1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-26 06:22:56 +02:00
llvm-mirror/include/llvm/Object/ELF.h
Rafael Espindola d1fc658396 Don't iterate over all sections in the ELFFile constructor.
With this we finally have an ELFFile that is O(1) to construct. This is helpful
for programs like lld which have to do their own section walk.

llvm-svn: 244510
2015-08-10 21:29:35 +00:00

523 lines
18 KiB
C++

//===- ELF.h - ELF object file implementation -------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the ELFFile template class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_OBJECT_ELF_H
#define LLVM_OBJECT_ELF_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/Object/ELFTypes.h"
#include "llvm/Support/MemoryBuffer.h"
namespace llvm {
namespace object {
StringRef getELFRelocationTypeName(uint32_t Machine, uint32_t Type);
// Subclasses of ELFFile may need this for template instantiation
inline std::pair<unsigned char, unsigned char>
getElfArchType(StringRef Object) {
if (Object.size() < ELF::EI_NIDENT)
return std::make_pair((uint8_t)ELF::ELFCLASSNONE,
(uint8_t)ELF::ELFDATANONE);
return std::make_pair((uint8_t)Object[ELF::EI_CLASS],
(uint8_t)Object[ELF::EI_DATA]);
}
template <class ELFT>
class ELFFile {
public:
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
typedef typename std::conditional<ELFT::Is64Bits,
uint64_t, uint32_t>::type uintX_t;
typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
typedef Elf_Sym_Impl<ELFT> Elf_Sym;
typedef Elf_Dyn_Impl<ELFT> Elf_Dyn;
typedef Elf_Phdr_Impl<ELFT> Elf_Phdr;
typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
typedef Elf_Verdef_Impl<ELFT> Elf_Verdef;
typedef Elf_Verdaux_Impl<ELFT> Elf_Verdaux;
typedef Elf_Verneed_Impl<ELFT> Elf_Verneed;
typedef Elf_Vernaux_Impl<ELFT> Elf_Vernaux;
typedef Elf_Versym_Impl<ELFT> Elf_Versym;
typedef Elf_Hash_Impl<ELFT> Elf_Hash;
typedef iterator_range<const Elf_Dyn *> Elf_Dyn_Range;
typedef iterator_range<const Elf_Shdr *> Elf_Shdr_Range;
typedef iterator_range<const Elf_Sym *> Elf_Sym_Range;
const uint8_t *base() const {
return reinterpret_cast<const uint8_t *>(Buf.data());
}
private:
StringRef Buf;
const Elf_Ehdr *Header;
const Elf_Shdr *SectionHeaderTable = nullptr;
StringRef DotShstrtab; // Section header string table.
public:
template<typename T>
const T *getEntry(uint32_t Section, uint32_t Entry) const;
template <typename T>
const T *getEntry(const Elf_Shdr *Section, uint32_t Entry) const;
ErrorOr<StringRef> getStringTable(const Elf_Shdr *Section) const;
ErrorOr<StringRef> getStringTableForSymtab(const Elf_Shdr &Section) const;
ErrorOr<ArrayRef<Elf_Word>> getSHNDXTable(const Elf_Shdr &Section) const;
void VerifyStrTab(const Elf_Shdr *sh) const;
StringRef getRelocationTypeName(uint32_t Type) const;
void getRelocationTypeName(uint32_t Type,
SmallVectorImpl<char> &Result) const;
/// \brief Get the symbol table section and symbol for a given relocation.
template <class RelT>
std::pair<const Elf_Shdr *, const Elf_Sym *>
getRelocationSymbol(const Elf_Shdr *RelSec, const RelT *Rel) const;
ELFFile(StringRef Object, std::error_code &EC);
bool isMipsELF64() const {
return Header->e_machine == ELF::EM_MIPS &&
Header->getFileClass() == ELF::ELFCLASS64;
}
bool isMips64EL() const {
return Header->e_machine == ELF::EM_MIPS &&
Header->getFileClass() == ELF::ELFCLASS64 &&
Header->getDataEncoding() == ELF::ELFDATA2LSB;
}
ErrorOr<const Elf_Dyn *> dynamic_table_begin(const Elf_Phdr *Phdr) const;
ErrorOr<const Elf_Dyn *> dynamic_table_end(const Elf_Phdr *Phdr) const;
ErrorOr<Elf_Dyn_Range> dynamic_table(const Elf_Phdr *Phdr) const {
ErrorOr<const Elf_Dyn *> Begin = dynamic_table_begin(Phdr);
if (std::error_code EC = Begin.getError())
return EC;
ErrorOr<const Elf_Dyn *> End = dynamic_table_end(Phdr);
if (std::error_code EC = End.getError())
return EC;
return make_range(*Begin, *End);
}
const Elf_Shdr *section_begin() const;
const Elf_Shdr *section_end() const;
Elf_Shdr_Range sections() const {
return make_range(section_begin(), section_end());
}
const Elf_Sym *symbol_begin(const Elf_Shdr *Sec) const {
if (!Sec)
return nullptr;
if (Sec->sh_entsize != sizeof(Elf_Sym))
report_fatal_error("Invalid symbol size");
return reinterpret_cast<const Elf_Sym *>(base() + Sec->sh_offset);
}
const Elf_Sym *symbol_end(const Elf_Shdr *Sec) const {
if (!Sec)
return nullptr;
uint64_t Size = Sec->sh_size;
if (Size % sizeof(Elf_Sym))
report_fatal_error("Invalid symbol table size");
return symbol_begin(Sec) + Size / sizeof(Elf_Sym);
}
Elf_Sym_Range symbols(const Elf_Shdr *Sec) const {
return make_range(symbol_begin(Sec), symbol_end(Sec));
}
typedef iterator_range<const Elf_Rela *> Elf_Rela_Range;
const Elf_Rela *rela_begin(const Elf_Shdr *sec) const {
if (sec->sh_entsize != sizeof(Elf_Rela))
report_fatal_error("Invalid relocation entry size");
return reinterpret_cast<const Elf_Rela *>(base() + sec->sh_offset);
}
const Elf_Rela *rela_end(const Elf_Shdr *sec) const {
uint64_t Size = sec->sh_size;
if (Size % sizeof(Elf_Rela))
report_fatal_error("Invalid relocation table size");
return rela_begin(sec) + Size / sizeof(Elf_Rela);
}
Elf_Rela_Range relas(const Elf_Shdr *Sec) const {
return make_range(rela_begin(Sec), rela_end(Sec));
}
const Elf_Rel *rel_begin(const Elf_Shdr *sec) const {
if (sec->sh_entsize != sizeof(Elf_Rel))
report_fatal_error("Invalid relocation entry size");
return reinterpret_cast<const Elf_Rel *>(base() + sec->sh_offset);
}
const Elf_Rel *rel_end(const Elf_Shdr *sec) const {
uint64_t Size = sec->sh_size;
if (Size % sizeof(Elf_Rel))
report_fatal_error("Invalid relocation table size");
return rel_begin(sec) + Size / sizeof(Elf_Rel);
}
typedef iterator_range<const Elf_Rel *> Elf_Rel_Range;
Elf_Rel_Range rels(const Elf_Shdr *Sec) const {
return make_range(rel_begin(Sec), rel_end(Sec));
}
/// \brief Iterate over program header table.
const Elf_Phdr *program_header_begin() const {
if (Header->e_phnum && Header->e_phentsize != sizeof(Elf_Phdr))
report_fatal_error("Invalid program header size");
return reinterpret_cast<const Elf_Phdr *>(base() + Header->e_phoff);
}
const Elf_Phdr *program_header_end() const {
return program_header_begin() + Header->e_phnum;
}
typedef iterator_range<const Elf_Phdr *> Elf_Phdr_Range;
const Elf_Phdr_Range program_headers() const {
return make_range(program_header_begin(), program_header_end());
}
uint64_t getNumSections() const;
uintX_t getStringTableIndex() const;
ELF::Elf64_Word
getExtendedSymbolTableIndex(const Elf_Sym *Sym, const Elf_Shdr *SymTab,
ArrayRef<Elf_Word> ShndxTable) const;
const Elf_Ehdr *getHeader() const { return Header; }
ErrorOr<const Elf_Shdr *> getSection(const Elf_Sym *Sym,
const Elf_Shdr *SymTab,
ArrayRef<Elf_Word> ShndxTable) const;
ErrorOr<const Elf_Shdr *> getSection(uint32_t Index) const;
const Elf_Sym *getSymbol(const Elf_Shdr *Sec, uint32_t Index) const {
return &*(symbol_begin(Sec) + Index);
}
ErrorOr<StringRef> getSectionName(const Elf_Shdr *Section) const;
ErrorOr<ArrayRef<uint8_t> > getSectionContents(const Elf_Shdr *Sec) const;
};
typedef ELFFile<ELFType<support::little, false>> ELF32LEFile;
typedef ELFFile<ELFType<support::little, true>> ELF64LEFile;
typedef ELFFile<ELFType<support::big, false>> ELF32BEFile;
typedef ELFFile<ELFType<support::big, true>> ELF64BEFile;
template <class ELFT>
ELF::Elf64_Word ELFFile<ELFT>::getExtendedSymbolTableIndex(
const Elf_Sym *Sym, const Elf_Shdr *SymTab,
ArrayRef<Elf_Word> ShndxTable) const {
assert(Sym->st_shndx == ELF::SHN_XINDEX);
unsigned Index = Sym - symbol_begin(SymTab);
// FIXME: error checking
return ShndxTable[Index];
}
template <class ELFT>
ErrorOr<const typename ELFFile<ELFT>::Elf_Shdr *>
ELFFile<ELFT>::getSection(const Elf_Sym *Sym, const Elf_Shdr *SymTab,
ArrayRef<Elf_Word> ShndxTable) const {
uint32_t Index = Sym->st_shndx;
if (Index == ELF::SHN_XINDEX)
return getSection(getExtendedSymbolTableIndex(Sym, SymTab, ShndxTable));
if (Index == ELF::SHN_UNDEF || Index >= ELF::SHN_LORESERVE)
return nullptr;
return getSection(Sym->st_shndx);
}
template <class ELFT>
ErrorOr<ArrayRef<uint8_t> >
ELFFile<ELFT>::getSectionContents(const Elf_Shdr *Sec) const {
if (Sec->sh_offset + Sec->sh_size > Buf.size())
return object_error::parse_failed;
const uint8_t *Start = base() + Sec->sh_offset;
return makeArrayRef(Start, Sec->sh_size);
}
template <class ELFT>
StringRef ELFFile<ELFT>::getRelocationTypeName(uint32_t Type) const {
return getELFRelocationTypeName(Header->e_machine, Type);
}
template <class ELFT>
void ELFFile<ELFT>::getRelocationTypeName(uint32_t Type,
SmallVectorImpl<char> &Result) const {
if (!isMipsELF64()) {
StringRef Name = getRelocationTypeName(Type);
Result.append(Name.begin(), Name.end());
} else {
// The Mips N64 ABI allows up to three operations to be specified per
// relocation record. Unfortunately there's no easy way to test for the
// presence of N64 ELFs as they have no special flag that identifies them
// as being N64. We can safely assume at the moment that all Mips
// ELFCLASS64 ELFs are N64. New Mips64 ABIs should provide enough
// information to disambiguate between old vs new ABIs.
uint8_t Type1 = (Type >> 0) & 0xFF;
uint8_t Type2 = (Type >> 8) & 0xFF;
uint8_t Type3 = (Type >> 16) & 0xFF;
// Concat all three relocation type names.
StringRef Name = getRelocationTypeName(Type1);
Result.append(Name.begin(), Name.end());
Name = getRelocationTypeName(Type2);
Result.append(1, '/');
Result.append(Name.begin(), Name.end());
Name = getRelocationTypeName(Type3);
Result.append(1, '/');
Result.append(Name.begin(), Name.end());
}
}
template <class ELFT>
template <class RelT>
std::pair<const typename ELFFile<ELFT>::Elf_Shdr *,
const typename ELFFile<ELFT>::Elf_Sym *>
ELFFile<ELFT>::getRelocationSymbol(const Elf_Shdr *Sec, const RelT *Rel) const {
if (!Sec->sh_link)
return std::make_pair(nullptr, nullptr);
ErrorOr<const Elf_Shdr *> SymTableOrErr = getSection(Sec->sh_link);
if (std::error_code EC = SymTableOrErr.getError())
report_fatal_error(EC.message());
const Elf_Shdr *SymTable = *SymTableOrErr;
return std::make_pair(
SymTable, getEntry<Elf_Sym>(SymTable, Rel->getSymbol(isMips64EL())));
}
template <class ELFT>
uint64_t ELFFile<ELFT>::getNumSections() const {
assert(Header && "Header not initialized!");
if (Header->e_shnum == ELF::SHN_UNDEF && Header->e_shoff > 0) {
assert(SectionHeaderTable && "SectionHeaderTable not initialized!");
return SectionHeaderTable->sh_size;
}
return Header->e_shnum;
}
template <class ELFT>
typename ELFFile<ELFT>::uintX_t ELFFile<ELFT>::getStringTableIndex() const {
if (Header->e_shnum == ELF::SHN_UNDEF) {
if (Header->e_shstrndx == ELF::SHN_HIRESERVE)
return SectionHeaderTable->sh_link;
if (Header->e_shstrndx >= getNumSections())
return 0;
}
return Header->e_shstrndx;
}
template <class ELFT>
ELFFile<ELFT>::ELFFile(StringRef Object, std::error_code &EC)
: Buf(Object) {
const uint64_t FileSize = Buf.size();
if (sizeof(Elf_Ehdr) > FileSize) {
// File too short!
EC = object_error::parse_failed;
return;
}
Header = reinterpret_cast<const Elf_Ehdr *>(base());
if (Header->e_shoff == 0)
return;
const uint64_t SectionTableOffset = Header->e_shoff;
if (SectionTableOffset + sizeof(Elf_Shdr) > FileSize) {
// Section header table goes past end of file!
EC = object_error::parse_failed;
return;
}
// The getNumSections() call below depends on SectionHeaderTable being set.
SectionHeaderTable =
reinterpret_cast<const Elf_Shdr *>(base() + SectionTableOffset);
const uint64_t SectionTableSize = getNumSections() * Header->e_shentsize;
if (SectionTableOffset + SectionTableSize > FileSize) {
// Section table goes past end of file!
EC = object_error::parse_failed;
return;
}
// Get string table sections.
uintX_t StringTableIndex = getStringTableIndex();
if (StringTableIndex) {
ErrorOr<const Elf_Shdr *> StrTabSecOrErr = getSection(StringTableIndex);
if ((EC = StrTabSecOrErr.getError()))
return;
ErrorOr<StringRef> StringTableOrErr = getStringTable(*StrTabSecOrErr);
if ((EC = StringTableOrErr.getError()))
return;
DotShstrtab = *StringTableOrErr;
}
EC = std::error_code();
}
template <class ELFT>
static bool compareAddr(uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) {
return VAddr < Phdr->p_vaddr;
}
template <class ELFT>
const typename ELFFile<ELFT>::Elf_Shdr *ELFFile<ELFT>::section_begin() const {
if (Header->e_shentsize != sizeof(Elf_Shdr))
report_fatal_error(
"Invalid section header entry size (e_shentsize) in ELF header");
return reinterpret_cast<const Elf_Shdr *>(base() + Header->e_shoff);
}
template <class ELFT>
const typename ELFFile<ELFT>::Elf_Shdr *ELFFile<ELFT>::section_end() const {
return section_begin() + getNumSections();
}
template <class ELFT>
ErrorOr<const typename ELFFile<ELFT>::Elf_Dyn *>
ELFFile<ELFT>::dynamic_table_begin(const Elf_Phdr *Phdr) const {
if (!Phdr)
return nullptr;
assert(Phdr->p_type == ELF::PT_DYNAMIC && "Got the wrong program header");
uintX_t Offset = Phdr->p_offset;
if (Offset > Buf.size())
return object_error::parse_failed;
return reinterpret_cast<const Elf_Dyn *>(base() + Offset);
}
template <class ELFT>
ErrorOr<const typename ELFFile<ELFT>::Elf_Dyn *>
ELFFile<ELFT>::dynamic_table_end(const Elf_Phdr *Phdr) const {
if (!Phdr)
return nullptr;
assert(Phdr->p_type == ELF::PT_DYNAMIC && "Got the wrong program header");
uintX_t Size = Phdr->p_filesz;
if (Size % sizeof(Elf_Dyn))
return object_error::elf_invalid_dynamic_table_size;
// FIKME: Check for overflow?
uintX_t End = Phdr->p_offset + Size;
if (End > Buf.size())
return object_error::parse_failed;
return reinterpret_cast<const Elf_Dyn *>(base() + End);
}
template <class ELFT>
template <typename T>
const T *ELFFile<ELFT>::getEntry(uint32_t Section, uint32_t Entry) const {
ErrorOr<const Elf_Shdr *> Sec = getSection(Section);
if (std::error_code EC = Sec.getError())
report_fatal_error(EC.message());
return getEntry<T>(*Sec, Entry);
}
template <class ELFT>
template <typename T>
const T *ELFFile<ELFT>::getEntry(const Elf_Shdr *Section,
uint32_t Entry) const {
return reinterpret_cast<const T *>(base() + Section->sh_offset +
(Entry * Section->sh_entsize));
}
template <class ELFT>
ErrorOr<const typename ELFFile<ELFT>::Elf_Shdr *>
ELFFile<ELFT>::getSection(uint32_t Index) const {
assert(SectionHeaderTable && "SectionHeaderTable not initialized!");
if (Index >= getNumSections())
return object_error::invalid_section_index;
return reinterpret_cast<const Elf_Shdr *>(
reinterpret_cast<const char *>(SectionHeaderTable) +
(Index * Header->e_shentsize));
}
template <class ELFT>
ErrorOr<StringRef>
ELFFile<ELFT>::getStringTable(const Elf_Shdr *Section) const {
if (Section->sh_type != ELF::SHT_STRTAB)
return object_error::parse_failed;
uint64_t Offset = Section->sh_offset;
uint64_t Size = Section->sh_size;
if (Offset + Size > Buf.size())
return object_error::parse_failed;
StringRef Data((const char *)base() + Section->sh_offset, Size);
if (Data[Size - 1] != '\0')
return object_error::string_table_non_null_end;
return Data;
}
template <class ELFT>
ErrorOr<ArrayRef<typename ELFFile<ELFT>::Elf_Word>>
ELFFile<ELFT>::getSHNDXTable(const Elf_Shdr &Section) const {
assert(Section.sh_type == ELF::SHT_SYMTAB_SHNDX);
const Elf_Word *ShndxTableBegin =
reinterpret_cast<const Elf_Word *>(base() + Section.sh_offset);
uintX_t Size = Section.sh_offset;
if (Size % sizeof(uintX_t))
return object_error::parse_failed;
const Elf_Word *ShndxTableEnd = ShndxTableBegin + Size / sizeof(uintX_t);
if (reinterpret_cast<const char *>(ShndxTableEnd) > Buf.end())
return object_error::parse_failed;
return ArrayRef<Elf_Word>(ShndxTableBegin, ShndxTableEnd);
}
template <class ELFT>
ErrorOr<StringRef>
ELFFile<ELFT>::getStringTableForSymtab(const Elf_Shdr &Sec) const {
if (Sec.sh_type != ELF::SHT_SYMTAB && Sec.sh_type != ELF::SHT_DYNSYM)
return object_error::parse_failed;
ErrorOr<const Elf_Shdr *> SectionOrErr = getSection(Sec.sh_link);
if (std::error_code EC = SectionOrErr.getError())
return EC;
return getStringTable(*SectionOrErr);
}
template <class ELFT>
ErrorOr<StringRef>
ELFFile<ELFT>::getSectionName(const Elf_Shdr *Section) const {
uint32_t Offset = Section->sh_name;
if (Offset == 0)
return StringRef();
if (Offset >= DotShstrtab.size())
return object_error::parse_failed;
return StringRef(DotShstrtab.data() + Offset);
}
/// This function returns the hash value for a symbol in the .dynsym section
/// Name of the API remains consistent as specified in the libelf
/// REF : http://www.sco.com/developers/gabi/latest/ch5.dynamic.html#hash
static inline unsigned elf_hash(StringRef &symbolName) {
unsigned h = 0, g;
for (unsigned i = 0, j = symbolName.size(); i < j; i++) {
h = (h << 4) + symbolName[i];
g = h & 0xf0000000L;
if (g != 0)
h ^= g >> 24;
h &= ~g;
}
return h;
}
} // end namespace object
} // end namespace llvm
#endif