
|
}
|
|
LLVM_DEBUG(dbgs() << Str);
|
|
|
|
if (ViewSLPTree)
|
|
ViewGraph(this, "SLP" + F->getName(), false, Str);
|
|
|
|
return Cost;
|
|
}
|
|
|
|
int BoUpSLP::getGatherCost(VectorType *Ty,
|
|
const DenseSet<unsigned> &ShuffledIndices) const {
|
|
int Cost = 0;
|
|
for (unsigned i = 0, e = Ty->getNumElements(); i < e; ++i)
|
|
if (!ShuffledIndices.count(i))
|
|
Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
|
|
if (!ShuffledIndices.empty())
|
|
Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
|
|
return Cost;
|
|
}
|
|
|
|
int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
|
|
// Find the type of the operands in VL.
|
|
Type *ScalarTy = VL[0]->getType();
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
|
|
ScalarTy = SI->getValueOperand()->getType();
|
|
VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
|
|
// Find the cost of inserting/extracting values from the vector.
|
|
// Check if the same elements are inserted several times and count them as
|
|
// shuffle candidates.
|
|
DenseSet<unsigned> ShuffledElements;
|
|
DenseSet<Value *> UniqueElements;
|
|
// Iterate in reverse order to consider insert elements with the high cost.
|
|
for (unsigned I = VL.size(); I > 0; --I) {
|
|
unsigned Idx = I - 1;
|
|
if (!UniqueElements.insert(VL[Idx]).second)
|
|
ShuffledElements.insert(Idx);
|
|
}
|
|
return getGatherCost(VecTy, ShuffledElements);
|
|
}
|
|
|
|
// Perform operand reordering on the instructions in VL and return the reordered
|
|
// operands in Left and Right.
|
|
void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
|
|
SmallVectorImpl<Value *> &Left,
|
|
SmallVectorImpl<Value *> &Right,
|
|
const DataLayout &DL,
|
|
ScalarEvolution &SE,
|
|
const BoUpSLP &R) {
|
|
if (VL.empty())
|
|
return;
|
|
VLOperands Ops(VL, DL, SE, R);
|
|
// Reorder the operands in place.
|
|
Ops.reorder();
|
|
Left = Ops.getVL(0);
|
|
Right = Ops.getVL(1);
|
|
}
|
|
|
|
void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) {
|
|
// Get the basic block this bundle is in. All instructions in the bundle
|
|
// should be in this block.
|
|
auto *Front = E->getMainOp();
|
|
auto *BB = Front->getParent();
|
|
assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()),
|
|
[=](Value *V) -> bool {
|
|
auto *I = cast<Instruction>(V);
|
|
return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
|
|
}));
|
|
|
|
// The last instruction in the bundle in program order.
|
|
Instruction *LastInst = nullptr;
|
|
|
|
// Find the last instruction. The common case should be that BB has been
|
|
// scheduled, and the last instruction is VL.back(). So we start with
|
|
// VL.back() and iterate over schedule data until we reach the end of the
|
|
// bundle. The end of the bundle is marked by null ScheduleData.
|
|
if (BlocksSchedules.count(BB)) {
|
|
auto *Bundle =
|
|
BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
|
|
if (Bundle && Bundle->isPartOfBundle())
|
|
for (; Bundle; Bundle = Bundle->NextInBundle)
|
|
if (Bundle->OpValue == Bundle->Inst)
|
|
LastInst = Bundle->Inst;
|
|
}
|
|
|
|
// LastInst can still be null at this point if there's either not an entry
|
|
// for BB in BlocksSchedules or there's no ScheduleData available for
|
|
// VL.back(). This can be the case if buildTree_rec aborts for various
|
|
// reasons (e.g., the maximum recursion depth is reached, the maximum region
|
|
// size is reached, etc.). ScheduleData is initialized in the scheduling
|
|
// "dry-run".
|
|
//
|
|
// If this happens, we can still find the last instruction by brute force. We
|
|
// iterate forwards from Front (inclusive) until we either see all
|
|
// instructions in the bundle or reach the end of the block. If Front is the
|
|
// last instruction in program order, LastInst will be set to Front, and we
|
|
// will visit all the remaining instructions in the block.
|
|
//
|
|
// One of the reasons we exit early from buildTree_rec is to place an upper
|
|
// bound on compile-time. Thus, taking an additional compile-time hit here is
|
|
// not ideal. However, this should be exceedingly rare since it requires that
|
|
// we both exit early from buildTree_rec and that the bundle be out-of-order
|
|
// (causing us to iterate all the way to the end of the block).
|
|
if (!LastInst) {
|
|
SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
|
|
for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
|
|
if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
|
|
LastInst = &I;
|
|
if (Bundle.empty())
|
|
break;
|
|
}
|
|
}
|
|
assert(LastInst && "Failed to find last instruction in bundle");
|
|
|
|
// Set the insertion point after the last instruction in the bundle. Set the
|
|
// debug location to Front.
|
|
Builder.SetInsertPoint(BB, ++LastInst->getIterator());
|
|
Builder.SetCurrentDebugLocation(Front->getDebugLoc());
|
|
}
|
|
|
|
Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
|
|
Value *Vec = UndefValue::get(Ty);
|
|
// Generate the 'InsertElement' instruction.
|
|
for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
|
|
Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
|
|
if (auto *Insrt = dyn_cast<InsertElementInst>(Vec)) {
|
|
GatherSeq.insert(Insrt);
|
|
CSEBlocks.insert(Insrt->getParent());
|
|
|
|
// Add to our 'need-to-extract' list.
|
|
if (TreeEntry *E = getTreeEntry(VL[i])) {
|
|
// Find which lane we need to extract.
|
|
int FoundLane = -1;
|
|
for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) {
|
|
// Is this the lane of the scalar that we are looking for ?
|
|
if (E->Scalars[Lane] == VL[i]) {
|
|
FoundLane = Lane;
|
|
break;
|
|
}
|
|
}
|
|
assert(FoundLane >= 0 && "Could not find the correct lane");
|
|
if (!E->ReuseShuffleIndices.empty()) {
|
|
FoundLane =
|
|
std::distance(E->ReuseShuffleIndices.begin(),
|
|
llvm::find(E->ReuseShuffleIndices, FoundLane));
|
|
}
|
|
ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
|
|
}
|
|
}
|
|
}
|
|
|
|
return Vec;
|
|
}
|
|
|
|
Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
|
|
InstructionsState S = getSameOpcode(VL);
|
|
if (S.getOpcode()) {
|
|
if (TreeEntry *E = getTreeEntry(S.OpValue)) {
|
|
if (E->isSame(VL)) {
|
|
Value *V = vectorizeTree(E);
|
|
if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) {
|
|
// We need to get the vectorized value but without shuffle.
|
|
if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) {
|
|
V = SV->getOperand(0);
|
|
} else {
|
|
// Reshuffle to get only unique values.
|
|
SmallVector<int, 4> UniqueIdxs;
|
|
SmallSet<int, 4> UsedIdxs;
|
|
for (int Idx : E->ReuseShuffleIndices)
|
|
if (UsedIdxs.insert(Idx).second)
|
|
UniqueIdxs.emplace_back(Idx);
|
|
V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
|
|
UniqueIdxs);
|
|
}
|
|
}
|
|
return V;
|
|
}
|
|
}
|
|
}
|
|
|
|
Type *ScalarTy = S.OpValue->getType();
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
|
|
ScalarTy = SI->getValueOperand()->getType();
|
|
|
|
// Check that every instruction appears once in this bundle.
|
|
SmallVector<int, 4> ReuseShuffleIndicies;
|
|
SmallVector<Value *, 4> UniqueValues;
|
|
if (VL.size() > 2) {
|
|
DenseMap<Value *, unsigned> UniquePositions;
|
|
for (Value *V : VL) {
|
|
auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
|
|
ReuseShuffleIndicies.emplace_back(Res.first->second);
|
|
if (Res.second || isa<Constant>(V))
|
|
UniqueValues.emplace_back(V);
|
|
}
|
|
// Do not shuffle single element or if number of unique values is not power
|
|
// of 2.
|
|
if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 ||
|
|
!llvm::isPowerOf2_32(UniqueValues.size()))
|
|
ReuseShuffleIndicies.clear();
|
|
else
|
|
VL = UniqueValues;
|
|
}
|
|
VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
|
|
|
|
Value *V = Gather(VL, VecTy);
|
|
if (!ReuseShuffleIndicies.empty()) {
|
|
V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
|
|
ReuseShuffleIndicies, "shuffle");
|
|
if (auto *I = dyn_cast<Instruction>(V)) {
|
|
GatherSeq.insert(I);
|
|
CSEBlocks.insert(I->getParent());
|
|
}
|
|
}
|
|
return V;
|
|
}
|
|
|
|
static void inversePermutation(ArrayRef<unsigned> Indices,
|
|
SmallVectorImpl<int> &Mask) {
|
|
Mask.clear();
|
|
const unsigned E = Indices.size();
|
|
Mask.resize(E);
|
|
for (unsigned I = 0; I < E; ++I)
|
|
Mask[Indices[I]] = I;
|
|
}
|
|
|
|
Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
|
|
IRBuilder<>::InsertPointGuard Guard(Builder);
|
|
|
|
if (E->VectorizedValue) {
|
|
LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
|
|
return E->VectorizedValue;
|
|
}
|
|
|
|
Instruction *VL0 = E->getMainOp();
|
|
Type *ScalarTy = VL0->getType();
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
|
|
ScalarTy = SI->getValueOperand()->getType();
|
|
VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
|
|
|
|
bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
|
|
|
|
if (E->State == TreeEntry::NeedToGather) {
|
|
setInsertPointAfterBundle(E);
|
|
auto *V = Gather(E->Scalars, VecTy);
|
|
if (NeedToShuffleReuses) {
|
|
V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
|
|
E->ReuseShuffleIndices, "shuffle");
|
|
if (auto *I = dyn_cast<Instruction>(V)) {
|
|
GatherSeq.insert(I);
|
|
CSEBlocks.insert(I->getParent());
|
|
}
|
|
}
|
|
E->VectorizedValue = V;
|
|
return V;
|
|
}
|
|
|
|
assert(E->State == TreeEntry::Vectorize && "Unhandled state");
|
|
unsigned ShuffleOrOp =
|
|
E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
|
|
switch (ShuffleOrOp) {
|
|
case Instruction::PHI: {
|
|
auto *PH = cast<PHINode>(VL0);
|
|
Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
|
|
Builder.SetCurrentDebugLocation(PH->getDebugLoc());
|
|
PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
|
|
Value *V = NewPhi;
|
|
if (NeedToShuffleReuses) {
|
|
V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
|
|
E->ReuseShuffleIndices, "shuffle");
|
|
}
|
|
E->VectorizedValue = V;
|
|
|
|
// PHINodes may have multiple entries from the same block. We want to
|
|
// visit every block once.
|
|
SmallPtrSet<BasicBlock*, 4> VisitedBBs;
|
|
|
|
for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
|
|
ValueList Operands;
|
|
BasicBlock *IBB = PH->getIncomingBlock(i);
|
|
|
|
if (!VisitedBBs.insert(IBB).second) {
|
|
NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
|
|
continue;
|
|
}
|
|
|
|
Builder.SetInsertPoint(IBB->getTerminator());
|
|
Builder.SetCurrentDebugLocation(PH->getDebugLoc());
|
|
Value *Vec = vectorizeTree(E->getOperand(i));
|
|
NewPhi->addIncoming(Vec, IBB);
|
|
}
|
|
|
|
assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
|
|
"Invalid number of incoming values");
|
|
return V;
|
|
}
|
|
|
|
case Instruction::ExtractElement: {
|
|
Value *V = E->getSingleOperand(0);
|
|
if (!E->ReorderIndices.empty()) {
|
|
SmallVector<int, 4> Mask;
|
|
inversePermutation(E->ReorderIndices, Mask);
|
|
Builder.SetInsertPoint(VL0);
|
|
V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask,
|
|
"reorder_shuffle");
|
|
}
|
|
if (NeedToShuffleReuses) {
|
|
// TODO: Merge this shuffle with the ReorderShuffleMask.
|
|
if (E->ReorderIndices.empty())
|
|
Builder.SetInsertPoint(VL0);
|
|
V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
|
|
E->ReuseShuffleIndices, "shuffle");
|
|
}
|
|
E->VectorizedValue = V;
|
|
return V;
|
|
}
|
|
case Instruction::ExtractValue: {
|
|
LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0));
|
|
Builder.SetInsertPoint(LI);
|
|
PointerType *PtrTy =
|
|
PointerType::get(VecTy, LI->getPointerAddressSpace());
|
|
Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
|
|
LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
|
|
Value *NewV = propagateMetadata(V, E->Scalars);
|
|
if (!E->ReorderIndices.empty()) {
|
|
SmallVector<int, 4> Mask;
|
|
inversePermutation(E->ReorderIndices, Mask);
|
|
NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask,
|
|
"reorder_shuffle");
|
|
}
|
|
if (NeedToShuffleReuses) {
|
|
// TODO: Merge this shuffle with the ReorderShuffleMask.
|
|
NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy),
|
|
E->ReuseShuffleIndices, "shuffle");
|
|
}
|
|
E->VectorizedValue = NewV;
|
|
return NewV;
|
|
}
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::FPExt:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::SIToFP:
|
|
case Instruction::UIToFP:
|
|
case Instruction::Trunc:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::BitCast: {
|
|
setInsertPointAfterBundle(E);
|
|
|
|
Value *InVec = vectorizeTree(E->getOperand(0));
|
|
|
|
if (E->VectorizedValue) {
|
|
LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
|
|
return E->VectorizedValue;
|
|
}
|
|
|
|
auto *CI = cast<CastInst>(VL0);
|
|
Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
|
|
if (NeedToShuffleReuses) {
|
|
V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
|
|
E->ReuseShuffleIndices, "shuffle");
|
|
}
|
|
E->VectorizedValue = V;
|
|
++NumVectorInstructions;
|
|
return V;
|
|
}
|
|
case Instruction::FCmp:
|
|
case Instruction::ICmp: {
|
|
setInsertPointAfterBundle(E);
|
|
|
|
Value *L = vectorizeTree(E->getOperand(0));
|
|
Value *R = vectorizeTree(E->getOperand(1));
|
|
|
|
if (E->VectorizedValue) {
|
|
LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
|
|
return E->VectorizedValue;
|
|
}
|
|
|
|
CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
|
|
Value *V;
|
|
if (E->getOpcode() == Instruction::FCmp)
|
|
V = Builder.CreateFCmp(P0, L, R);
|
|
else
|
|
V = Builder.CreateICmp(P0, L, R);
|
|
|
|
propagateIRFlags(V, E->Scalars, VL0);
|
|
if (NeedToShuffleReuses) {
|
|
V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
|
|
E->ReuseShuffleIndices, "shuffle");
|
|
}
|
|
E->VectorizedValue = V;
|
|
++NumVectorInstructions;
|
|
return V;
|
|
}
|
|
case Instruction::Select: {
|
|
setInsertPointAfterBundle(E);
|
|
|
|
Value *Cond = vectorizeTree(E->getOperand(0));
|
|
Value *True = vectorizeTree(E->getOperand(1));
|
|
Value *False = vectorizeTree(E->getOperand(2));
|
|
|
|
if (E->VectorizedValue) {
|
|
LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
|
|
return E->VectorizedValue;
|
|
}
|
|
|
|
Value *V = Builder.CreateSelect(Cond, True, False);
|
|
if (NeedToShuffleReuses) {
|
|
V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
|
|
E->ReuseShuffleIndices, "shuffle");
|
|
}
|
|
E->VectorizedValue = V;
|
|
++NumVectorInstructions;
|
|
return V;
|
|
}
|
|
case Instruction::FNeg: {
|
|
setInsertPointAfterBundle(E);
|
|
|
|
Value *Op = vectorizeTree(E->getOperand(0));
|
|
|
|
if (E->VectorizedValue) {
|
|
LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
|
|
return E->VectorizedValue;
|
|
}
|
|
|
|
Value *V = Builder.CreateUnOp(
|
|
static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
|
|
propagateIRFlags(V, E->Scalars, VL0);
|
|
if (auto *I = dyn_cast<Instruction>(V))
|
|
V = propagateMetadata(I, E->Scalars);
|
|
|
|
if (NeedToShuffleReuses) {
|
|
V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
|
|
E->ReuseShuffleIndices, "shuffle");
|
|
}
|
|
E->VectorizedValue = V;
|
|
++NumVectorInstructions;
|
|
|
|
return V;
|
|
}
|
|
case Instruction::Add:
|
|
case Instruction::FAdd:
|
|
case Instruction::Sub:
|
|
case Instruction::FSub:
|
|
case Instruction::Mul:
|
|
case Instruction::FMul:
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::FDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::FRem:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor: {
|
|
setInsertPointAfterBundle(E);
|
|
|
|
Value *LHS = vectorizeTree(E->getOperand(0));
|
|
Value *RHS = vectorizeTree(E->getOperand(1));
|
|
|
|
if (E->VectorizedValue) {
|
|
LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
|
|
return E->VectorizedValue;
|
|
}
|
|
|
|
Value *V = Builder.CreateBinOp(
|
|
static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
|
|
RHS);
|
|
propagateIRFlags(V, E->Scalars, VL0);
|
|
if (auto *I = dyn_cast<Instruction>(V))
|
|
V = propagateMetadata(I, E->Scalars);
|
|
|
|
if (NeedToShuffleReuses) {
|
|
V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
|
|
E->ReuseShuffleIndices, "shuffle");
|
|
}
|
|
E->VectorizedValue = V;
|
|
++NumVectorInstructions;
|
|
|
|
return V;
|
|
}
|
|
case Instruction::Load: {
|
|
// Loads are inserted at the head of the tree because we don't want to
|
|
// sink them all the way down past store instructions.
|
|
bool IsReorder = E->updateStateIfReorder();
|
|
if (IsReorder)
|
|
VL0 = E->getMainOp();
|
|
setInsertPointAfterBundle(E);
|
|
|
|
LoadInst *LI = cast<LoadInst>(VL0);
|
|
Type *ScalarLoadTy = LI->getType();
|
|
unsigned AS = LI->getPointerAddressSpace();
|
|
|
|
Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
|
|
VecTy->getPointerTo(AS));
|
|
|
|
// The pointer operand uses an in-tree scalar so we add the new BitCast to
|
|
// ExternalUses list to make sure that an extract will be generated in the
|
|
// future.
|
|
Value *PO = LI->getPointerOperand();
|
|
if (getTreeEntry(PO))
|
|
ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));
|
|
|
|
Align Alignment = DL->getValueOrABITypeAlignment(LI->getAlign(),
|
|
ScalarLoadTy);
|
|
LI = Builder.CreateAlignedLoad(VecTy, VecPtr, Alignment);
|
|
Value *V = propagateMetadata(LI, E->Scalars);
|
|
if (IsReorder) {
|
|
SmallVector<int, 4> Mask;
|
|
inversePermutation(E->ReorderIndices, Mask);
|
|
V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
|
|
Mask, "reorder_shuffle");
|
|
}
|
|
if (NeedToShuffleReuses) {
|
|
// TODO: Merge this shuffle with the ReorderShuffleMask.
|
|
V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
|
|
E->ReuseShuffleIndices, "shuffle");
|
|
}
|
|
E->VectorizedValue = V;
|
|
++NumVectorInstructions;
|
|
return V;
|
|
}
|
|
case Instruction::Store: {
|
|
bool IsReorder = !E->ReorderIndices.empty();
|
|
auto *SI = cast<StoreInst>(
|
|
IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0);
|
|
unsigned Alignment = SI->getAlignment();
|
|
unsigned AS = SI->getPointerAddressSpace();
|
|
|
|
setInsertPointAfterBundle(E);
|
|
|
|
Value *VecValue = vectorizeTree(E->getOperand(0));
|
|
if (IsReorder) {
|
|
SmallVector<int, 4> Mask(E->ReorderIndices.begin(),
|
|
E->ReorderIndices.end());
|
|
VecValue = Builder.CreateShuffleVector(
|
|
VecValue, UndefValue::get(VecValue->getType()), Mask,
|
|
"reorder_shuffle");
|
|
}
|
|
Value *ScalarPtr = SI->getPointerOperand();
|
|
Value *VecPtr = Builder.CreateBitCast(
|
|
ScalarPtr, VecValue->getType()->getPointerTo(AS));
|
|
StoreInst *ST = Builder.CreateStore(VecValue, VecPtr);
|
|
|
|
// The pointer operand uses an in-tree scalar, so add the new BitCast to
|
|
// ExternalUses to make sure that an extract will be generated in the
|
|
// future.
|
|
if (getTreeEntry(ScalarPtr))
|
|
ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
|
|
|
|
if (!Alignment)
|
|
Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
|
|
|
|
ST->setAlignment(Align(Alignment));
|
|
Value *V = propagateMetadata(ST, E->Scalars);
|
|
if (NeedToShuffleReuses) {
|
|
V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
|
|
E->ReuseShuffleIndices, "shuffle");
|
|
}
|
|
E->VectorizedValue = V;
|
|
++NumVectorInstructions;
|
|
return V;
|
|
}
|
|
case Instruction::GetElementPtr: {
|
|
setInsertPointAfterBundle(E);
|
|
|
|
Value *Op0 = vectorizeTree(E->getOperand(0));
|
|
|
|
std::vector<Value *> OpVecs;
|
|
for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
|
|
++j) {
|
|
ValueList &VL = E->getOperand(j);
|
|
// Need to cast all elements to the same type before vectorization to
|
|
// avoid crash.
|
|
Type *VL0Ty = VL0->getOperand(j)->getType();
|
|
Type *Ty = llvm::all_of(
|
|
VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); })
|
|
? VL0Ty
|
|
: DL->getIndexType(cast<GetElementPtrInst>(VL0)
|
|
->getPointerOperandType()
|
|
->getScalarType());
|
|
for (Value *&V : VL) {
|
|
auto *CI = cast<ConstantInt>(V);
|
|
V = ConstantExpr::getIntegerCast(CI, Ty,
|
|
CI->getValue().isSignBitSet());
|
|
}
|
|
Value *OpVec = vectorizeTree(VL);
|
|
OpVecs.push_back(OpVec);
|
|
}
|
|
|
|
Value *V = Builder.CreateGEP(
|
|
cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
V = propagateMetadata(I, E->Scalars);
|
|
|
|
if (NeedToShuffleReuses) {
|
|
V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
|
|
E->ReuseShuffleIndices, "shuffle");
|
|
}
|
|
E->VectorizedValue = V;
|
|
++NumVectorInstructions;
|
|
|
|
return V;
|
|
}
|
|
case Instruction::Call: {
|
|
CallInst *CI = cast<CallInst>(VL0);
|
|
setInsertPointAfterBundle(E);
|
|
|
|
Intrinsic::ID IID = Intrinsic::not_intrinsic;
|
|
if (Function *FI = CI->getCalledFunction())
|
|
IID = FI->getIntrinsicID();
|
|
|
|
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
|
|
|
|
auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
|
|
bool UseIntrinsic = VecCallCosts.first <= VecCallCosts.second;
|
|
|
|
Value *ScalarArg = nullptr;
|
|
std::vector<Value *> OpVecs;
|
|
for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
|
|
ValueList OpVL;
|
|
// Some intrinsics have scalar arguments. This argument should not be
|
|
// vectorized.
|
|
if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) {
|
|
CallInst *CEI = cast<CallInst>(VL0);
|
|
ScalarArg = CEI->getArgOperand(j);
|
|
OpVecs.push_back(CEI->getArgOperand(j));
|
|
continue;
|
|
}
|
|
|
|
Value *OpVec = vectorizeTree(E->getOperand(j));
|
|
LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
|
|
OpVecs.push_back(OpVec);
|
|
}
|
|
|
|
Module *M = F->getParent();
|
|
Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
|
|
Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
|
|
|
|
if (!UseIntrinsic) {
|
|
VFShape Shape = VFShape::get(
|
|
*CI, {static_cast<unsigned>(VecTy->getNumElements()), false},
|
|
false /*HasGlobalPred*/);
|
|
CF = VFDatabase(*CI).getVectorizedFunction(Shape);
|
|
}
|
|
|
|
SmallVector<OperandBundleDef, 1> OpBundles;
|
|
CI->getOperandBundlesAsDefs(OpBundles);
|
|
Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
|
|
|
|
// The scalar argument uses an in-tree scalar so we add the new vectorized
|
|
// call to ExternalUses list to make sure that an extract will be
|
|
// generated in the future.
|
|
if (ScalarArg && getTreeEntry(ScalarArg))
|
|
ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
|
|
|
|
propagateIRFlags(V, E->Scalars, VL0);
|
|
if (NeedToShuffleReuses) {
|
|
V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
|
|
E->ReuseShuffleIndices, "shuffle");
|
|
}
|
|
E->VectorizedValue = V;
|
|
++NumVectorInstructions;
|
|
return V;
|
|
}
|
|
case Instruction::ShuffleVector: {
|
|
assert(E->isAltShuffle() &&
|
|
((Instruction::isBinaryOp(E->getOpcode()) &&
|
|
Instruction::isBinaryOp(E->getAltOpcode())) ||
|
|
(Instruction::isCast(E->getOpcode()) &&
|
|
Instruction::isCast(E->getAltOpcode()))) &&
|
|
"Invalid Shuffle Vector Operand");
|
|
|
|
Value *LHS = nullptr, *RHS = nullptr;
|
|
if (Instruction::isBinaryOp(E->getOpcode())) {
|
|
setInsertPointAfterBundle(E);
|
|
LHS = vectorizeTree(E->getOperand(0));
|
|
RHS = vectorizeTree(E->getOperand(1));
|
|
} else {
|
|
setInsertPointAfterBundle(E);
|
|
LHS = vectorizeTree(E->getOperand(0));
|
|
}
|
|
|
|
if (E->VectorizedValue) {
|
|
LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
|
|
return E->VectorizedValue;
|
|
}
|
|
|
|
Value *V0, *V1;
|
|
if (Instruction::isBinaryOp(E->getOpcode())) {
|
|
V0 = Builder.CreateBinOp(
|
|
static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
|
|
V1 = Builder.CreateBinOp(
|
|
static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
|
|
} else {
|
|
V0 = Builder.CreateCast(
|
|
static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
|
|
V1 = Builder.CreateCast(
|
|
static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
|
|
}
|
|
|
|
// Create shuffle to take alternate operations from the vector.
|
|
// Also, gather up main and alt scalar ops to propagate IR flags to
|
|
// each vector operation.
|
|
ValueList OpScalars, AltScalars;
|
|
unsigned e = E->Scalars.size();
|
|
SmallVector<int, 8> Mask(e);
|
|
for (unsigned i = 0; i < e; ++i) {
|
|
auto *OpInst = cast<Instruction>(E->Scalars[i]);
|
|
assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
|
|
if (OpInst->getOpcode() == E->getAltOpcode()) {
|
|
Mask[i] = e + i;
|
|
AltScalars.push_back(E->Scalars[i]);
|
|
} else {
|
|
Mask[i] = i;
|
|
OpScalars.push_back(E->Scalars[i]);
|
|
}
|
|
}
|
|
|
|
propagateIRFlags(V0, OpScalars);
|
|
propagateIRFlags(V1, AltScalars);
|
|
|
|
Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
V = propagateMetadata(I, E->Scalars);
|
|
if (NeedToShuffleReuses) {
|
|
V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
|
|
E->ReuseShuffleIndices, "shuffle");
|
|
}
|
|
E->VectorizedValue = V;
|
|
++NumVectorInstructions;
|
|
|
|
return V;
|
|
}
|
|
default:
|
|
llvm_unreachable("unknown inst");
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Value *BoUpSLP::vectorizeTree() {
|
|
ExtraValueToDebugLocsMap ExternallyUsedValues;
|
|
return vectorizeTree(ExternallyUsedValues);
|
|
}
|
|
|
|
Value *
|
|
BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
|
|
// All blocks must be scheduled before any instructions are inserted.
|
|
for (auto &BSIter : BlocksSchedules) {
|
|
scheduleBlock(BSIter.second.get());
|
|
}
|
|
|
|
Builder.SetInsertPoint(&F->getEntryBlock().front());
|
|
auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
|
|
|
|
// If the vectorized tree can be rewritten in a smaller type, we truncate the
|
|
// vectorized root. InstCombine will then rewrite the entire expression. We
|
|
// sign extend the extracted values below.
|
|
auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
|
|
if (MinBWs.count(ScalarRoot)) {
|
|
if (auto *I = dyn_cast<Instruction>(VectorRoot))
|
|
Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
|
|
auto BundleWidth = VectorizableTree[0]->Scalars.size();
|
|
auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
|
|
auto *VecTy = VectorType::get(MinTy, BundleWidth);
|
|
auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
|
|
VectorizableTree[0]->VectorizedValue = Trunc;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
|
|
<< " values .\n");
|
|
|
|
// If necessary, sign-extend or zero-extend ScalarRoot to the larger type
|
|
// specified by ScalarType.
|
|
auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
|
|
if (!MinBWs.count(ScalarRoot))
|
|
return Ex;
|
|
if (MinBWs[ScalarRoot].second)
|
|
return Builder.CreateSExt(Ex, ScalarType);
|
|
return Builder.CreateZExt(Ex, ScalarType);
|
|
};
|
|
|
|
// Extract all of the elements with the external uses.
|
|
for (const auto &ExternalUse : ExternalUses) {
|
|
Value *Scalar = ExternalUse.Scalar;
|
|
llvm::User *User = ExternalUse.User;
|
|
|
|
// Skip users that we already RAUW. This happens when one instruction
|
|
// has multiple uses of the same value.
|
|
if (User && !is_contained(Scalar->users(), User))
|
|
continue;
|
|
TreeEntry *E = getTreeEntry(Scalar);
|
|
assert(E && "Invalid scalar");
|
|
assert(E->State == TreeEntry::Vectorize && "Extracting from a gather list");
|
|
|
|
Value *Vec = E->VectorizedValue;
|
|
assert(Vec && "Can't find vectorizable value");
|
|
|
|
Value *Lane = Builder.getInt32(ExternalUse.Lane);
|
|
// If User == nullptr, the Scalar is used as extra arg. Generate
|
|
// ExtractElement instruction and update the record for this scalar in
|
|
// ExternallyUsedValues.
|
|
if (!User) {
|
|
assert(ExternallyUsedValues.count(Scalar) &&
|
|
"Scalar with nullptr as an external user must be registered in "
|
|
"ExternallyUsedValues map");
|
|
if (auto *VecI = dyn_cast<Instruction>(Vec)) {
|
|
Builder.SetInsertPoint(VecI->getParent(),
|
|
std::next(VecI->getIterator()));
|
|
} else {
|
|
Builder.SetInsertPoint(&F->getEntryBlock().front());
|
|
}
|
|
Value *Ex = Builder.CreateExtractElement(Vec, Lane);
|
|
Ex = extend(ScalarRoot, Ex, Scalar->getType());
|
|
CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
|
|
auto &Locs = ExternallyUsedValues[Scalar];
|
|
ExternallyUsedValues.insert({Ex, Locs});
|
|
ExternallyUsedValues.erase(Scalar);
|
|
// Required to update internally referenced instructions.
|
|
Scalar->replaceAllUsesWith(Ex);
|
|
continue;
|
|
}
|
|
|
|
// Generate extracts for out-of-tree users.
|
|
// Find the insertion point for the extractelement lane.
|
|
if (auto *VecI = dyn_cast<Instruction>(Vec)) {
|
|
if (PHINode *PH = dyn_cast<PHINode>(User)) {
|
|
for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
|
|
if (PH->getIncomingValue(i) == Scalar) {
|
|
Instruction *IncomingTerminator =
|
|
PH->getIncomingBlock(i)->getTerminator();
|
|
if (isa<CatchSwitchInst>(IncomingTerminator)) {
|
|
Builder.SetInsertPoint(VecI->getParent(),
|
|
std::next(VecI->getIterator()));
|
|
} else {
|
|
Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
|
|
}
|
|
Value *Ex = Builder.CreateExtractElement(Vec, Lane);
|
|
Ex = extend(ScalarRoot, Ex, Scalar->getType());
|
|
CSEBlocks.insert(PH->getIncomingBlock(i));
|
|
PH->setOperand(i, Ex);
|
|
}
|
|
}
|
|
} else {
|
|
Builder.SetInsertPoint(cast<Instruction>(User));
|
|
Value *Ex = Builder.CreateExtractElement(Vec, Lane);
|
|
Ex = extend(ScalarRoot, Ex, Scalar->getType());
|
|
CSEBlocks.insert(cast<Instruction>(User)->getParent());
|
|
User->replaceUsesOfWith(Scalar, Ex);
|
|
}
|
|
} else {
|
|
Builder.SetInsertPoint(&F->getEntryBlock().front());
|
|
Value *Ex = Builder.CreateExtractElement(Vec, Lane);
|
|
Ex = extend(ScalarRoot, Ex, Scalar->getType());
|
|
CSEBlocks.insert(&F->getEntryBlock());
|
|
User->replaceUsesOfWith(Scalar, Ex);
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
|
|
}
|
|
|
|
// For each vectorized value:
|
|
for (auto &TEPtr : VectorizableTree) {
|
|
TreeEntry *Entry = TEPtr.get();
|
|
|
|
// No need to handle users of gathered values.
|
|
if (Entry->State == TreeEntry::NeedToGather)
|
|
continue;
|
|
|
|
assert(Entry->VectorizedValue && "Can't find vectorizable value");
|
|
|
|
// For each lane:
|
|
for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
|
|
Value *Scalar = Entry->Scalars[Lane];
|
|
|
|
#ifndef NDEBUG
|
|
Type *Ty = Scalar->getType();
|
|
if (!Ty->isVoidTy()) {
|
|
for (User *U : Scalar->users()) {
|
|
LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
|
|
|
|
// It is legal to delete users in the ignorelist.
|
|
assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
|
|
"Deleting out-of-tree value");
|
|
}
|
|
}
|
|
#endif
|
|
LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
|
|
eraseInstruction(cast<Instruction>(Scalar));
|
|
}
|
|
}
|
|
|
|
Builder.ClearInsertionPoint();
|
|
|
|
return VectorizableTree[0]->VectorizedValue;
|
|
}
|
|
|
|
void BoUpSLP::optimizeGatherSequence() {
|
|
LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
|
|
<< " gather sequences instructions.\n");
|
|
// LICM InsertElementInst sequences.
|
|
for (Instruction *I : GatherSeq) {
|
|
if (isDeleted(I))
|
|
continue;
|
|
|
|
// Check if this block is inside a loop.
|
|
Loop *L = LI->getLoopFor(I->getParent());
|
|
if (!L)
|
|
continue;
|
|
|
|
// Check if it has a preheader.
|
|
BasicBlock *PreHeader = L->getLoopPreheader();
|
|
if (!PreHeader)
|
|
continue;
|
|
|
|
// If the vector or the element that we insert into it are
|
|
// instructions that are defined in this basic block then we can't
|
|
// hoist this instruction.
|
|
auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
|
|
auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
|
|
if (Op0 && L->contains(Op0))
|
|
continue;
|
|
if (Op1 && L->contains(Op1))
|
|
continue;
|
|
|
|
// We can hoist this instruction. Move it to the pre-header.
|
|
I->moveBefore(PreHeader->getTerminator());
|
|
}
|
|
|
|
// Make a list of all reachable blocks in our CSE queue.
|
|
SmallVector<const DomTreeNode *, 8> CSEWorkList;
|
|
CSEWorkList.reserve(CSEBlocks.size());
|
|
for (BasicBlock *BB : CSEBlocks)
|
|
if (DomTreeNode *N = DT->getNode(BB)) {
|
|
assert(DT->isReachableFromEntry(N));
|
|
CSEWorkList.push_back(N);
|
|
}
|
|
|
|
// Sort blocks by domination. This ensures we visit a block after all blocks
|
|
// dominating it are visited.
|
|
llvm::stable_sort(CSEWorkList,
|
|
[this](const DomTreeNode *A, const DomTreeNode *B) {
|
|
return DT->properlyDominates(A, B);
|
|
});
|
|
|
|
// Perform O(N^2) search over the gather sequences and merge identical
|
|
// instructions. TODO: We can further optimize this scan if we split the
|
|
// instructions into different buckets based on the insert lane.
|
|
SmallVector<Instruction *, 16> Visited;
|
|
for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
|
|
assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
|
|
"Worklist not sorted properly!");
|
|
BasicBlock *BB = (*I)->getBlock();
|
|
// For all instructions in blocks containing gather sequences:
|
|
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
|
|
Instruction *In = &*it++;
|
|
if (isDeleted(In))
|
|
continue;
|
|
if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
|
|
continue;
|
|
|
|
// Check if we can replace this instruction with any of the
|
|
// visited instructions.
|
|
for (Instruction *v : Visited) {
|
|
if (In->isIdenticalTo(v) &&
|
|
DT->dominates(v->getParent(), In->getParent())) {
|
|
In->replaceAllUsesWith(v);
|
|
eraseInstruction(In);
|
|
In = nullptr;
|
|
break;
|
|
}
|
|
}
|
|
if (In) {
|
|
assert(!is_contained(Visited, In));
|
|
Visited.push_back(In);
|
|
}
|
|
}
|
|
}
|
|
CSEBlocks.clear();
|
|
GatherSeq.clear();
|
|
}
|
|
|
|
// Groups the instructions to a bundle (which is then a single scheduling entity)
|
|
// and schedules instructions until the bundle gets ready.
|
|
Optional<BoUpSLP::ScheduleData *>
|
|
BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
|
|
const InstructionsState &S) {
|
|
if (isa<PHINode>(S.OpValue))
|
|
return nullptr;
|
|
|
|
// Initialize the instruction bundle.
|
|
Instruction *OldScheduleEnd = ScheduleEnd;
|
|
ScheduleData *PrevInBundle = nullptr;
|
|
ScheduleData *Bundle = nullptr;
|
|
bool ReSchedule = false;
|
|
LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n");
|
|
|
|
// Make sure that the scheduling region contains all
|
|
// instructions of the bundle.
|
|
for (Value *V : VL) {
|
|
if (!extendSchedulingRegion(V, S))
|
|
return None;
|
|
}
|
|
|
|
for (Value *V : VL) {
|
|
ScheduleData *BundleMember = getScheduleData(V);
|
|
assert(BundleMember &&
|
|
"no ScheduleData for bundle member (maybe not in same basic block)");
|
|
if (BundleMember->IsScheduled) {
|
|
// A bundle member was scheduled as single instruction before and now
|
|
// needs to be scheduled as part of the bundle. We just get rid of the
|
|
// existing schedule.
|
|
LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember
|
|
<< " was already scheduled\n");
|
|
ReSchedule = true;
|
|
}
|
|
assert(BundleMember->isSchedulingEntity() &&
|
|
"bundle member already part of other bundle");
|
|
if (PrevInBundle) {
|
|
PrevInBundle->NextInBundle = BundleMember;
|
|
} else {
|
|
Bundle = BundleMember;
|
|
}
|
|
BundleMember->UnscheduledDepsInBundle = 0;
|
|
Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
|
|
|
|
// Group the instructions to a bundle.
|
|
BundleMember->FirstInBundle = Bundle;
|
|
PrevInBundle = BundleMember;
|
|
}
|
|
if (ScheduleEnd != OldScheduleEnd) {
|
|
// The scheduling region got new instructions at the lower end (or it is a
|
|
// new region for the first bundle). This makes it necessary to
|
|
// recalculate all dependencies.
|
|
// It is seldom that this needs to be done a second time after adding the
|
|
// initial bundle to the region.
|
|
for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
|
|
doForAllOpcodes(I, [](ScheduleData *SD) {
|
|
SD->clearDependencies();
|
|
});
|
|
}
|
|
ReSchedule = true;
|
|
}
|
|
if (ReSchedule) {
|
|
resetSchedule();
|
|
initialFillReadyList(ReadyInsts);
|
|
}
|
|
assert(Bundle && "Failed to find schedule bundle");
|
|
|
|
LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
|
|
<< BB->getName() << "\n");
|
|
|
|
calculateDependencies(Bundle, true, SLP);
|
|
|
|
// Now try to schedule the new bundle. As soon as the bundle is "ready" it
|
|
// means that there are no cyclic dependencies and we can schedule it.
|
|
// Note that's important that we don't "schedule" the bundle yet (see
|
|
// cancelScheduling).
|
|
while (!Bundle->isReady() && !ReadyInsts.empty()) {
|
|
|
|
ScheduleData *pickedSD = ReadyInsts.back();
|
|
ReadyInsts.pop_back();
|
|
|
|
if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
|
|
schedule(pickedSD, ReadyInsts);
|
|
}
|
|
}
|
|
if (!Bundle->isReady()) {
|
|
cancelScheduling(VL, S.OpValue);
|
|
return None;
|
|
}
|
|
return Bundle;
|
|
}
|
|
|
|
void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
|
|
Value *OpValue) {
|
|
if (isa<PHINode>(OpValue))
|
|
return;
|
|
|
|
ScheduleData *Bundle = getScheduleData(OpValue);
|
|
LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n");
|
|
assert(!Bundle->IsScheduled &&
|
|
"Can't cancel bundle which is already scheduled");
|
|
assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
|
|
"tried to unbundle something which is not a bundle");
|
|
|
|
// Un-bundle: make single instructions out of the bundle.
|
|
ScheduleData *BundleMember = Bundle;
|
|
while (BundleMember) {
|
|
assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
|
|
BundleMember->FirstInBundle = BundleMember;
|
|
ScheduleData *Next = BundleMember->NextInBundle;
|
|
BundleMember->NextInBundle = nullptr;
|
|
BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
|
|
if (BundleMember->UnscheduledDepsInBundle == 0) {
|
|
ReadyInsts.insert(BundleMember);
|
|
}
|
|
BundleMember = Next;
|
|
}
|
|
}
|
|
|
|
BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
|
|
// Allocate a new ScheduleData for the instruction.
|
|
if (ChunkPos >= ChunkSize) {
|
|
ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
|
|
ChunkPos = 0;
|
|
}
|
|
return &(ScheduleDataChunks.back()[ChunkPos++]);
|
|
}
|
|
|
|
bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
|
|
const InstructionsState &S) {
|
|
if (getScheduleData(V, isOneOf(S, V)))
|
|
return true;
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
|
assert(I && "bundle member must be an instruction");
|
|
assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
|
|
auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
|
|
ScheduleData *ISD = getScheduleData(I);
|
|
if (!ISD)
|
|
return false;
|
|
assert(isInSchedulingRegion(ISD) &&
|
|
"ScheduleData not in scheduling region");
|
|
ScheduleData *SD = allocateScheduleDataChunks();
|
|
SD->Inst = I;
|
|
SD->init(SchedulingRegionID, S.OpValue);
|
|
ExtraScheduleDataMap[I][S.OpValue] = SD;
|
|
return true;
|
|
};
|
|
if (CheckSheduleForI(I))
|
|
return true;
|
|
if (!ScheduleStart) {
|
|
// It's the first instruction in the new region.
|
|
initScheduleData(I, I->getNextNode(), nullptr, nullptr);
|
|
ScheduleStart = I;
|
|
ScheduleEnd = I->getNextNode();
|
|
if (isOneOf(S, I) != I)
|
|
CheckSheduleForI(I);
|
|
assert(ScheduleEnd && "tried to vectorize a terminator?");
|
|
LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n");
|
|
return true;
|
|
}
|
|
// Search up and down at the same time, because we don't know if the new
|
|
// instruction is above or below the existing scheduling region.
|
|
BasicBlock::reverse_iterator UpIter =
|
|
++ScheduleStart->getIterator().getReverse();
|
|
BasicBlock::reverse_iterator UpperEnd = BB->rend();
|
|
BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
|
|
BasicBlock::iterator LowerEnd = BB->end();
|
|
while (true) {
|
|
if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
|
|
LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n");
|
|
return false;
|
|
}
|
|
|
|
if (UpIter != UpperEnd) {
|
|
if (&*UpIter == I) {
|
|
initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
|
|
ScheduleStart = I;
|
|
if (isOneOf(S, I) != I)
|
|
CheckSheduleForI(I);
|
|
LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I
|
|
<< "\n");
|
|
return true;
|
|
}
|
|
++UpIter;
|
|
}
|
|
if (DownIter != LowerEnd) {
|
|
if (&*DownIter == I) {
|
|
initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
|
|
nullptr);
|
|
ScheduleEnd = I->getNextNode();
|
|
if (isOneOf(S, I) != I)
|
|
CheckSheduleForI(I);
|
|
assert(ScheduleEnd && "tried to vectorize a terminator?");
|
|
LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I
|
|
<< "\n");
|
|
return true;
|
|
}
|
|
++DownIter;
|
|
}
|
|
assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
|
|
"instruction not found in block");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
|
|
Instruction *ToI,
|
|
ScheduleData *PrevLoadStore,
|
|
ScheduleData *NextLoadStore) {
|
|
ScheduleData *CurrentLoadStore = PrevLoadStore;
|
|
for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
|
|
ScheduleData *SD = ScheduleDataMap[I];
|
|
if (!SD) {
|
|
SD = allocateScheduleDataChunks();
|
|
ScheduleDataMap[I] = SD;
|
|
SD->Inst = I;
|
|
}
|
|
assert(!isInSchedulingRegion(SD) &&
|
|
"new ScheduleData already in scheduling region");
|
|
SD->init(SchedulingRegionID, I);
|
|
|
|
if (I->mayReadOrWriteMemory() &&
|
|
(!isa<IntrinsicInst>(I) ||
|
|
cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) {
|
|
// Update the linked list of memory accessing instructions.
|
|
if (CurrentLoadStore) {
|
|
CurrentLoadStore->NextLoadStore = SD;
|
|
} else {
|
|
FirstLoadStoreInRegion = SD;
|
|
}
|
|
CurrentLoadStore = SD;
|
|
}
|
|
}
|
|
if (NextLoadStore) {
|
|
if (CurrentLoadStore)
|
|
CurrentLoadStore->NextLoadStore = NextLoadStore;
|
|
} else {
|
|
LastLoadStoreInRegion = CurrentLoadStore;
|
|
}
|
|
}
|
|
|
|
void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
|
|
bool InsertInReadyList,
|
|
BoUpSLP *SLP) {
|
|
assert(SD->isSchedulingEntity());
|
|
|
|
SmallVector<ScheduleData *, 10> WorkList;
|
|
WorkList.push_back(SD);
|
|
|
|
while (!WorkList.empty()) {
|
|
ScheduleData *SD = WorkList.back();
|
|
WorkList.pop_back();
|
|
|
|
ScheduleData *BundleMember = SD;
|
|
while (BundleMember) {
|
|
assert(isInSchedulingRegion(BundleMember));
|
|
if (!BundleMember->hasValidDependencies()) {
|
|
|
|
LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember
|
|
<< "\n");
|
|
BundleMember->Dependencies = 0;
|
|
BundleMember->resetUnscheduledDeps();
|
|
|
|
// Handle def-use chain dependencies.
|
|
if (BundleMember->OpValue != BundleMember->Inst) {
|
|
ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
|
|
if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
|
|
BundleMember->Dependencies++;
|
|
ScheduleData *DestBundle = UseSD->FirstInBundle;
|
|
if (!DestBundle->IsScheduled)
|
|
BundleMember->incrementUnscheduledDeps(1);
|
|
if (!DestBundle->hasValidDependencies())
|
|
WorkList.push_back(DestBundle);
|
|
}
|
|
} else {
|
|
for (User *U : BundleMember->Inst->users()) {
|
|
if (isa<Instruction>(U)) {
|
|
ScheduleData *UseSD = getScheduleData(U);
|
|
if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
|
|
BundleMember->Dependencies++;
|
|
ScheduleData *DestBundle = UseSD->FirstInBundle;
|
|
if (!DestBundle->IsScheduled)
|
|
BundleMember->incrementUnscheduledDeps(1);
|
|
if (!DestBundle->hasValidDependencies())
|
|
WorkList.push_back(DestBundle);
|
|
}
|
|
} else {
|
|
// I'm not sure if this can ever happen. But we need to be safe.
|
|
// This lets the instruction/bundle never be scheduled and
|
|
// eventually disable vectorization.
|
|
BundleMember->Dependencies++;
|
|
BundleMember->incrementUnscheduledDeps(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Handle the memory dependencies.
|
|
ScheduleData *DepDest = BundleMember->NextLoadStore;
|
|
if (DepDest) {
|
|
Instruction *SrcInst = BundleMember->Inst;
|
|
MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
|
|
bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
|
|
unsigned numAliased = 0;
|
|
unsigned DistToSrc = 1;
|
|
|
|
while (DepDest) {
|
|
assert(isInSchedulingRegion(DepDest));
|
|
|
|
// We have two limits to reduce the complexity:
|
|
// 1) AliasedCheckLimit: It's a small limit to reduce calls to
|
|
// SLP->isAliased (which is the expensive part in this loop).
|
|
// 2) MaxMemDepDistance: It's for very large blocks and it aborts
|
|
// the whole loop (even if the loop is fast, it's quadratic).
|
|
// It's important for the loop break condition (see below) to
|
|
// check this limit even between two read-only instructions.
|
|
if (DistToSrc >= MaxMemDepDistance ||
|
|
((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
|
|
(numAliased >= AliasedCheckLimit ||
|
|
SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
|
|
|
|
// We increment the counter only if the locations are aliased
|
|
// (instead of counting all alias checks). This gives a better
|
|
// balance between reduced runtime and accurate dependencies.
|
|
numAliased++;
|
|
|
|
DepDest->MemoryDependencies.push_back(BundleMember);
|
|
BundleMember->Dependencies++;
|
|
ScheduleData *DestBundle = DepDest->FirstInBundle;
|
|
if (!DestBundle->IsScheduled) {
|
|
BundleMember->incrementUnscheduledDeps(1);
|
|
}
|
|
if (!DestBundle->hasValidDependencies()) {
|
|
WorkList.push_back(DestBundle);
|
|
}
|
|
}
|
|
DepDest = DepDest->NextLoadStore;
|
|
|
|
// Example, explaining the loop break condition: Let's assume our
|
|
// starting instruction is i0 and MaxMemDepDistance = 3.
|
|
//
|
|
// +--------v--v--v
|
|
// i0,i1,i2,i3,i4,i5,i6,i7,i8
|
|
// +--------^--^--^
|
|
//
|
|
// MaxMemDepDistance let us stop alias-checking at i3 and we add
|
|
// dependencies from i0 to i3,i4,.. (even if they are not aliased).
|
|
// Previously we already added dependencies from i3 to i6,i7,i8
|
|
// (because of MaxMemDepDistance). As we added a dependency from
|
|
// i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
|
|
// and we can abort this loop at i6.
|
|
if (DistToSrc >= 2 * MaxMemDepDistance)
|
|
break;
|
|
DistToSrc++;
|
|
}
|
|
}
|
|
}
|
|
BundleMember = BundleMember->NextInBundle;
|
|
}
|
|
if (InsertInReadyList && SD->isReady()) {
|
|
ReadyInsts.push_back(SD);
|
|
LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst
|
|
<< "\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
void BoUpSLP::BlockScheduling::resetSchedule() {
|
|
assert(ScheduleStart &&
|
|
"tried to reset schedule on block which has not been scheduled");
|
|
for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
|
|
doForAllOpcodes(I, [&](ScheduleData *SD) {
|
|
assert(isInSchedulingRegion(SD) &&
|
|
"ScheduleData not in scheduling region");
|
|
SD->IsScheduled = false;
|
|
SD->resetUnscheduledDeps();
|
|
});
|
|
}
|
|
ReadyInsts.clear();
|
|
}
|
|
|
|
void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
|
|
if (!BS->ScheduleStart)
|
|
return;
|
|
|
|
LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
|
|
|
|
BS->resetSchedule();
|
|
|
|
// For the real scheduling we use a more sophisticated ready-list: it is
|
|
// sorted by the original instruction location. This lets the final schedule
|
|
// be as close as possible to the original instruction order.
|
|
struct ScheduleDataCompare {
|
|
bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
|
|
return SD2->SchedulingPriority < SD1->SchedulingPriority;
|
|
}
|
|
};
|
|
std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
|
|
|
|
// Ensure that all dependency data is updated and fill the ready-list with
|
|
// initial instructions.
|
|
int Idx = 0;
|
|
int NumToSchedule = 0;
|
|
for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
|
|
I = I->getNextNode()) {
|
|
BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
|
|
assert(SD->isPartOfBundle() ==
|
|
(getTreeEntry(SD->Inst) != nullptr) &&
|
|
"scheduler and vectorizer bundle mismatch");
|
|
SD->FirstInBundle->SchedulingPriority = Idx++;
|
|
if (SD->isSchedulingEntity()) {
|
|
BS->calculateDependencies(SD, false, this);
|
|
NumToSchedule++;
|
|
}
|
|
});
|
|
}
|
|
BS->initialFillReadyList(ReadyInsts);
|
|
|
|
Instruction *LastScheduledInst = BS->ScheduleEnd;
|
|
|
|
// Do the "real" scheduling.
|
|
while (!ReadyInsts.empty()) {
|
|
ScheduleData *picked = *ReadyInsts.begin();
|
|
ReadyInsts.erase(ReadyInsts.begin());
|
|
|
|
// Move the scheduled instruction(s) to their dedicated places, if not
|
|
// there yet.
|
|
ScheduleData *BundleMember = picked;
|
|
while (BundleMember) {
|
|
Instruction *pickedInst = BundleMember->Inst;
|
|
if (LastScheduledInst->getNextNode() != pickedInst) {
|
|
BS->BB->getInstList().remove(pickedInst);
|
|
BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
|
|
pickedInst);
|
|
}
|
|
LastScheduledInst = pickedInst;
|
|
BundleMember = BundleMember->NextInBundle;
|
|
}
|
|
|
|
BS->schedule(picked, ReadyInsts);
|
|
NumToSchedule--;
|
|
}
|
|
assert(NumToSchedule == 0 && "could not schedule all instructions");
|
|
|
|
// Avoid duplicate scheduling of the block.
|
|
BS->ScheduleStart = nullptr;
|
|
}
|
|
|
|
unsigned BoUpSLP::getVectorElementSize(Value *V) const {
|
|
// If V is a store, just return the width of the stored value without
|
|
// traversing the expression tree. This is the common case.
|
|
if (auto *Store = dyn_cast<StoreInst>(V))
|
|
return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
|
|
|
|
// If V is not a store, we can traverse the expression tree to find loads
|
|
// that feed it. The type of the loaded value may indicate a more suitable
|
|
// width than V's type. We want to base the vector element size on the width
|
|
// of memory operations where possible.
|
|
SmallVector<Instruction *, 16> Worklist;
|
|
SmallPtrSet<Instruction *, 16> Visited;
|
|
if (auto *I = dyn_cast<Instruction>(V)) {
|
|
Worklist.push_back(I);
|
|
Visited.insert(I);
|
|
}
|
|
|
|
// Traverse the expression tree in bottom-up order looking for loads. If we
|
|
// encounter an instruction we don't yet handle, we give up.
|
|
auto MaxWidth = 0u;
|
|
auto FoundUnknownInst = false;
|
|
while (!Worklist.empty() && !FoundUnknownInst) {
|
|
auto *I = Worklist.pop_back_val();
|
|
|
|
// We should only be looking at scalar instructions here. If the current
|
|
// instruction has a vector type, give up.
|
|
auto *Ty = I->getType();
|
|
if (isa<VectorType>(Ty))
|
|
FoundUnknownInst = true;
|
|
|
|
// If the current instruction is a load, update MaxWidth to reflect the
|
|
// width of the loaded value.
|
|
else if (isa<LoadInst>(I))
|
|
MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
|
|
|
|
// Otherwise, we need to visit the operands of the instruction. We only
|
|
// handle the interesting cases from buildTree here. If an operand is an
|
|
// instruction we haven't yet visited, we add it to the worklist.
|
|
else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
|
|
isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
|
|
for (Use &U : I->operands())
|
|
if (auto *J = dyn_cast<Instruction>(U.get()))
|
|
if (Visited.insert(J).second)
|
|
Worklist.push_back(J);
|
|
}
|
|
|
|
// If we don't yet handle the instruction, give up.
|
|
else
|
|
FoundUnknownInst = true;
|
|
}
|
|
|
|
// If we didn't encounter a memory access in the expression tree, or if we
|
|
// gave up for some reason, just return the width of V.
|
|
if (!MaxWidth || FoundUnknownInst)
|
|
return DL->getTypeSizeInBits(V->getType());
|
|
|
|
// Otherwise, return the maximum width we found.
|
|
return MaxWidth;
|
|
}
|
|
|
|
// Determine if a value V in a vectorizable expression Expr can be demoted to a
|
|
// smaller type with a truncation. We collect the values that will be demoted
|
|
// in ToDemote and additional roots that require investigating in Roots.
|
|
static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
|
|
SmallVectorImpl<Value *> &ToDemote,
|
|
SmallVectorImpl<Value *> &Roots) {
|
|
// We can always demote constants.
|
|
if (isa<Constant>(V)) {
|
|
ToDemote.push_back(V);
|
|
return true;
|
|
}
|
|
|
|
// If the value is not an instruction in the expression with only one use, it
|
|
// cannot be demoted.
|
|
auto *I = dyn_cast<Instruction>(V);
|
|
if (!I || !I->hasOneUse() || !Expr.count(I))
|
|
return false;
|
|
|
|
switch (I->getOpcode()) {
|
|
|
|
// We can always demote truncations and extensions. Since truncations can
|
|
// seed additional demotion, we save the truncated value.
|
|
case Instruction::Trunc:
|
|
Roots.push_back(I->getOperand(0));
|
|
break;
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
break;
|
|
|
|
// We can demote certain binary operations if we can demote both of their
|
|
// operands.
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
|
|
!collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
|
|
return false;
|
|
break;
|
|
|
|
// We can demote selects if we can demote their true and false values.
|
|
case Instruction::Select: {
|
|
SelectInst *SI = cast<SelectInst>(I);
|
|
if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
|
|
!collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
// We can demote phis if we can demote all their incoming operands. Note that
|
|
// we don't need to worry about cycles since we ensure single use above.
|
|
case Instruction::PHI: {
|
|
PHINode *PN = cast<PHINode>(I);
|
|
for (Value *IncValue : PN->incoming_values())
|
|
if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
// Otherwise, conservatively give up.
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
// Record the value that we can demote.
|
|
ToDemote.push_back(V);
|
|
return true;
|
|
}
|
|
|
|
void BoUpSLP::computeMinimumValueSizes() {
|
|
// If there are no external uses, the expression tree must be rooted by a
|
|
// store. We can't demote in-memory values, so there is nothing to do here.
|
|
if (ExternalUses.empty())
|
|
return;
|
|
|
|
// We only attempt to truncate integer expressions.
|
|
auto &TreeRoot = VectorizableTree[0]->Scalars;
|
|
auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
|
|
if (!TreeRootIT)
|
|
return;
|
|
|
|
// If the expression is not rooted by a store, these roots should have
|
|
// external uses. We will rely on InstCombine to rewrite the expression in
|
|
// the narrower type. However, InstCombine only rewrites single-use values.
|
|
// This means that if a tree entry other than a root is used externally, it
|
|
// must have multiple uses and InstCombine will not rewrite it. The code
|
|
// below ensures that only the roots are used externally.
|
|
SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
|
|
for (auto &EU : ExternalUses)
|
|
if (!Expr.erase(EU.Scalar))
|
|
return;
|
|
if (!Expr.empty())
|
|
return;
|
|
|
|
// Collect the scalar values of the vectorizable expression. We will use this
|
|
// context to determine which values can be demoted. If we see a truncation,
|
|
// we mark it as seeding another demotion.
|
|
for (auto &EntryPtr : VectorizableTree)
|
|
Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
|
|
|
|
// Ensure the roots of the vectorizable tree don't form a cycle. They must
|
|
// have a single external user that is not in the vectorizable tree.
|
|
for (auto *Root : TreeRoot)
|
|
if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
|
|
return;
|
|
|
|
// Conservatively determine if we can actually truncate the roots of the
|
|
// expression. Collect the values that can be demoted in ToDemote and
|
|
// additional roots that require investigating in Roots.
|
|
SmallVector<Value *, 32> ToDemote;
|
|
SmallVector<Value *, 4> Roots;
|
|
for (auto *Root : TreeRoot)
|
|
if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
|
|
return;
|
|
|
|
// The maximum bit width required to represent all the values that can be
|
|
// demoted without loss of precision. It would be safe to truncate the roots
|
|
// of the expression to this width.
|
|
auto MaxBitWidth = 8u;
|
|
|
|
// We first check if all the bits of the roots are demanded. If they're not,
|
|
// we can truncate the roots to this narrower type.
|
|
for (auto *Root : TreeRoot) {
|
|
auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
|
|
MaxBitWidth = std::max<unsigned>(
|
|
Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
|
|
}
|
|
|
|
// True if the roots can be zero-extended back to their original type, rather
|
|
// than sign-extended. We know that if the leading bits are not demanded, we
|
|
// can safely zero-extend. So we initialize IsKnownPositive to True.
|
|
bool IsKnownPositive = true;
|
|
|
|
// If all the bits of the roots are demanded, we can try a little harder to
|
|
// compute a narrower type. This can happen, for example, if the roots are
|
|
// getelementptr indices. InstCombine promotes these indices to the pointer
|
|
// width. Thus, all their bits are technically demanded even though the
|
|
// address computation might be vectorized in a smaller type.
|
|
//
|
|
// We start by looking at each entry that can be demoted. We compute the
|
|
// maximum bit width required to store the scalar by using ValueTracking to
|
|
// compute the number of high-order bits we can truncate.
|
|
if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
|
|
llvm::all_of(TreeRoot, [](Value *R) {
|
|
assert(R->hasOneUse() && "Root should have only one use!");
|
|
return isa<GetElementPtrInst>(R->user_back());
|
|
})) {
|
|
MaxBitWidth = 8u;
|
|
|
|
// Determine if the sign bit of all the roots is known to be zero. If not,
|
|
// IsKnownPositive is set to False.
|
|
IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
|
|
KnownBits Known = computeKnownBits(R, *DL);
|
|
return Known.isNonNegative();
|
|
});
|
|
|
|
// Determine the maximum number of bits required to store the scalar
|
|
// values.
|
|
for (auto *Scalar : ToDemote) {
|
|
auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
|
|
auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
|
|
MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
|
|
}
|
|
|
|
// If we can't prove that the sign bit is zero, we must add one to the
|
|
// maximum bit width to account for the unknown sign bit. This preserves
|
|
// the existing sign bit so we can safely sign-extend the root back to the
|
|
// original type. Otherwise, if we know the sign bit is zero, we will
|
|
// zero-extend the root instead.
|
|
//
|
|
// FIXME: This is somewhat suboptimal, as there will be cases where adding
|
|
// one to the maximum bit width will yield a larger-than-necessary
|
|
// type. In general, we need to add an extra bit only if we can't
|
|
// prove that the upper bit of the original type is equal to the
|
|
// upper bit of the proposed smaller type. If these two bits are the
|
|
// same (either zero or one) we know that sign-extending from the
|
|
// smaller type will result in the same value. Here, since we can't
|
|
// yet prove this, we are just making the proposed smaller type
|
|
// larger to ensure correctness.
|
|
if (!IsKnownPositive)
|
|
++MaxBitWidth;
|
|
}
|
|
|
|
// Round MaxBitWidth up to the next power-of-two.
|
|
if (!isPowerOf2_64(MaxBitWidth))
|
|
MaxBitWidth = NextPowerOf2(MaxBitWidth);
|
|
|
|
// If the maximum bit width we compute is less than the with of the roots'
|
|
// type, we can proceed with the narrowing. Otherwise, do nothing.
|
|
if (MaxBitWidth >= TreeRootIT->getBitWidth())
|
|
return;
|
|
|
|
// If we can truncate the root, we must collect additional values that might
|
|
// be demoted as a result. That is, those seeded by truncations we will
|
|
// modify.
|
|
while (!Roots.empty())
|
|
collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
|
|
|
|
// Finally, map the values we can demote to the maximum bit with we computed.
|
|
for (auto *Scalar : ToDemote)
|
|
MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// The SLPVectorizer Pass.
|
|
struct SLPVectorizer : public FunctionPass {
|
|
SLPVectorizerPass Impl;
|
|
|
|
/// Pass identification, replacement for typeid
|
|
static char ID;
|
|
|
|
explicit SLPVectorizer() : FunctionPass(ID) {
|
|
initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool doInitialization(Module &M) override {
|
|
return false;
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
|
|
auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
|
|
auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
|
auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
|
|
auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
|
|
|
|
return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
FunctionPass::getAnalysisUsage(AU);
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<ScalarEvolutionWrapperPass>();
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<DemandedBitsWrapperPass>();
|
|
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
|
|
AU.addRequired<InjectTLIMappingsLegacy>();
|
|
AU.addPreserved<LoopInfoWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<AAResultsWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
AU.setPreservesCFG();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
|
|
auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
|
|
auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
|
|
auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
|
|
auto *AA = &AM.getResult<AAManager>(F);
|
|
auto *LI = &AM.getResult<LoopAnalysis>(F);
|
|
auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
|
|
auto *AC = &AM.getResult<AssumptionAnalysis>(F);
|
|
auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
|
|
auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
|
|
|
|
bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
|
|
if (!Changed)
|
|
return PreservedAnalyses::all();
|
|
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
PA.preserve<AAManager>();
|
|
PA.preserve<GlobalsAA>();
|
|
return PA;
|
|
}
|
|
|
|
bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
|
|
TargetTransformInfo *TTI_,
|
|
TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
|
|
LoopInfo *LI_, DominatorTree *DT_,
|
|
AssumptionCache *AC_, DemandedBits *DB_,
|
|
OptimizationRemarkEmitter *ORE_) {
|
|
if (!RunSLPVectorization)
|
|
return false;
|
|
SE = SE_;
|
|
TTI = TTI_;
|
|
TLI = TLI_;
|
|
AA = AA_;
|
|
LI = LI_;
|
|
DT = DT_;
|
|
AC = AC_;
|
|
DB = DB_;
|
|
DL = &F.getParent()->getDataLayout();
|
|
|
|
Stores.clear();
|
|
GEPs.clear();
|
|
bool Changed = false;
|
|
|
|
// If the target claims to have no vector registers don't attempt
|
|
// vectorization.
|
|
if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)))
|
|
return false;
|
|
|
|
// Don't vectorize when the attribute NoImplicitFloat is used.
|
|
if (F.hasFnAttribute(Attribute::NoImplicitFloat))
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
|
|
|
|
// Use the bottom up slp vectorizer to construct chains that start with
|
|
// store instructions.
|
|
BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
|
|
|
|
// A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
|
|
// delete instructions.
|
|
|
|
// Scan the blocks in the function in post order.
|
|
for (auto BB : post_order(&F.getEntryBlock())) {
|
|
collectSeedInstructions(BB);
|
|
|
|
// Vectorize trees that end at stores.
|
|
if (!Stores.empty()) {
|
|
LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
|
|
<< " underlying objects.\n");
|
|
Changed |= vectorizeStoreChains(R);
|
|
}
|
|
|
|
// Vectorize trees that end at reductions.
|
|
Changed |= vectorizeChainsInBlock(BB, R);
|
|
|
|
// Vectorize the index computations of getelementptr instructions. This
|
|
// is primarily intended to catch gather-like idioms ending at
|
|
// non-consecutive loads.
|
|
if (!GEPs.empty()) {
|
|
LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
|
|
<< " underlying objects.\n");
|
|
Changed |= vectorizeGEPIndices(BB, R);
|
|
}
|
|
}
|
|
|
|
if (Changed) {
|
|
R.optimizeGatherSequence();
|
|
LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
|
|
LLVM_DEBUG(verifyFunction(F));
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
|
|
unsigned Idx) {
|
|
LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
|
|
<< "\n");
|
|
const unsigned Sz = R.getVectorElementSize(Chain[0]);
|
|
const unsigned MinVF = R.getMinVecRegSize() / Sz;
|
|
unsigned VF = Chain.size();
|
|
|
|
if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
|
|
<< "\n");
|
|
|
|
R.buildTree(Chain);
|
|
Optional<ArrayRef<unsigned>> Order = R.bestOrder();
|
|
// TODO: Handle orders of size less than number of elements in the vector.
|
|
if (Order && Order->size() == Chain.size()) {
|
|
// TODO: reorder tree nodes without tree rebuilding.
|
|
SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend());
|
|
llvm::transform(*Order, ReorderedOps.begin(),
|
|
[Chain](const unsigned Idx) { return Chain[Idx]; });
|
|
R.buildTree(ReorderedOps);
|
|
}
|
|
if (R.isTreeTinyAndNotFullyVectorizable())
|
|
return false;
|
|
|
|
R.computeMinimumValueSizes();
|
|
|
|
int Cost = R.getTreeCost();
|
|
|
|
LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
|
|
if (Cost < -SLPCostThreshold) {
|
|
LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
|
|
|
|
using namespace ore;
|
|
|
|
R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
|
|
cast<StoreInst>(Chain[0]))
|
|
<< "Stores SLP vectorized with cost " << NV("Cost", Cost)
|
|
<< " and with tree size "
|
|
<< NV("TreeSize", R.getTreeSize()));
|
|
|
|
R.vectorizeTree();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
|
|
BoUpSLP &R) {
|
|
// We may run into multiple chains that merge into a single chain. We mark the
|
|
// stores that we vectorized so that we don't visit the same store twice.
|
|
BoUpSLP::ValueSet VectorizedStores;
|
|
bool Changed = false;
|
|
|
|
int E = Stores.size();
|
|
SmallBitVector Tails(E, false);
|
|
SmallVector<int, 16> ConsecutiveChain(E, E + 1);
|
|
int MaxIter = MaxStoreLookup.getValue();
|
|
int IterCnt;
|
|
auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
|
|
&ConsecutiveChain](int K, int Idx) {
|
|
if (IterCnt >= MaxIter)
|
|
return true;
|
|
++IterCnt;
|
|
if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE))
|
|
return false;
|
|
|
|
Tails.set(Idx);
|
|
ConsecutiveChain[K] = Idx;
|
|
return true;
|
|
};
|
|
// Do a quadratic search on all of the given stores in reverse order and find
|
|
// all of the pairs of stores that follow each other.
|
|
for (int Idx = E - 1; Idx >= 0; --Idx) {
|
|
// If a store has multiple consecutive store candidates, search according
|
|
// to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
|
|
// This is because usually pairing with immediate succeeding or preceding
|
|
// candidate create the best chance to find slp vectorization opportunity.
|
|
const int MaxLookDepth = std::max(E - Idx, Idx + 1);
|
|
IterCnt = 0;
|
|
for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
|
|
if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
|
|
(Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
|
|
break;
|
|
}
|
|
|
|
// For stores that start but don't end a link in the chain:
|
|
for (int Cnt = E; Cnt > 0; --Cnt) {
|
|
int I = Cnt - 1;
|
|
if (ConsecutiveChain[I] == E + 1 || Tails.test(I))
|
|
continue;
|
|
// We found a store instr that starts a chain. Now follow the chain and try
|
|
// to vectorize it.
|
|
BoUpSLP::ValueList Operands;
|
|
// Collect the chain into a list.
|
|
while (I != E + 1 && !VectorizedStores.count(Stores[I])) {
|
|
Operands.push_back(Stores[I]);
|
|
// Move to the next value in the chain.
|
|
I = ConsecutiveChain[I];
|
|
}
|
|
|
|
// If a vector register can't hold 1 element, we are done.
|
|
unsigned MaxVecRegSize = R.getMaxVecRegSize();
|
|
unsigned EltSize = R.getVectorElementSize(Stores[0]);
|
|
if (MaxVecRegSize % EltSize != 0)
|
|
continue;
|
|
|
|
unsigned MaxElts = MaxVecRegSize / EltSize;
|
|
// FIXME: Is division-by-2 the correct step? Should we assert that the
|
|
// register size is a power-of-2?
|
|
unsigned StartIdx = 0;
|
|
for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) {
|
|
for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
|
|
ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
|
|
if (!VectorizedStores.count(Slice.front()) &&
|
|
!VectorizedStores.count(Slice.back()) &&
|
|
vectorizeStoreChain(Slice, R, Cnt)) {
|
|
// Mark the vectorized stores so that we don't vectorize them again.
|
|
VectorizedStores.insert(Slice.begin(), Slice.end());
|
|
Changed = true;
|
|
// If we vectorized initial block, no need to try to vectorize it
|
|
// again.
|
|
if (Cnt == StartIdx)
|
|
StartIdx += Size;
|
|
Cnt += Size;
|
|
continue;
|
|
}
|
|
++Cnt;
|
|
}
|
|
// Check if the whole array was vectorized already - exit.
|
|
if (StartIdx >= Operands.size())
|
|
break;
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
|
|
// Initialize the collections. We will make a single pass over the block.
|
|
Stores.clear();
|
|
GEPs.clear();
|
|
|
|
// Visit the store and getelementptr instructions in BB and organize them in
|
|
// Stores and GEPs according to the underlying objects of their pointer
|
|
// operands.
|
|
for (Instruction &I : *BB) {
|
|
// Ignore store instructions that are volatile or have a pointer operand
|
|
// that doesn't point to a scalar type.
|
|
if (auto *SI = dyn_cast<StoreInst>(&I)) {
|
|
if (!SI->isSimple())
|
|
continue;
|
|
if (!isValidElementType(SI->getValueOperand()->getType()))
|
|
continue;
|
|
Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
|
|
}
|
|
|
|
// Ignore getelementptr instructions that have more than one index, a
|
|
// constant index, or a pointer operand that doesn't point to a scalar
|
|
// type.
|
|
else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
|
|
auto Idx = GEP->idx_begin()->get();
|
|
if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
|
|
continue;
|
|
if (!isValidElementType(Idx->getType()))
|
|
continue;
|
|
if (GEP->getType()->isVectorTy())
|
|
continue;
|
|
GEPs[GEP->getPointerOperand()].push_back(GEP);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
|
|
if (!A || !B)
|
|
return false;
|
|
Value *VL[] = { A, B };
|
|
return tryToVectorizeList(VL, R, /*UserCost=*/0, true);
|
|
}
|
|
|
|
bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
|
|
int UserCost, bool AllowReorder) {
|
|
if (VL.size() < 2)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
|
|
<< VL.size() << ".\n");
|
|
|
|
// Check that all of the parts are instructions of the same type,
|
|
// we permit an alternate opcode via InstructionsState.
|
|
InstructionsState S = getSameOpcode(VL);
|
|
if (!S.getOpcode())
|
|
return false;
|
|
|
|
Instruction *I0 = cast<Instruction>(S.OpValue);
|
|
// Make sure invalid types (including vector type) are rejected before
|
|
// determining vectorization factor for scalar instructions.
|
|
for (Value *V : VL) {
|
|
Type *Ty = V->getType();
|
|
if (!isValidElementType(Ty)) {
|
|
// NOTE: the following will give user internal llvm type name, which may
|
|
// not be useful.
|
|
R.getORE()->emit([&]() {
|
|
std::string type_str;
|
|
llvm::raw_string_ostream rso(type_str);
|
|
Ty->print(rso);
|
|
return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
|
|
<< "Cannot SLP vectorize list: type "
|
|
<< rso.str() + " is unsupported by vectorizer";
|
|
});
|
|
return false;
|
|
}
|
|
}
|
|
|
|
unsigned Sz = R.getVectorElementSize(I0);
|
|
unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
|
|
unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
|
|
if (MaxVF < 2) {
|
|
R.getORE()->emit([&]() {
|
|
return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
|
|
<< "Cannot SLP vectorize list: vectorization factor "
|
|
<< "less than 2 is not supported";
|
|
});
|
|
return false;
|
|
}
|
|
|
|
bool Changed = false;
|
|
bool CandidateFound = false;
|
|
int MinCost = SLPCostThreshold;
|
|
|
|
unsigned NextInst = 0, MaxInst = VL.size();
|
|
for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
|
|
// No actual vectorization should happen, if number of parts is the same as
|
|
// provided vectorization factor (i.e. the scalar type is used for vector
|
|
// code during codegen).
|
|
auto *VecTy = VectorType::get(VL[0]->getType(), VF);
|
|
if (TTI->getNumberOfParts(VecTy) == VF)
|
|
continue;
|
|
for (unsigned I = NextInst; I < MaxInst; ++I) {
|
|
unsigned OpsWidth = 0;
|
|
|
|
if (I + VF > MaxInst)
|
|
OpsWidth = MaxInst - I;
|
|
else
|
|
OpsWidth = VF;
|
|
|
|
if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
|
|
break;
|
|
|
|
ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
|
|
// Check that a previous iteration of this loop did not delete the Value.
|
|
if (llvm::any_of(Ops, [&R](Value *V) {
|
|
auto *I = dyn_cast<Instruction>(V);
|
|
return I && R.isDeleted(I);
|
|
}))
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
|
|
<< "\n");
|
|
|
|
R.buildTree(Ops);
|
|
Optional<ArrayRef<unsigned>> Order = R.bestOrder();
|
|
// TODO: check if we can allow reordering for more cases.
|
|
if (AllowReorder && Order) {
|
|
// TODO: reorder tree nodes without tree rebuilding.
|
|
// Conceptually, there is nothing actually preventing us from trying to
|
|
// reorder a larger list. In fact, we do exactly this when vectorizing
|
|
// reductions. However, at this point, we only expect to get here when
|
|
// there are exactly two operations.
|
|
assert(Ops.size() == 2);
|
|
Value *ReorderedOps[] = {Ops[1], Ops[0]};
|
|
R.buildTree(ReorderedOps, None);
|
|
}
|
|
if (R.isTreeTinyAndNotFullyVectorizable())
|
|
continue;
|
|
|
|
R.computeMinimumValueSizes();
|
|
int Cost = R.getTreeCost() - UserCost;
|
|
CandidateFound = true;
|
|
MinCost = std::min(MinCost, Cost);
|
|
|
|
if (Cost < -SLPCostThreshold) {
|
|
LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
|
|
R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
|
|
cast<Instruction>(Ops[0]))
|
|
<< "SLP vectorized with cost " << ore::NV("Cost", Cost)
|
|
<< " and with tree size "
|
|
<< ore::NV("TreeSize", R.getTreeSize()));
|
|
|
|
R.vectorizeTree();
|
|
// Move to the next bundle.
|
|
I += VF - 1;
|
|
NextInst = I + 1;
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!Changed && CandidateFound) {
|
|
R.getORE()->emit([&]() {
|
|
return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
|
|
<< "List vectorization was possible but not beneficial with cost "
|
|
<< ore::NV("Cost", MinCost) << " >= "
|
|
<< ore::NV("Treshold", -SLPCostThreshold);
|
|
});
|
|
} else if (!Changed) {
|
|
R.getORE()->emit([&]() {
|
|
return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
|
|
<< "Cannot SLP vectorize list: vectorization was impossible"
|
|
<< " with available vectorization factors";
|
|
});
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
|
|
if (!I)
|
|
return false;
|
|
|
|
if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
|
|
return false;
|
|
|
|
Value *P = I->getParent();
|
|
|
|
// Vectorize in current basic block only.
|
|
auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
|
|
auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
|
|
if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
|
|
return false;
|
|
|
|
// Try to vectorize V.
|
|
if (tryToVectorizePair(Op0, Op1, R))
|
|
return true;
|
|
|
|
auto *A = dyn_cast<BinaryOperator>(Op0);
|
|
auto *B = dyn_cast<BinaryOperator>(Op1);
|
|
// Try to skip B.
|
|
if (B && B->hasOneUse()) {
|
|
auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
|
|
auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
|
|
if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
|
|
return true;
|
|
if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
|
|
return true;
|
|
}
|
|
|
|
// Try to skip A.
|
|
if (A && A->hasOneUse()) {
|
|
auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
|
|
auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
|
|
if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
|
|
return true;
|
|
if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Generate a shuffle mask to be used in a reduction tree.
|
|
///
|
|
/// \param VecLen The length of the vector to be reduced.
|
|
/// \param NumEltsToRdx The number of elements that should be reduced in the
|
|
/// vector.
|
|
/// \param IsPairwise Whether the reduction is a pairwise or splitting
|
|
/// reduction. A pairwise reduction will generate a mask of
|
|
/// <0,2,...> or <1,3,..> while a splitting reduction will generate
|
|
/// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
|
|
/// \param IsLeft True will generate a mask of even elements, odd otherwise.
|
|
static SmallVector<int, 32> createRdxShuffleMask(unsigned VecLen,
|
|
unsigned NumEltsToRdx,
|
|
bool IsPairwise, bool IsLeft) {
|
|
assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
|
|
|
|
SmallVector<int, 32> ShuffleMask(VecLen, -1);
|
|
|
|
if (IsPairwise)
|
|
// Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
|
|
for (unsigned i = 0; i != NumEltsToRdx; ++i)
|
|
ShuffleMask[i] = 2 * i + !IsLeft;
|
|
else
|
|
// Move the upper half of the vector to the lower half.
|
|
for (unsigned i = 0; i != NumEltsToRdx; ++i)
|
|
ShuffleMask[i] = NumEltsToRdx + i;
|
|
|
|
return ShuffleMask;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Model horizontal reductions.
|
|
///
|
|
/// A horizontal reduction is a tree of reduction operations (currently add and
|
|
/// fadd) that has operations that can be put into a vector as its leaf.
|
|
/// For example, this tree:
|
|
///
|
|
/// mul mul mul mul
|
|
/// \ / \ /
|
|
/// + +
|
|
/// \ /
|
|
/// +
|
|
/// This tree has "mul" as its reduced values and "+" as its reduction
|
|
/// operations. A reduction might be feeding into a store or a binary operation
|
|
/// feeding a phi.
|
|
/// ...
|
|
/// \ /
|
|
/// +
|
|
/// |
|
|
/// phi +=
|
|
///
|
|
/// Or:
|
|
/// ...
|
|
/// \ /
|
|
/// +
|
|
/// |
|
|
/// *p =
|
|
///
|
|
class HorizontalReduction {
|
|
using ReductionOpsType = SmallVector<Value *, 16>;
|
|
using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
|
|
ReductionOpsListType ReductionOps;
|
|
SmallVector<Value *, 32> ReducedVals;
|
|
// Use map vector to make stable output.
|
|
MapVector<Instruction *, Value *> ExtraArgs;
|
|
|
|
/// Kind of the reduction data.
|
|
enum ReductionKind {
|
|
RK_None, /// Not a reduction.
|
|
RK_Arithmetic, /// Binary reduction data.
|
|
RK_Min, /// Minimum reduction data.
|
|
RK_UMin, /// Unsigned minimum reduction data.
|
|
RK_Max, /// Maximum reduction data.
|
|
RK_UMax, /// Unsigned maximum reduction data.
|
|
};
|
|
|
|
/// Contains info about operation, like its opcode, left and right operands.
|
|
class OperationData {
|
|
/// Opcode of the instruction.
|
|
unsigned Opcode = 0;
|
|
|
|
/// Left operand of the reduction operation.
|
|
Value *LHS = nullptr;
|
|
|
|
/// Right operand of the reduction operation.
|
|
Value *RHS = nullptr;
|
|
|
|
/// Kind of the reduction operation.
|
|
ReductionKind Kind = RK_None;
|
|
|
|
/// True if float point min/max reduction has no NaNs.
|
|
bool NoNaN = false;
|
|
|
|
/// Checks if the reduction operation can be vectorized.
|
|
bool isVectorizable() const {
|
|
return LHS && RHS &&
|
|
// We currently only support add/mul/logical && min/max reductions.
|
|
((Kind == RK_Arithmetic &&
|
|
(Opcode == Instruction::Add || Opcode == Instruction::FAdd ||
|
|
Opcode == Instruction::Mul || Opcode == Instruction::FMul ||
|
|
Opcode == Instruction::And || Opcode == Instruction::Or ||
|
|
Opcode == Instruction::Xor)) ||
|
|
((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
|
|
(Kind == RK_Min || Kind == RK_Max)) ||
|
|
(Opcode == Instruction::ICmp &&
|
|
(Kind == RK_UMin || Kind == RK_UMax)));
|
|
}
|
|
|
|
/// Creates reduction operation with the current opcode.
|
|
Value *createOp(IRBuilder<> &Builder, const Twine &Name) const {
|
|
assert(isVectorizable() &&
|
|
"Expected add|fadd or min/max reduction operation.");
|
|
Value *Cmp = nullptr;
|
|
switch (Kind) {
|
|
case RK_Arithmetic:
|
|
return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS,
|
|
Name);
|
|
case RK_Min:
|
|
Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS)
|
|
: Builder.CreateFCmpOLT(LHS, RHS);
|
|
return Builder.CreateSelect(Cmp, LHS, RHS, Name);
|
|
case RK_Max:
|
|
Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS)
|
|
: Builder.CreateFCmpOGT(LHS, RHS);
|
|
return Builder.CreateSelect(Cmp, LHS, RHS, Name);
|
|
case RK_UMin:
|
|
assert(Opcode == Instruction::ICmp && "Expected integer types.");
|
|
Cmp = Builder.CreateICmpULT(LHS, RHS);
|
|
return Builder.CreateSelect(Cmp, LHS, RHS, Name);
|
|
case RK_UMax:
|
|
assert(Opcode == Instruction::ICmp && "Expected integer types.");
|
|
Cmp = Builder.CreateICmpUGT(LHS, RHS);
|
|
return Builder.CreateSelect(Cmp, LHS, RHS, Name);
|
|
case RK_None:
|
|
break;
|
|
}
|
|
llvm_unreachable("Unknown reduction operation.");
|
|
}
|
|
|
|
public:
|
|
explicit OperationData() = default;
|
|
|
|
/// Construction for reduced values. They are identified by opcode only and
|
|
/// don't have associated LHS/RHS values.
|
|
explicit OperationData(Value *V) {
|
|
if (auto *I = dyn_cast<Instruction>(V))
|
|
Opcode = I->getOpcode();
|
|
}
|
|
|
|
/// Constructor for reduction operations with opcode and its left and
|
|
/// right operands.
|
|
OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind,
|
|
bool NoNaN = false)
|
|
: Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) {
|
|
assert(Kind != RK_None && "One of the reduction operations is expected.");
|
|
}
|
|
|
|
explicit operator bool() const { return Opcode; }
|
|
|
|
/// Return true if this operation is any kind of minimum or maximum.
|
|
bool isMinMax() const {
|
|
switch (Kind) {
|
|
case RK_Arithmetic:
|
|
return false;
|
|
case RK_Min:
|
|
case RK_Max:
|
|
case RK_UMin:
|
|
case RK_UMax:
|
|
return true;
|
|
case RK_None:
|
|
break;
|
|
}
|
|
llvm_unreachable("Reduction kind is not set");
|
|
}
|
|
|
|
/// Get the index of the first operand.
|
|
unsigned getFirstOperandIndex() const {
|
|
assert(!!*this && "The opcode is not set.");
|
|
// We allow calling this before 'Kind' is set, so handle that specially.
|
|
if (Kind == RK_None)
|
|
return 0;
|
|
return isMinMax() ? 1 : 0;
|
|
}
|
|
|
|
/// Total number of operands in the reduction operation.
|
|
unsigned getNumberOfOperands() const {
|
|
assert(Kind != RK_None && !!*this && LHS && RHS &&
|
|
"Expected reduction operation.");
|
|
return isMinMax() ? 3 : 2;
|
|
}
|
|
|
|
/// Checks if the operation has the same parent as \p P.
|
|
bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const {
|
|
assert(Kind != RK_None && !!*this && LHS && RHS &&
|
|
"Expected reduction operation.");
|
|
if (!IsRedOp)
|
|
return I->getParent() == P;
|
|
if (isMinMax()) {
|
|
// SelectInst must be used twice while the condition op must have single
|
|
// use only.
|
|
auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition());
|
|
return I->getParent() == P && Cmp && Cmp->getParent() == P;
|
|
}
|
|
// Arithmetic reduction operation must be used once only.
|
|
return I->getParent() == P;
|
|
}
|
|
|
|
/// Expected number of uses for reduction operations/reduced values.
|
|
bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const {
|
|
assert(Kind != RK_None && !!*this && LHS && RHS &&
|
|
"Expected reduction operation.");
|
|
if (isMinMax())
|
|
return I->hasNUses(2) &&
|
|
(!IsReductionOp ||
|
|
cast<SelectInst>(I)->getCondition()->hasOneUse());
|
|
return I->hasOneUse();
|
|
}
|
|
|
|
/// Initializes the list of reduction operations.
|
|
void initReductionOps(ReductionOpsListType &ReductionOps) {
|
|
assert(Kind != RK_None && !!*this && LHS && RHS &&
|
|
"Expected reduction operation.");
|
|
if (isMinMax())
|
|
ReductionOps.assign(2, ReductionOpsType());
|
|
else
|
|
ReductionOps.assign(1, ReductionOpsType());
|
|
}
|
|
|
|
/// Add all reduction operations for the reduction instruction \p I.
|
|
void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) {
|
|
assert(Kind != RK_None && !!*this && LHS && RHS &&
|
|
"Expected reduction operation.");
|
|
if (isMinMax()) {
|
|
ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
|
|
ReductionOps[1].emplace_back(I);
|
|
} else {
|
|
ReductionOps[0].emplace_back(I);
|
|
}
|
|
}
|
|
|
|
/// Checks if instruction is associative and can be vectorized.
|
|
bool isAssociative(Instruction *I) const {
|
|
assert(Kind != RK_None && *this && LHS && RHS &&
|
|
"Expected reduction operation.");
|
|
switch (Kind) {
|
|
case RK_Arithmetic:
|
|
return I->isAssociative();
|
|
case RK_Min:
|
|
case RK_Max:
|
|
return Opcode == Instruction::ICmp ||
|
|
cast<Instruction>(I->getOperand(0))->isFast();
|
|
case RK_UMin:
|
|
case RK_UMax:
|
|
assert(Opcode == Instruction::ICmp &&
|
|
"Only integer compare operation is expected.");
|
|
return true;
|
|
case RK_None:
|
|
break;
|
|
}
|
|
llvm_unreachable("Reduction kind is not set");
|
|
}
|
|
|
|
/// Checks if the reduction operation can be vectorized.
|
|
bool isVectorizable(Instruction *I) const {
|
|
return isVectorizable() && isAssociative(I);
|
|
}
|
|
|
|
/// Checks if two operation data are both a reduction op or both a reduced
|
|
/// value.
|
|
bool operator==(const OperationData &OD) const {
|
|
assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) &&
|
|
"One of the comparing operations is incorrect.");
|
|
return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode);
|
|
}
|
|
bool operator!=(const OperationData &OD) const { return !(*this == OD); }
|
|
void clear() {
|
|
Opcode = 0;
|
|
LHS = nullptr;
|
|
RHS = nullptr;
|
|
Kind = RK_None;
|
|
NoNaN = false;
|
|
}
|
|
|
|
/// Get the opcode of the reduction operation.
|
|
unsigned getOpcode() const {
|
|
assert(isVectorizable() && "Expected vectorizable operation.");
|
|
return Opcode;
|
|
}
|
|
|
|
/// Get kind of reduction data.
|
|
ReductionKind getKind() const { return Kind; }
|
|
Value *getLHS() const { return LHS; }
|
|
Value *getRHS() const { return RHS; }
|
|
Type *getConditionType() const {
|
|
return isMinMax() ? CmpInst::makeCmpResultType(LHS->getType()) : nullptr;
|
|
}
|
|
|
|
/// Creates reduction operation with the current opcode with the IR flags
|
|
/// from \p ReductionOps.
|
|
Value *createOp(IRBuilder<> &Builder, const Twine &Name,
|
|
const ReductionOpsListType &ReductionOps) const {
|
|
assert(isVectorizable() &&
|
|
"Expected add|fadd or min/max reduction operation.");
|
|
auto *Op = createOp(Builder, Name);
|
|
switch (Kind) {
|
|
case RK_Arithmetic:
|
|
propagateIRFlags(Op, ReductionOps[0]);
|
|
return Op;
|
|
case RK_Min:
|
|
case RK_Max:
|
|
case RK_UMin:
|
|
case RK_UMax:
|
|
if (auto *SI = dyn_cast<SelectInst>(Op))
|
|
propagateIRFlags(SI->getCondition(), ReductionOps[0]);
|
|
propagateIRFlags(Op, ReductionOps[1]);
|
|
return Op;
|
|
case RK_None:
|
|
break;
|
|
}
|
|
llvm_unreachable("Unknown reduction operation.");
|
|
}
|
|
/// Creates reduction operation with the current opcode with the IR flags
|
|
/// from \p I.
|
|
Value *createOp(IRBuilder<> &Builder, const Twine &Name,
|
|
Instruction *I) const {
|
|
assert(isVectorizable() &&
|
|
"Expected add|fadd or min/max reduction operation.");
|
|
auto *Op = createOp(Builder, Name);
|
|
switch (Kind) {
|
|
case RK_Arithmetic:
|
|
propagateIRFlags(Op, I);
|
|
return Op;
|
|
case RK_Min:
|
|
case RK_Max:
|
|
case RK_UMin:
|
|
case RK_UMax:
|
|
if (auto *SI = dyn_cast<SelectInst>(Op)) {
|
|
propagateIRFlags(SI->getCondition(),
|
|
cast<SelectInst>(I)->getCondition());
|
|
}
|
|
propagateIRFlags(Op, I);
|
|
return Op;
|
|
case RK_None:
|
|
break;
|
|
}
|
|
llvm_unreachable("Unknown reduction operation.");
|
|
}
|
|
|
|
TargetTransformInfo::ReductionFlags getFlags() const {
|
|
TargetTransformInfo::ReductionFlags Flags;
|
|
Flags.NoNaN = NoNaN;
|
|
switch (Kind) {
|
|
case RK_Arithmetic:
|
|
break;
|
|
case RK_Min:
|
|
Flags.IsSigned = Opcode == Instruction::ICmp;
|
|
Flags.IsMaxOp = false;
|
|
break;
|
|
case RK_Max:
|
|
Flags.IsSigned = Opcode == Instruction::ICmp;
|
|
Flags.IsMaxOp = true;
|
|
break;
|
|
case RK_UMin:
|
|
Flags.IsSigned = false;
|
|
Flags.IsMaxOp = false;
|
|
break;
|
|
case RK_UMax:
|
|
Flags.IsSigned = false;
|
|
Flags.IsMaxOp = true;
|
|
break;
|
|
case RK_None:
|
|
llvm_unreachable("Reduction kind is not set");
|
|
}
|
|
return Flags;
|
|
}
|
|
};
|
|
|
|
WeakTrackingVH ReductionRoot;
|
|
|
|
/// The operation data of the reduction operation.
|
|
OperationData ReductionData;
|
|
|
|
/// The operation data of the values we perform a reduction on.
|
|
OperationData ReducedValueData;
|
|
|
|
/// Should we model this reduction as a pairwise reduction tree or a tree that
|
|
/// splits the vector in halves and adds those halves.
|
|
bool IsPairwiseReduction = false;
|
|
|
|
/// Checks if the ParentStackElem.first should be marked as a reduction
|
|
/// operation with an extra argument or as extra argument itself.
|
|
void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
|
|
Value *ExtraArg) {
|
|
if (ExtraArgs.count(ParentStackElem.first)) {
|
|
ExtraArgs[ParentStackElem.first] = nullptr;
|
|
// We ran into something like:
|
|
// ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
|
|
// The whole ParentStackElem.first should be considered as an extra value
|
|
// in this case.
|
|
// Do not perform analysis of remaining operands of ParentStackElem.first
|
|
// instruction, this whole instruction is an extra argument.
|
|
ParentStackElem.second = ParentStackElem.first->getNumOperands();
|
|
} else {
|
|
// We ran into something like:
|
|
// ParentStackElem.first += ... + ExtraArg + ...
|
|
ExtraArgs[ParentStackElem.first] = ExtraArg;
|
|
}
|
|
}
|
|
|
|
static OperationData getOperationData(Value *V) {
|
|
if (!V)
|
|
return OperationData();
|
|
|
|
Value *LHS;
|
|
Value *RHS;
|
|
if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) {
|
|
return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS,
|
|
RK_Arithmetic);
|
|
}
|
|
if (auto *Select = dyn_cast<SelectInst>(V)) {
|
|
// Look for a min/max pattern.
|
|
if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
|
|
return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
|
|
} else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
|
|
return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
|
|
} else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) ||
|
|
m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
|
|
return OperationData(
|
|
Instruction::FCmp, LHS, RHS, RK_Min,
|
|
cast<Instruction>(Select->getCondition())->hasNoNaNs());
|
|
} else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
|
|
return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
|
|
} else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
|
|
return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
|
|
} else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) ||
|
|
m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
|
|
return OperationData(
|
|
Instruction::FCmp, LHS, RHS, RK_Max,
|
|
cast<Instruction>(Select->getCondition())->hasNoNaNs());
|
|
} else {
|
|
// Try harder: look for min/max pattern based on instructions producing
|
|
// same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
|
|
// During the intermediate stages of SLP, it's very common to have
|
|
// pattern like this (since optimizeGatherSequence is run only once
|
|
// at the end):
|
|
// %1 = extractelement <2 x i32> %a, i32 0
|
|
// %2 = extractelement <2 x i32> %a, i32 1
|
|
// %cond = icmp sgt i32 %1, %2
|
|
// %3 = extractelement <2 x i32> %a, i32 0
|
|
// %4 = extractelement <2 x i32> %a, i32 1
|
|
// %select = select i1 %cond, i32 %3, i32 %4
|
|
CmpInst::Predicate Pred;
|
|
Instruction *L1;
|
|
Instruction *L2;
|
|
|
|
LHS = Select->getTrueValue();
|
|
RHS = Select->getFalseValue();
|
|
Value *Cond = Select->getCondition();
|
|
|
|
// TODO: Support inverse predicates.
|
|
if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
|
|
if (!isa<ExtractElementInst>(RHS) ||
|
|
!L2->isIdenticalTo(cast<Instruction>(RHS)))
|
|
return OperationData(V);
|
|
} else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
|
|
if (!isa<ExtractElementInst>(LHS) ||
|
|
!L1->isIdenticalTo(cast<Instruction>(LHS)))
|
|
return OperationData(V);
|
|
} else {
|
|
if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
|
|
return OperationData(V);
|
|
if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
|
|
!L1->isIdenticalTo(cast<Instruction>(LHS)) ||
|
|
!L2->isIdenticalTo(cast<Instruction>(RHS)))
|
|
return OperationData(V);
|
|
}
|
|
switch (Pred) {
|
|
default:
|
|
return OperationData(V);
|
|
|
|
case CmpInst::ICMP_ULT:
|
|
case CmpInst::ICMP_ULE:
|
|
return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
|
|
|
|
case CmpInst::ICMP_SLT:
|
|
case CmpInst::ICMP_SLE:
|
|
return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
|
|
|
|
case CmpInst::FCMP_OLT:
|
|
case CmpInst::FCMP_OLE:
|
|
case CmpInst::FCMP_ULT:
|
|
case CmpInst::FCMP_ULE:
|
|
return OperationData(Instruction::FCmp, LHS, RHS, RK_Min,
|
|
cast<Instruction>(Cond)->hasNoNaNs());
|
|
|
|
case CmpInst::ICMP_UGT:
|
|
case CmpInst::ICMP_UGE:
|
|
return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
|
|
|
|
case CmpInst::ICMP_SGT:
|
|
case CmpInst::ICMP_SGE:
|
|
return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
|
|
|
|
case CmpInst::FCMP_OGT:
|
|
case CmpInst::FCMP_OGE:
|
|
case CmpInst::FCMP_UGT:
|
|
case CmpInst::FCMP_UGE:
|
|
return OperationData(Instruction::FCmp, LHS, RHS, RK_Max,
|
|
cast<Instruction>(Cond)->hasNoNaNs());
|
|
}
|
|
}
|
|
}
|
|
return OperationData(V);
|
|
}
|
|
|
|
public:
|
|
HorizontalReduction() = default;
|
|
|
|
/// Try to find a reduction tree.
|
|
bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
|
|
assert((!Phi || is_contained(Phi->operands(), B)) &&
|
|
"Thi phi needs to use the binary operator");
|
|
|
|
ReductionData = getOperationData(B);
|
|
|
|
// We could have a initial reductions that is not an add.
|
|
// r *= v1 + v2 + v3 + v4
|
|
// In such a case start looking for a tree rooted in the first '+'.
|
|
if (Phi) {
|
|
if (ReductionData.getLHS() == Phi) {
|
|
Phi = nullptr;
|
|
B = dyn_cast<Instruction>(ReductionData.getRHS());
|
|
ReductionData = getOperationData(B);
|
|
} else if (ReductionData.getRHS() == Phi) {
|
|
Phi = nullptr;
|
|
B = dyn_cast<Instruction>(ReductionData.getLHS());
|
|
ReductionData = getOperationData(B);
|
|
}
|
|
}
|
|
|
|
if (!ReductionData.isVectorizable(B))
|
|
return false;
|
|
|
|
Type *Ty = B->getType();
|
|
if (!isValidElementType(Ty))
|
|
return false;
|
|
if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy())
|
|
return false;
|
|
|
|
ReducedValueData.clear();
|
|
ReductionRoot = B;
|
|
|
|
// Post order traverse the reduction tree starting at B. We only handle true
|
|
// trees containing only binary operators.
|
|
SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
|
|
Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex()));
|
|
ReductionData.initReductionOps(ReductionOps);
|
|
while (!Stack.empty()) {
|
|
Instruction *TreeN = Stack.back().first;
|
|
unsigned EdgeToVist = Stack.back().second++;
|
|
OperationData OpData = getOperationData(TreeN);
|
|
bool IsReducedValue = OpData != ReductionData;
|
|
|
|
// Postorder vist.
|
|
if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) {
|
|
if (IsReducedValue)
|
|
ReducedVals.push_back(TreeN);
|
|
else {
|
|
auto I = ExtraArgs.find(TreeN);
|
|
if (I != ExtraArgs.end() && !I->second) {
|
|
// Check if TreeN is an extra argument of its parent operation.
|
|
if (Stack.size() <= 1) {
|
|
// TreeN can't be an extra argument as it is a root reduction
|
|
// operation.
|
|
return false;
|
|
}
|
|
// Yes, TreeN is an extra argument, do not add it to a list of
|
|
// reduction operations.
|
|
// Stack[Stack.size() - 2] always points to the parent operation.
|
|
markExtraArg(Stack[Stack.size() - 2], TreeN);
|
|
ExtraArgs.erase(TreeN);
|
|
} else
|
|
ReductionData.addReductionOps(TreeN, ReductionOps);
|
|
}
|
|
// Retract.
|
|
Stack.pop_back();
|
|
continue;
|
|
}
|
|
|
|
// Visit left or right.
|
|
Value *NextV = TreeN->getOperand(EdgeToVist);
|
|
if (NextV != Phi) {
|
|
auto *I = dyn_cast<Instruction>(NextV);
|
|
OpData = getOperationData(I);
|
|
// Continue analysis if the next operand is a reduction operation or
|
|
// (possibly) a reduced value. If the reduced value opcode is not set,
|
|
// the first met operation != reduction operation is considered as the
|
|
// reduced value class.
|
|
if (I && (!ReducedValueData || OpData == ReducedValueData ||
|
|
OpData == ReductionData)) {
|
|
const bool IsReductionOperation = OpData == ReductionData;
|
|
// Only handle trees in the current basic block.
|
|
if (!ReductionData.hasSameParent(I, B->getParent(),
|
|
IsReductionOperation)) {
|
|
// I is an extra argument for TreeN (its parent operation).
|
|
markExtraArg(Stack.back(), I);
|
|
continue;
|
|
}
|
|
|
|
// Each tree node needs to have minimal number of users except for the
|
|
// ultimate reduction.
|
|
if (!ReductionData.hasRequiredNumberOfUses(I,
|
|
OpData == ReductionData) &&
|
|
I != B) {
|
|
// I is an extra argument for TreeN (its parent operation).
|
|
markExtraArg(Stack.back(), I);
|
|
continue;
|
|
}
|
|
|
|
if (IsReductionOperation) {
|
|
// We need to be able to reassociate the reduction operations.
|
|
if (!OpData.isAssociative(I)) {
|
|
// I is an extra argument for TreeN (its parent operation).
|
|
markExtraArg(Stack.back(), I);
|
|
continue;
|
|
}
|
|
} else if (ReducedValueData &&
|
|
ReducedValueData != OpData) {
|
|
// Make sure that the opcodes of the operations that we are going to
|
|
// reduce match.
|
|
// I is an extra argument for TreeN (its parent operation).
|
|
markExtraArg(Stack.back(), I);
|
|
continue;
|
|
} else if (!ReducedValueData)
|
|
ReducedValueData = OpData;
|
|
|
|
Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex()));
|
|
continue;
|
|
}
|
|
}
|
|
// NextV is an extra argument for TreeN (its parent operation).
|
|
markExtraArg(Stack.back(), NextV);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Attempt to vectorize the tree found by
|
|
/// matchAssociativeReduction.
|
|
bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
|
|
if (ReducedVals.empty())
|
|
return false;
|
|
|
|
// If there is a sufficient number of reduction values, reduce
|
|
// to a nearby power-of-2. Can safely generate oversized
|
|
// vectors and rely on the backend to split them to legal sizes.
|
|
unsigned NumReducedVals = ReducedVals.size();
|
|
if (NumReducedVals < 4)
|
|
return false;
|
|
|
|
unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
|
|
|
|
Value *VectorizedTree = nullptr;
|
|
|
|
// FIXME: Fast-math-flags should be set based on the instructions in the
|
|
// reduction (not all of 'fast' are required).
|
|
IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
|
|
FastMathFlags Unsafe;
|
|
Unsafe.setFast();
|
|
Builder.setFastMathFlags(Unsafe);
|
|
unsigned i = 0;
|
|
|
|
BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
|
|
// The same extra argument may be used several time, so log each attempt
|
|
// to use it.
|
|
for (auto &Pair : ExtraArgs) {
|
|
assert(Pair.first && "DebugLoc must be set.");
|
|
ExternallyUsedValues[Pair.second].push_back(Pair.first);
|
|
}
|
|
|
|
// The compare instruction of a min/max is the insertion point for new
|
|
// instructions and may be replaced with a new compare instruction.
|
|
auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
|
|
assert(isa<SelectInst>(RdxRootInst) &&
|
|
"Expected min/max reduction to have select root instruction");
|
|
Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
|
|
assert(isa<Instruction>(ScalarCond) &&
|
|
"Expected min/max reduction to have compare condition");
|
|
return cast<Instruction>(ScalarCond);
|
|
};
|
|
|
|
// The reduction root is used as the insertion point for new instructions,
|
|
// so set it as externally used to prevent it from being deleted.
|
|
ExternallyUsedValues[ReductionRoot];
|
|
SmallVector<Value *, 16> IgnoreList;
|
|
for (auto &V : ReductionOps)
|
|
IgnoreList.append(V.begin(), V.end());
|
|
while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
|
|
auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth);
|
|
V.buildTree(VL, ExternallyUsedValues, IgnoreList);
|
|
Optional<ArrayRef<unsigned>> Order = V.bestOrder();
|
|
// TODO: Handle orders of size less than number of elements in the vector.
|
|
if (Order && Order->size() == VL.size()) {
|
|
// TODO: reorder tree nodes without tree rebuilding.
|
|
SmallVector<Value *, 4> ReorderedOps(VL.size());
|
|
llvm::transform(*Order, ReorderedOps.begin(),
|
|
[VL](const unsigned Idx) { return VL[Idx]; });
|
|
V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
|
|
}
|
|
if (V.isTreeTinyAndNotFullyVectorizable())
|
|
break;
|
|
if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode()))
|
|
break;
|
|
|
|
V.computeMinimumValueSizes();
|
|
|
|
// Estimate cost.
|
|
int TreeCost = V.getTreeCost();
|
|
int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth);
|
|
int Cost = TreeCost + ReductionCost;
|
|
if (Cost >= -SLPCostThreshold) {
|
|
V.getORE()->emit([&]() {
|
|
return OptimizationRemarkMissed(
|
|
SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0]))
|
|
<< "Vectorizing horizontal reduction is possible"
|
|
<< "but not beneficial with cost "
|
|
<< ore::NV("Cost", Cost) << " and threshold "
|
|
<< ore::NV("Threshold", -SLPCostThreshold);
|
|
});
|
|
break;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
|
|
<< Cost << ". (HorRdx)\n");
|
|
V.getORE()->emit([&]() {
|
|
return OptimizationRemark(
|
|
SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0]))
|
|
<< "Vectorized horizontal reduction with cost "
|
|
<< ore::NV("Cost", Cost) << " and with tree size "
|
|
<< ore::NV("TreeSize", V.getTreeSize());
|
|
});
|
|
|
|
// Vectorize a tree.
|
|
DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
|
|
Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
|
|
|
|
// Emit a reduction. For min/max, the root is a select, but the insertion
|
|
// point is the compare condition of that select.
|
|
Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
|
|
if (ReductionData.isMinMax())
|
|
Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
|
|
else
|
|
Builder.SetInsertPoint(RdxRootInst);
|
|
|
|
Value *ReducedSubTree =
|
|
emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
|
|
if (VectorizedTree) {
|
|
Builder.SetCurrentDebugLocation(Loc);
|
|
OperationData VectReductionData(ReductionData.getOpcode(),
|
|
VectorizedTree, ReducedSubTree,
|
|
ReductionData.getKind());
|
|
VectorizedTree =
|
|
VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
|
|
} else
|
|
VectorizedTree = ReducedSubTree;
|
|
i += ReduxWidth;
|
|
ReduxWidth = PowerOf2Floor(NumReducedVals - i);
|
|
}
|
|
|
|
if (VectorizedTree) {
|
|
// Finish the reduction.
|
|
for (; i < NumReducedVals; ++i) {
|
|
auto *I = cast<Instruction>(ReducedVals[i]);
|
|
Builder.SetCurrentDebugLocation(I->getDebugLoc());
|
|
OperationData VectReductionData(ReductionData.getOpcode(),
|
|
VectorizedTree, I,
|
|
ReductionData.getKind());
|
|
VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps);
|
|
}
|
|
for (auto &Pair : ExternallyUsedValues) {
|
|
// Add each externally used value to the final reduction.
|
|
for (auto *I : Pair.second) {
|
|
Builder.SetCurrentDebugLocation(I->getDebugLoc());
|
|
OperationData VectReductionData(ReductionData.getOpcode(),
|
|
VectorizedTree, Pair.first,
|
|
ReductionData.getKind());
|
|
VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I);
|
|
}
|
|
}
|
|
|
|
// Update users. For a min/max reduction that ends with a compare and
|
|
// select, we also have to RAUW for the compare instruction feeding the
|
|
// reduction root. That's because the original compare may have extra uses
|
|
// besides the final select of the reduction.
|
|
if (ReductionData.isMinMax()) {
|
|
if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) {
|
|
Instruction *ScalarCmp =
|
|
getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot));
|
|
ScalarCmp->replaceAllUsesWith(VecSelect->getCondition());
|
|
}
|
|
}
|
|
ReductionRoot->replaceAllUsesWith(VectorizedTree);
|
|
|
|
// Mark all scalar reduction ops for deletion, they are replaced by the
|
|
// vector reductions.
|
|
V.eraseInstructions(IgnoreList);
|
|
}
|
|
return VectorizedTree != nullptr;
|
|
}
|
|
|
|
unsigned numReductionValues() const {
|
|
return ReducedVals.size();
|
|
}
|
|
|
|
private:
|
|
/// Calculate the cost of a reduction.
|
|
int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal,
|
|
unsigned ReduxWidth) {
|
|
Type *ScalarTy = FirstReducedVal->getType();
|
|
VectorType *VecTy = VectorType::get(ScalarTy, ReduxWidth);
|
|
|
|
int PairwiseRdxCost;
|
|
int SplittingRdxCost;
|
|
switch (ReductionData.getKind()) {
|
|
case RK_Arithmetic:
|
|
PairwiseRdxCost =
|
|
TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
|
|
/*IsPairwiseForm=*/true);
|
|
SplittingRdxCost =
|
|
TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
|
|
/*IsPairwiseForm=*/false);
|
|
break;
|
|
case RK_Min:
|
|
case RK_Max:
|
|
case RK_UMin:
|
|
case RK_UMax: {
|
|
auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VecTy));
|
|
bool IsUnsigned = ReductionData.getKind() == RK_UMin ||
|
|
ReductionData.getKind() == RK_UMax;
|
|
PairwiseRdxCost =
|
|
TTI->getMinMaxReductionCost(VecTy, VecCondTy,
|
|
/*IsPairwiseForm=*/true, IsUnsigned);
|
|
SplittingRdxCost =
|
|
TTI->getMinMaxReductionCost(VecTy, VecCondTy,
|
|
/*IsPairwiseForm=*/false, IsUnsigned);
|
|
break;
|
|
}
|
|
case RK_None:
|
|
llvm_unreachable("Expected arithmetic or min/max reduction operation");
|
|
}
|
|
|
|
IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
|
|
int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
|
|
|
|
int ScalarReduxCost = 0;
|
|
switch (ReductionData.getKind()) {
|
|
case RK_Arithmetic:
|
|
ScalarReduxCost =
|
|
TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy);
|
|
break;
|
|
case RK_Min:
|
|
case RK_Max:
|
|
case RK_UMin:
|
|
case RK_UMax:
|
|
ScalarReduxCost =
|
|
TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) +
|
|
TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
|
|
CmpInst::makeCmpResultType(ScalarTy));
|
|
break;
|
|
case RK_None:
|
|
llvm_unreachable("Expected arithmetic or min/max reduction operation");
|
|
}
|
|
ScalarReduxCost *= (ReduxWidth - 1);
|
|
|
|
LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
|
|
<< " for reduction that starts with " << *FirstReducedVal
|
|
<< " (It is a "
|
|
<< (IsPairwiseReduction ? "pairwise" : "splitting")
|
|
<< " reduction)\n");
|
|
|
|
return VecReduxCost - ScalarReduxCost;
|
|
}
|
|
|
|
/// Emit a horizontal reduction of the vectorized value.
|
|
Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
|
|
unsigned ReduxWidth, const TargetTransformInfo *TTI) {
|
|
assert(VectorizedValue && "Need to have a vectorized tree node");
|
|
assert(isPowerOf2_32(ReduxWidth) &&
|
|
"We only handle power-of-two reductions for now");
|
|
|
|
if (!IsPairwiseReduction) {
|
|
// FIXME: The builder should use an FMF guard. It should not be hard-coded
|
|
// to 'fast'.
|
|
assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF");
|
|
return createSimpleTargetReduction(
|
|
Builder, TTI, ReductionData.getOpcode(), VectorizedValue,
|
|
ReductionData.getFlags(), ReductionOps.back());
|
|
}
|
|
|
|
Value *TmpVec = VectorizedValue;
|
|
for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
|
|
auto LeftMask = createRdxShuffleMask(ReduxWidth, i, true, true);
|
|
auto RightMask = createRdxShuffleMask(ReduxWidth, i, true, false);
|
|
|
|
Value *LeftShuf = Builder.CreateShuffleVector(
|
|
TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
|
|
Value *RightShuf = Builder.CreateShuffleVector(
|
|
TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
|
|
"rdx.shuf.r");
|
|
OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf,
|
|
RightShuf, ReductionData.getKind());
|
|
TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
|
|
}
|
|
|
|
// The result is in the first element of the vector.
|
|
return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Recognize construction of vectors like
|
|
/// %ra = insertelement <4 x float> undef, float %s0, i32 0
|
|
/// %rb = insertelement <4 x float> %ra, float %s1, i32 1
|
|
/// %rc = insertelement <4 x float> %rb, float %s2, i32 2
|
|
/// %rd = insertelement <4 x float> %rc, float %s3, i32 3
|
|
/// starting from the last insertelement or insertvalue instruction.
|
|
///
|
|
/// Also recognize aggregates like {<2 x float>, <2 x float>},
|
|
/// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
|
|
/// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
|
|
///
|
|
/// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
|
|
///
|
|
/// \return true if it matches.
|
|
static bool findBuildAggregate(Value *LastInsertInst, TargetTransformInfo *TTI,
|
|
SmallVectorImpl<Value *> &BuildVectorOpds,
|
|
int &UserCost) {
|
|
assert((isa<InsertElementInst>(LastInsertInst) ||
|
|
isa<InsertValueInst>(LastInsertInst)) &&
|
|
"Expected insertelement or insertvalue instruction!");
|
|
UserCost = 0;
|
|
do {
|
|
Value *InsertedOperand;
|
|
if (auto *IE = dyn_cast<InsertElementInst>(LastInsertInst)) {
|
|
InsertedOperand = IE->getOperand(1);
|
|
LastInsertInst = IE->getOperand(0);
|
|
if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
|
|
UserCost += TTI->getVectorInstrCost(Instruction::InsertElement,
|
|
IE->getType(), CI->getZExtValue());
|
|
}
|
|
} else {
|
|
auto *IV = cast<InsertValueInst>(LastInsertInst);
|
|
InsertedOperand = IV->getInsertedValueOperand();
|
|
LastInsertInst = IV->getAggregateOperand();
|
|
}
|
|
if (isa<InsertElementInst>(InsertedOperand) ||
|
|
isa<InsertValueInst>(InsertedOperand)) {
|
|
int TmpUserCost;
|
|
SmallVector<Value *, 8> TmpBuildVectorOpds;
|
|
if (!findBuildAggregate(InsertedOperand, TTI, TmpBuildVectorOpds,
|
|
TmpUserCost))
|
|
return false;
|
|
BuildVectorOpds.append(TmpBuildVectorOpds.rbegin(),
|
|
TmpBuildVectorOpds.rend());
|
|
UserCost += TmpUserCost;
|
|
} else {
|
|
BuildVectorOpds.push_back(InsertedOperand);
|
|
}
|
|
if (isa<UndefValue>(LastInsertInst))
|
|
break;
|
|
if ((!isa<InsertValueInst>(LastInsertInst) &&
|
|
!isa<InsertElementInst>(LastInsertInst)) ||
|
|
!LastInsertInst->hasOneUse())
|
|
return false;
|
|
} while (true);
|
|
std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
|
|
return true;
|
|
}
|
|
|
|
static bool PhiTypeSorterFunc(Value *V, Value *V2) {
|
|
return V->getType() < V2->getType();
|
|
}
|
|
|
|
/// Try and get a reduction value from a phi node.
|
|
///
|
|
/// Given a phi node \p P in a block \p ParentBB, consider possible reductions
|
|
/// if they come from either \p ParentBB or a containing loop latch.
|
|
///
|
|
/// \returns A candidate reduction value if possible, or \code nullptr \endcode
|
|
/// if not possible.
|
|
static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
|
|
BasicBlock *ParentBB, LoopInfo *LI) {
|
|
// There are situations where the reduction value is not dominated by the
|
|
// reduction phi. Vectorizing such cases has been reported to cause
|
|
// miscompiles. See PR25787.
|
|
auto DominatedReduxValue = [&](Value *R) {
|
|
return isa<Instruction>(R) &&
|
|
DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
|
|
};
|
|
|
|
Value *Rdx = nullptr;
|
|
|
|
// Return the incoming value if it comes from the same BB as the phi node.
|
|
if (P->getIncomingBlock(0) == ParentBB) {
|
|
Rdx = P->getIncomingValue(0);
|
|
} else if (P->getIncomingBlock(1) == ParentBB) {
|
|
Rdx = P->getIncomingValue(1);
|
|
}
|
|
|
|
if (Rdx && DominatedReduxValue(Rdx))
|
|
return Rdx;
|
|
|
|
// Otherwise, check whether we have a loop latch to look at.
|
|
Loop *BBL = LI->getLoopFor(ParentBB);
|
|
if (!BBL)
|
|
return nullptr;
|
|
BasicBlock *BBLatch = BBL->getLoopLatch();
|
|
if (!BBLatch)
|
|
return nullptr;
|
|
|
|
// There is a loop latch, return the incoming value if it comes from
|
|
// that. This reduction pattern occasionally turns up.
|
|
if (P->getIncomingBlock(0) == BBLatch) {
|
|
Rdx = P->getIncomingValue(0);
|
|
} else if (P->getIncomingBlock(1) == BBLatch) {
|
|
Rdx = P->getIncomingValue(1);
|
|
}
|
|
|
|
if (Rdx && DominatedReduxValue(Rdx))
|
|
return Rdx;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Attempt to reduce a horizontal reduction.
|
|
/// If it is legal to match a horizontal reduction feeding the phi node \a P
|
|
/// with reduction operators \a Root (or one of its operands) in a basic block
|
|
/// \a BB, then check if it can be done. If horizontal reduction is not found
|
|
/// and root instruction is a binary operation, vectorization of the operands is
|
|
/// attempted.
|
|
/// \returns true if a horizontal reduction was matched and reduced or operands
|
|
/// of one of the binary instruction were vectorized.
|
|
/// \returns false if a horizontal reduction was not matched (or not possible)
|
|
/// or no vectorization of any binary operation feeding \a Root instruction was
|
|
/// performed.
|
|
static bool tryToVectorizeHorReductionOrInstOperands(
|
|
PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
|
|
TargetTransformInfo *TTI,
|
|
const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
|
|
if (!ShouldVectorizeHor)
|
|
return false;
|
|
|
|
if (!Root)
|
|
return false;
|
|
|
|
if (Root->getParent() != BB || isa<PHINode>(Root))
|
|
return false;
|
|
// Start analysis starting from Root instruction. If horizontal reduction is
|
|
// found, try to vectorize it. If it is not a horizontal reduction or
|
|
// vectorization is not possible or not effective, and currently analyzed
|
|
// instruction is a binary operation, try to vectorize the operands, using
|
|
// pre-order DFS traversal order. If the operands were not vectorized, repeat
|
|
// the same procedure considering each operand as a possible root of the
|
|
// horizontal reduction.
|
|
// Interrupt the process if the Root instruction itself was vectorized or all
|
|
// sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
|
|
SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0});
|
|
SmallPtrSet<Value *, 8> VisitedInstrs;
|
|
bool Res = false;
|
|
while (!Stack.empty()) {
|
|
Instruction *Inst;
|
|
unsigned Level;
|
|
std::tie(Inst, Level) = Stack.pop_back_val();
|
|
auto *BI = dyn_cast<BinaryOperator>(Inst);
|
|
auto *SI = dyn_cast<SelectInst>(Inst);
|
|
if (BI || SI) {
|
|
HorizontalReduction HorRdx;
|
|
if (HorRdx.matchAssociativeReduction(P, Inst)) {
|
|
if (HorRdx.tryToReduce(R, TTI)) {
|
|
Res = true;
|
|
// Set P to nullptr to avoid re-analysis of phi node in
|
|
// matchAssociativeReduction function unless this is the root node.
|
|
P = nullptr;
|
|
continue;
|
|
}
|
|
}
|
|
if (P && BI) {
|
|
Inst = dyn_cast<Instruction>(BI->getOperand(0));
|
|
if (Inst == P)
|
|
Inst = dyn_cast<Instruction>(BI->getOperand(1));
|
|
if (!Inst) {
|
|
// Set P to nullptr to avoid re-analysis of phi node in
|
|
// matchAssociativeReduction function unless this is the root node.
|
|
P = nullptr;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
// Set P to nullptr to avoid re-analysis of phi node in
|
|
// matchAssociativeReduction function unless this is the root node.
|
|
P = nullptr;
|
|
if (Vectorize(Inst, R)) {
|
|
Res = true;
|
|
continue;
|
|
}
|
|
|
|
// Try to vectorize operands.
|
|
// Continue analysis for the instruction from the same basic block only to
|
|
// save compile time.
|
|
if (++Level < RecursionMaxDepth)
|
|
for (auto *Op : Inst->operand_values())
|
|
if (VisitedInstrs.insert(Op).second)
|
|
if (auto *I = dyn_cast<Instruction>(Op))
|
|
if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB)
|
|
Stack.emplace_back(I, Level);
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
|
|
BasicBlock *BB, BoUpSLP &R,
|
|
TargetTransformInfo *TTI) {
|
|
if (!V)
|
|
return false;
|
|
auto *I = dyn_cast<Instruction>(V);
|
|
if (!I)
|
|
return false;
|
|
|
|
if (!isa<BinaryOperator>(I))
|
|
P = nullptr;
|
|
// Try to match and vectorize a horizontal reduction.
|
|
auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
|
|
return tryToVectorize(I, R);
|
|
};
|
|
return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
|
|
ExtraVectorization);
|
|
}
|
|
|
|
bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
|
|
BasicBlock *BB, BoUpSLP &R) {
|
|
int UserCost = 0;
|
|
const DataLayout &DL = BB->getModule()->getDataLayout();
|
|
if (!R.canMapToVector(IVI->getType(), DL))
|
|
return false;
|
|
|
|
SmallVector<Value *, 16> BuildVectorOpds;
|
|
if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, UserCost))
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
|
|
// Aggregate value is unlikely to be processed in vector register, we need to
|
|
// extract scalars into scalar registers, so NeedExtraction is set true.
|
|
return tryToVectorizeList(BuildVectorOpds, R, UserCost);
|
|
}
|
|
|
|
bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
|
|
BasicBlock *BB, BoUpSLP &R) {
|
|
int UserCost;
|
|
SmallVector<Value *, 16> BuildVectorOpds;
|
|
if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, UserCost) ||
|
|
(llvm::all_of(BuildVectorOpds,
|
|
[](Value *V) { return isa<ExtractElementInst>(V); }) &&
|
|
isShuffle(BuildVectorOpds)))
|
|
return false;
|
|
|
|
// Vectorize starting with the build vector operands ignoring the BuildVector
|
|
// instructions for the purpose of scheduling and user extraction.
|
|
return tryToVectorizeList(BuildVectorOpds, R, UserCost);
|
|
}
|
|
|
|
bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB,
|
|
BoUpSLP &R) {
|
|
if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R))
|
|
return true;
|
|
|
|
bool OpsChanged = false;
|
|
for (int Idx = 0; Idx < 2; ++Idx) {
|
|
OpsChanged |=
|
|
vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI);
|
|
}
|
|
return OpsChanged;
|
|
}
|
|
|
|
bool SLPVectorizerPass::vectorizeSimpleInstructions(
|
|
SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) {
|
|
bool OpsChanged = false;
|
|
for (auto *I : reverse(Instructions)) {
|
|
if (R.isDeleted(I))
|
|
continue;
|
|
if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
|
|
OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
|
|
else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
|
|
OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
|
|
else if (auto *CI = dyn_cast<CmpInst>(I))
|
|
OpsChanged |= vectorizeCmpInst(CI, BB, R);
|
|
}
|
|
Instructions.clear();
|
|
return OpsChanged;
|
|
}
|
|
|
|
bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
|
|
bool Changed = false;
|
|
SmallVector<Value *, 4> Incoming;
|
|
SmallPtrSet<Value *, 16> VisitedInstrs;
|
|
|
|
bool HaveVectorizedPhiNodes = true;
|
|
while (HaveVectorizedPhiNodes) {
|
|
HaveVectorizedPhiNodes = false;
|
|
|
|
// Collect the incoming values from the PHIs.
|
|
Incoming.clear();
|
|
for (Instruction &I : *BB) {
|
|
PHINode *P = dyn_cast<PHINode>(&I);
|
|
if (!P)
|
|
break;
|
|
|
|
if (!VisitedInstrs.count(P) && !R.isDeleted(P))
|
|
Incoming.push_back(P);
|
|
}
|
|
|
|
// Sort by type.
|
|
llvm::stable_sort(Incoming, PhiTypeSorterFunc);
|
|
|
|
// Try to vectorize elements base on their type.
|
|
for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
|
|
E = Incoming.end();
|
|
IncIt != E;) {
|
|
|
|
// Look for the next elements with the same type.
|
|
SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
|
|
while (SameTypeIt != E &&
|
|
(*SameTypeIt)->getType() == (*IncIt)->getType()) {
|
|
VisitedInstrs.insert(*SameTypeIt);
|
|
++SameTypeIt;
|
|
}
|
|
|
|
// Try to vectorize them.
|
|
unsigned NumElts = (SameTypeIt - IncIt);
|
|
LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
|
|
<< NumElts << ")\n");
|
|
// The order in which the phi nodes appear in the program does not matter.
|
|
// So allow tryToVectorizeList to reorder them if it is beneficial. This
|
|
// is done when there are exactly two elements since tryToVectorizeList
|
|
// asserts that there are only two values when AllowReorder is true.
|
|
bool AllowReorder = NumElts == 2;
|
|
if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
|
|
/*UserCost=*/0, AllowReorder)) {
|
|
// Success start over because instructions might have been changed.
|
|
HaveVectorizedPhiNodes = true;
|
|
Changed = true;
|
|
break;
|
|
}
|
|
|
|
// Start over at the next instruction of a different type (or the end).
|
|
IncIt = SameTypeIt;
|
|
}
|
|
}
|
|
|
|
VisitedInstrs.clear();
|
|
|
|
SmallVector<Instruction *, 8> PostProcessInstructions;
|
|
SmallDenseSet<Instruction *, 4> KeyNodes;
|
|
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
|
|
// Skip instructions marked for the deletion.
|
|
if (R.isDeleted(&*it))
|
|
continue;
|
|
// We may go through BB multiple times so skip the one we have checked.
|
|
if (!VisitedInstrs.insert(&*it).second) {
|
|
if (it->use_empty() && KeyNodes.count(&*it) > 0 &&
|
|
vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) {
|
|
// We would like to start over since some instructions are deleted
|
|
// and the iterator may become invalid value.
|
|
Changed = true;
|
|
it = BB->begin();
|
|
e = BB->end();
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (isa<DbgInfoIntrinsic>(it))
|
|
continue;
|
|
|
|
// Try to vectorize reductions that use PHINodes.
|
|
if (PHINode *P = dyn_cast<PHINode>(it)) {
|
|
// Check that the PHI is a reduction PHI.
|
|
if (P->getNumIncomingValues() != 2)
|
|
return Changed;
|
|
|
|
// Try to match and vectorize a horizontal reduction.
|
|
if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
|
|
TTI)) {
|
|
Changed = true;
|
|
it = BB->begin();
|
|
e = BB->end();
|
|
continue;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Ran into an instruction without users, like terminator, or function call
|
|
// with ignored return value, store. Ignore unused instructions (basing on
|
|
// instruction type, except for CallInst and InvokeInst).
|
|
if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
|
|
isa<InvokeInst>(it))) {
|
|
KeyNodes.insert(&*it);
|
|
bool OpsChanged = false;
|
|
if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
|
|
for (auto *V : it->operand_values()) {
|
|
// Try to match and vectorize a horizontal reduction.
|
|
OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
|
|
}
|
|
}
|
|
// Start vectorization of post-process list of instructions from the
|
|
// top-tree instructions to try to vectorize as many instructions as
|
|
// possible.
|
|
OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R);
|
|
if (OpsChanged) {
|
|
// We would like to start over since some instructions are deleted
|
|
// and the iterator may become invalid value.
|
|
Changed = true;
|
|
it = BB->begin();
|
|
e = BB->end();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
|
|
isa<InsertValueInst>(it))
|
|
PostProcessInstructions.push_back(&*it);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
|
|
auto Changed = false;
|
|
for (auto &Entry : GEPs) {
|
|
// If the getelementptr list has fewer than two elements, there's nothing
|
|
// to do.
|
|
if (Entry.second.size() < 2)
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
|
|
<< Entry.second.size() << ".\n");
|
|
|
|
// Process the GEP list in chunks suitable for the target's supported
|
|
// vector size. If a vector register can't hold 1 element, we are done.
|
|
unsigned MaxVecRegSize = R.getMaxVecRegSize();
|
|
unsigned EltSize = R.getVectorElementSize(Entry.second[0]);
|
|
if (MaxVecRegSize < EltSize)
|
|
continue;
|
|
|
|
unsigned MaxElts = MaxVecRegSize / EltSize;
|
|
for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
|
|
auto Len = std::min<unsigned>(BE - BI, MaxElts);
|
|
auto GEPList = makeArrayRef(&Entry.second[BI], Len);
|
|
|
|
// Initialize a set a candidate getelementptrs. Note that we use a
|
|
// SetVector here to preserve program order. If the index computations
|
|
// are vectorizable and begin with loads, we want to minimize the chance
|
|
// of having to reorder them later.
|
|
SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
|
|
|
|
// Some of the candidates may have already been vectorized after we
|
|
// initially collected them. If so, they are marked as deleted, so remove
|
|
// them from the set of candidates.
|
|
Candidates.remove_if(
|
|
[&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
|
|
|
|
// Remove from the set of candidates all pairs of getelementptrs with
|
|
// constant differences. Such getelementptrs are likely not good
|
|
// candidates for vectorization in a bottom-up phase since one can be
|
|
// computed from the other. We also ensure all candidate getelementptr
|
|
// indices are unique.
|
|
for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
|
|
auto *GEPI = GEPList[I];
|
|
if (!Candidates.count(GEPI))
|
|
continue;
|
|
auto *SCEVI = SE->getSCEV(GEPList[I]);
|
|
for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
|
|
auto *GEPJ = GEPList[J];
|
|
auto *SCEVJ = SE->getSCEV(GEPList[J]);
|
|
if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
|
|
Candidates.remove(GEPI);
|
|
Candidates.remove(GEPJ);
|
|
} else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
|
|
Candidates.remove(GEPJ);
|
|
}
|
|
}
|
|
}
|
|
|
|
// We break out of the above computation as soon as we know there are
|
|
// fewer than two candidates remaining.
|
|
if (Candidates.size() < 2)
|
|
continue;
|
|
|
|
// Add the single, non-constant index of each candidate to the bundle. We
|
|
// ensured the indices met these constraints when we originally collected
|
|
// the getelementptrs.
|
|
SmallVector<Value *, 16> Bundle(Candidates.size());
|
|
auto BundleIndex = 0u;
|
|
for (auto *V : Candidates) {
|
|
auto *GEP = cast<GetElementPtrInst>(V);
|
|
auto *GEPIdx = GEP->idx_begin()->get();
|
|
assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
|
|
Bundle[BundleIndex++] = GEPIdx;
|
|
}
|
|
|
|
// Try and vectorize the indices. We are currently only interested in
|
|
// gather-like cases of the form:
|
|
//
|
|
// ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
|
|
//
|
|
// where the loads of "a", the loads of "b", and the subtractions can be
|
|
// performed in parallel. It's likely that detecting this pattern in a
|
|
// bottom-up phase will be simpler and less costly than building a
|
|
// full-blown top-down phase beginning at the consecutive loads.
|
|
Changed |= tryToVectorizeList(Bundle, R);
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
|
|
bool Changed = false;
|
|
// Attempt to sort and vectorize each of the store-groups.
|
|
for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
|
|
++it) {
|
|
if (it->second.size() < 2)
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
|
|
<< it->second.size() << ".\n");
|
|
|
|
Changed |= vectorizeStores(it->second, R);
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
char SLPVectorizer::ID = 0;
|
|
|
|
static const char lv_name[] = "SLP Vectorizer";
|
|
|
|
INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
|
|
INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
|
|
INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
|
|
|
|
Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
|