mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 03:33:20 +01:00
0c3f2cbd1c
llvm-svn: 305326
703 lines
19 KiB
C++
703 lines
19 KiB
C++
//===- llvm/ADT/SmallBitVector.h - 'Normally small' bit vectors -*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the SmallBitVector class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_SMALLBITVECTOR_H
|
|
#define LLVM_ADT_SMALLBITVECTOR_H
|
|
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <climits>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <limits>
|
|
#include <utility>
|
|
|
|
namespace llvm {
|
|
|
|
/// This is a 'bitvector' (really, a variable-sized bit array), optimized for
|
|
/// the case when the array is small. It contains one pointer-sized field, which
|
|
/// is directly used as a plain collection of bits when possible, or as a
|
|
/// pointer to a larger heap-allocated array when necessary. This allows normal
|
|
/// "small" cases to be fast without losing generality for large inputs.
|
|
class SmallBitVector {
|
|
// TODO: In "large" mode, a pointer to a BitVector is used, leading to an
|
|
// unnecessary level of indirection. It would be more efficient to use a
|
|
// pointer to memory containing size, allocation size, and the array of bits.
|
|
uintptr_t X = 1;
|
|
|
|
enum {
|
|
// The number of bits in this class.
|
|
NumBaseBits = sizeof(uintptr_t) * CHAR_BIT,
|
|
|
|
// One bit is used to discriminate between small and large mode. The
|
|
// remaining bits are used for the small-mode representation.
|
|
SmallNumRawBits = NumBaseBits - 1,
|
|
|
|
// A few more bits are used to store the size of the bit set in small mode.
|
|
// Theoretically this is a ceil-log2. These bits are encoded in the most
|
|
// significant bits of the raw bits.
|
|
SmallNumSizeBits = (NumBaseBits == 32 ? 5 :
|
|
NumBaseBits == 64 ? 6 :
|
|
SmallNumRawBits),
|
|
|
|
// The remaining bits are used to store the actual set in small mode.
|
|
SmallNumDataBits = SmallNumRawBits - SmallNumSizeBits
|
|
};
|
|
|
|
static_assert(NumBaseBits == 64 || NumBaseBits == 32,
|
|
"Unsupported word size");
|
|
|
|
public:
|
|
using size_type = unsigned;
|
|
|
|
// Encapsulation of a single bit.
|
|
class reference {
|
|
SmallBitVector &TheVector;
|
|
unsigned BitPos;
|
|
|
|
public:
|
|
reference(SmallBitVector &b, unsigned Idx) : TheVector(b), BitPos(Idx) {}
|
|
|
|
reference(const reference&) = default;
|
|
|
|
reference& operator=(reference t) {
|
|
*this = bool(t);
|
|
return *this;
|
|
}
|
|
|
|
reference& operator=(bool t) {
|
|
if (t)
|
|
TheVector.set(BitPos);
|
|
else
|
|
TheVector.reset(BitPos);
|
|
return *this;
|
|
}
|
|
|
|
operator bool() const {
|
|
return const_cast<const SmallBitVector &>(TheVector).operator[](BitPos);
|
|
}
|
|
};
|
|
|
|
private:
|
|
bool isSmall() const {
|
|
return X & uintptr_t(1);
|
|
}
|
|
|
|
BitVector *getPointer() const {
|
|
assert(!isSmall());
|
|
return reinterpret_cast<BitVector *>(X);
|
|
}
|
|
|
|
void switchToSmall(uintptr_t NewSmallBits, size_t NewSize) {
|
|
X = 1;
|
|
setSmallSize(NewSize);
|
|
setSmallBits(NewSmallBits);
|
|
}
|
|
|
|
void switchToLarge(BitVector *BV) {
|
|
X = reinterpret_cast<uintptr_t>(BV);
|
|
assert(!isSmall() && "Tried to use an unaligned pointer");
|
|
}
|
|
|
|
// Return all the bits used for the "small" representation; this includes
|
|
// bits for the size as well as the element bits.
|
|
uintptr_t getSmallRawBits() const {
|
|
assert(isSmall());
|
|
return X >> 1;
|
|
}
|
|
|
|
void setSmallRawBits(uintptr_t NewRawBits) {
|
|
assert(isSmall());
|
|
X = (NewRawBits << 1) | uintptr_t(1);
|
|
}
|
|
|
|
// Return the size.
|
|
size_t getSmallSize() const { return getSmallRawBits() >> SmallNumDataBits; }
|
|
|
|
void setSmallSize(size_t Size) {
|
|
setSmallRawBits(getSmallBits() | (Size << SmallNumDataBits));
|
|
}
|
|
|
|
// Return the element bits.
|
|
uintptr_t getSmallBits() const {
|
|
return getSmallRawBits() & ~(~uintptr_t(0) << getSmallSize());
|
|
}
|
|
|
|
void setSmallBits(uintptr_t NewBits) {
|
|
setSmallRawBits((NewBits & ~(~uintptr_t(0) << getSmallSize())) |
|
|
(getSmallSize() << SmallNumDataBits));
|
|
}
|
|
|
|
public:
|
|
/// Creates an empty bitvector.
|
|
SmallBitVector() = default;
|
|
|
|
/// Creates a bitvector of specified number of bits. All bits are initialized
|
|
/// to the specified value.
|
|
explicit SmallBitVector(unsigned s, bool t = false) {
|
|
if (s <= SmallNumDataBits)
|
|
switchToSmall(t ? ~uintptr_t(0) : 0, s);
|
|
else
|
|
switchToLarge(new BitVector(s, t));
|
|
}
|
|
|
|
/// SmallBitVector copy ctor.
|
|
SmallBitVector(const SmallBitVector &RHS) {
|
|
if (RHS.isSmall())
|
|
X = RHS.X;
|
|
else
|
|
switchToLarge(new BitVector(*RHS.getPointer()));
|
|
}
|
|
|
|
SmallBitVector(SmallBitVector &&RHS) : X(RHS.X) {
|
|
RHS.X = 1;
|
|
}
|
|
|
|
~SmallBitVector() {
|
|
if (!isSmall())
|
|
delete getPointer();
|
|
}
|
|
|
|
using const_set_bits_iterator = const_set_bits_iterator_impl<SmallBitVector>;
|
|
using set_iterator = const_set_bits_iterator;
|
|
|
|
const_set_bits_iterator set_bits_begin() const {
|
|
return const_set_bits_iterator(*this);
|
|
}
|
|
|
|
const_set_bits_iterator set_bits_end() const {
|
|
return const_set_bits_iterator(*this, -1);
|
|
}
|
|
|
|
iterator_range<const_set_bits_iterator> set_bits() const {
|
|
return make_range(set_bits_begin(), set_bits_end());
|
|
}
|
|
|
|
/// Tests whether there are no bits in this bitvector.
|
|
bool empty() const {
|
|
return isSmall() ? getSmallSize() == 0 : getPointer()->empty();
|
|
}
|
|
|
|
/// Returns the number of bits in this bitvector.
|
|
size_t size() const {
|
|
return isSmall() ? getSmallSize() : getPointer()->size();
|
|
}
|
|
|
|
/// Returns the number of bits which are set.
|
|
size_type count() const {
|
|
if (isSmall()) {
|
|
uintptr_t Bits = getSmallBits();
|
|
return countPopulation(Bits);
|
|
}
|
|
return getPointer()->count();
|
|
}
|
|
|
|
/// Returns true if any bit is set.
|
|
bool any() const {
|
|
if (isSmall())
|
|
return getSmallBits() != 0;
|
|
return getPointer()->any();
|
|
}
|
|
|
|
/// Returns true if all bits are set.
|
|
bool all() const {
|
|
if (isSmall())
|
|
return getSmallBits() == (uintptr_t(1) << getSmallSize()) - 1;
|
|
return getPointer()->all();
|
|
}
|
|
|
|
/// Returns true if none of the bits are set.
|
|
bool none() const {
|
|
if (isSmall())
|
|
return getSmallBits() == 0;
|
|
return getPointer()->none();
|
|
}
|
|
|
|
/// Returns the index of the first set bit, -1 if none of the bits are set.
|
|
int find_first() const {
|
|
if (isSmall()) {
|
|
uintptr_t Bits = getSmallBits();
|
|
if (Bits == 0)
|
|
return -1;
|
|
return countTrailingZeros(Bits);
|
|
}
|
|
return getPointer()->find_first();
|
|
}
|
|
|
|
int find_last() const {
|
|
if (isSmall()) {
|
|
uintptr_t Bits = getSmallBits();
|
|
if (Bits == 0)
|
|
return -1;
|
|
return NumBaseBits - countLeadingZeros(Bits);
|
|
}
|
|
return getPointer()->find_last();
|
|
}
|
|
|
|
/// Returns the index of the first unset bit, -1 if all of the bits are set.
|
|
int find_first_unset() const {
|
|
if (isSmall()) {
|
|
if (count() == getSmallSize())
|
|
return -1;
|
|
|
|
uintptr_t Bits = getSmallBits();
|
|
return countTrailingOnes(Bits);
|
|
}
|
|
return getPointer()->find_first_unset();
|
|
}
|
|
|
|
int find_last_unset() const {
|
|
if (isSmall()) {
|
|
if (count() == getSmallSize())
|
|
return -1;
|
|
|
|
uintptr_t Bits = getSmallBits();
|
|
return NumBaseBits - countLeadingOnes(Bits);
|
|
}
|
|
return getPointer()->find_last_unset();
|
|
}
|
|
|
|
/// Returns the index of the next set bit following the "Prev" bit.
|
|
/// Returns -1 if the next set bit is not found.
|
|
int find_next(unsigned Prev) const {
|
|
if (isSmall()) {
|
|
uintptr_t Bits = getSmallBits();
|
|
// Mask off previous bits.
|
|
Bits &= ~uintptr_t(0) << (Prev + 1);
|
|
if (Bits == 0 || Prev + 1 >= getSmallSize())
|
|
return -1;
|
|
return countTrailingZeros(Bits);
|
|
}
|
|
return getPointer()->find_next(Prev);
|
|
}
|
|
|
|
/// Returns the index of the next unset bit following the "Prev" bit.
|
|
/// Returns -1 if the next unset bit is not found.
|
|
int find_next_unset(unsigned Prev) const {
|
|
if (isSmall()) {
|
|
++Prev;
|
|
uintptr_t Bits = getSmallBits();
|
|
// Mask in previous bits.
|
|
uintptr_t Mask = (1 << Prev) - 1;
|
|
Bits |= Mask;
|
|
|
|
if (Bits == ~uintptr_t(0) || Prev + 1 >= getSmallSize())
|
|
return -1;
|
|
return countTrailingOnes(Bits);
|
|
}
|
|
return getPointer()->find_next_unset(Prev);
|
|
}
|
|
|
|
/// find_prev - Returns the index of the first set bit that precedes the
|
|
/// the bit at \p PriorTo. Returns -1 if all previous bits are unset.
|
|
int find_prev(unsigned PriorTo) const {
|
|
if (isSmall()) {
|
|
if (PriorTo == 0)
|
|
return -1;
|
|
|
|
--PriorTo;
|
|
uintptr_t Bits = getSmallBits();
|
|
Bits &= maskTrailingOnes<uintptr_t>(PriorTo + 1);
|
|
if (Bits == 0)
|
|
return -1;
|
|
|
|
return NumBaseBits - countLeadingZeros(Bits) - 1;
|
|
}
|
|
return getPointer()->find_prev(PriorTo);
|
|
}
|
|
|
|
/// Clear all bits.
|
|
void clear() {
|
|
if (!isSmall())
|
|
delete getPointer();
|
|
switchToSmall(0, 0);
|
|
}
|
|
|
|
/// Grow or shrink the bitvector.
|
|
void resize(unsigned N, bool t = false) {
|
|
if (!isSmall()) {
|
|
getPointer()->resize(N, t);
|
|
} else if (SmallNumDataBits >= N) {
|
|
uintptr_t NewBits = t ? ~uintptr_t(0) << getSmallSize() : 0;
|
|
setSmallSize(N);
|
|
setSmallBits(NewBits | getSmallBits());
|
|
} else {
|
|
BitVector *BV = new BitVector(N, t);
|
|
uintptr_t OldBits = getSmallBits();
|
|
for (size_t i = 0, e = getSmallSize(); i != e; ++i)
|
|
(*BV)[i] = (OldBits >> i) & 1;
|
|
switchToLarge(BV);
|
|
}
|
|
}
|
|
|
|
void reserve(unsigned N) {
|
|
if (isSmall()) {
|
|
if (N > SmallNumDataBits) {
|
|
uintptr_t OldBits = getSmallRawBits();
|
|
size_t SmallSize = getSmallSize();
|
|
BitVector *BV = new BitVector(SmallSize);
|
|
for (size_t i = 0; i < SmallSize; ++i)
|
|
if ((OldBits >> i) & 1)
|
|
BV->set(i);
|
|
BV->reserve(N);
|
|
switchToLarge(BV);
|
|
}
|
|
} else {
|
|
getPointer()->reserve(N);
|
|
}
|
|
}
|
|
|
|
// Set, reset, flip
|
|
SmallBitVector &set() {
|
|
if (isSmall())
|
|
setSmallBits(~uintptr_t(0));
|
|
else
|
|
getPointer()->set();
|
|
return *this;
|
|
}
|
|
|
|
SmallBitVector &set(unsigned Idx) {
|
|
if (isSmall()) {
|
|
assert(Idx <= static_cast<unsigned>(
|
|
std::numeric_limits<uintptr_t>::digits) &&
|
|
"undefined behavior");
|
|
setSmallBits(getSmallBits() | (uintptr_t(1) << Idx));
|
|
}
|
|
else
|
|
getPointer()->set(Idx);
|
|
return *this;
|
|
}
|
|
|
|
/// Efficiently set a range of bits in [I, E)
|
|
SmallBitVector &set(unsigned I, unsigned E) {
|
|
assert(I <= E && "Attempted to set backwards range!");
|
|
assert(E <= size() && "Attempted to set out-of-bounds range!");
|
|
if (I == E) return *this;
|
|
if (isSmall()) {
|
|
uintptr_t EMask = ((uintptr_t)1) << E;
|
|
uintptr_t IMask = ((uintptr_t)1) << I;
|
|
uintptr_t Mask = EMask - IMask;
|
|
setSmallBits(getSmallBits() | Mask);
|
|
} else
|
|
getPointer()->set(I, E);
|
|
return *this;
|
|
}
|
|
|
|
SmallBitVector &reset() {
|
|
if (isSmall())
|
|
setSmallBits(0);
|
|
else
|
|
getPointer()->reset();
|
|
return *this;
|
|
}
|
|
|
|
SmallBitVector &reset(unsigned Idx) {
|
|
if (isSmall())
|
|
setSmallBits(getSmallBits() & ~(uintptr_t(1) << Idx));
|
|
else
|
|
getPointer()->reset(Idx);
|
|
return *this;
|
|
}
|
|
|
|
/// Efficiently reset a range of bits in [I, E)
|
|
SmallBitVector &reset(unsigned I, unsigned E) {
|
|
assert(I <= E && "Attempted to reset backwards range!");
|
|
assert(E <= size() && "Attempted to reset out-of-bounds range!");
|
|
if (I == E) return *this;
|
|
if (isSmall()) {
|
|
uintptr_t EMask = ((uintptr_t)1) << E;
|
|
uintptr_t IMask = ((uintptr_t)1) << I;
|
|
uintptr_t Mask = EMask - IMask;
|
|
setSmallBits(getSmallBits() & ~Mask);
|
|
} else
|
|
getPointer()->reset(I, E);
|
|
return *this;
|
|
}
|
|
|
|
SmallBitVector &flip() {
|
|
if (isSmall())
|
|
setSmallBits(~getSmallBits());
|
|
else
|
|
getPointer()->flip();
|
|
return *this;
|
|
}
|
|
|
|
SmallBitVector &flip(unsigned Idx) {
|
|
if (isSmall())
|
|
setSmallBits(getSmallBits() ^ (uintptr_t(1) << Idx));
|
|
else
|
|
getPointer()->flip(Idx);
|
|
return *this;
|
|
}
|
|
|
|
// No argument flip.
|
|
SmallBitVector operator~() const {
|
|
return SmallBitVector(*this).flip();
|
|
}
|
|
|
|
// Indexing.
|
|
reference operator[](unsigned Idx) {
|
|
assert(Idx < size() && "Out-of-bounds Bit access.");
|
|
return reference(*this, Idx);
|
|
}
|
|
|
|
bool operator[](unsigned Idx) const {
|
|
assert(Idx < size() && "Out-of-bounds Bit access.");
|
|
if (isSmall())
|
|
return ((getSmallBits() >> Idx) & 1) != 0;
|
|
return getPointer()->operator[](Idx);
|
|
}
|
|
|
|
bool test(unsigned Idx) const {
|
|
return (*this)[Idx];
|
|
}
|
|
|
|
/// Test if any common bits are set.
|
|
bool anyCommon(const SmallBitVector &RHS) const {
|
|
if (isSmall() && RHS.isSmall())
|
|
return (getSmallBits() & RHS.getSmallBits()) != 0;
|
|
if (!isSmall() && !RHS.isSmall())
|
|
return getPointer()->anyCommon(*RHS.getPointer());
|
|
|
|
for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
|
|
if (test(i) && RHS.test(i))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Comparison operators.
|
|
bool operator==(const SmallBitVector &RHS) const {
|
|
if (size() != RHS.size())
|
|
return false;
|
|
if (isSmall())
|
|
return getSmallBits() == RHS.getSmallBits();
|
|
else
|
|
return *getPointer() == *RHS.getPointer();
|
|
}
|
|
|
|
bool operator!=(const SmallBitVector &RHS) const {
|
|
return !(*this == RHS);
|
|
}
|
|
|
|
// Intersection, union, disjoint union.
|
|
SmallBitVector &operator&=(const SmallBitVector &RHS) {
|
|
resize(std::max(size(), RHS.size()));
|
|
if (isSmall())
|
|
setSmallBits(getSmallBits() & RHS.getSmallBits());
|
|
else if (!RHS.isSmall())
|
|
getPointer()->operator&=(*RHS.getPointer());
|
|
else {
|
|
SmallBitVector Copy = RHS;
|
|
Copy.resize(size());
|
|
getPointer()->operator&=(*Copy.getPointer());
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
/// Reset bits that are set in RHS. Same as *this &= ~RHS.
|
|
SmallBitVector &reset(const SmallBitVector &RHS) {
|
|
if (isSmall() && RHS.isSmall())
|
|
setSmallBits(getSmallBits() & ~RHS.getSmallBits());
|
|
else if (!isSmall() && !RHS.isSmall())
|
|
getPointer()->reset(*RHS.getPointer());
|
|
else
|
|
for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
|
|
if (RHS.test(i))
|
|
reset(i);
|
|
|
|
return *this;
|
|
}
|
|
|
|
/// Check if (This - RHS) is zero. This is the same as reset(RHS) and any().
|
|
bool test(const SmallBitVector &RHS) const {
|
|
if (isSmall() && RHS.isSmall())
|
|
return (getSmallBits() & ~RHS.getSmallBits()) != 0;
|
|
if (!isSmall() && !RHS.isSmall())
|
|
return getPointer()->test(*RHS.getPointer());
|
|
|
|
unsigned i, e;
|
|
for (i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
|
|
if (test(i) && !RHS.test(i))
|
|
return true;
|
|
|
|
for (e = size(); i != e; ++i)
|
|
if (test(i))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
SmallBitVector &operator|=(const SmallBitVector &RHS) {
|
|
resize(std::max(size(), RHS.size()));
|
|
if (isSmall())
|
|
setSmallBits(getSmallBits() | RHS.getSmallBits());
|
|
else if (!RHS.isSmall())
|
|
getPointer()->operator|=(*RHS.getPointer());
|
|
else {
|
|
SmallBitVector Copy = RHS;
|
|
Copy.resize(size());
|
|
getPointer()->operator|=(*Copy.getPointer());
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
SmallBitVector &operator^=(const SmallBitVector &RHS) {
|
|
resize(std::max(size(), RHS.size()));
|
|
if (isSmall())
|
|
setSmallBits(getSmallBits() ^ RHS.getSmallBits());
|
|
else if (!RHS.isSmall())
|
|
getPointer()->operator^=(*RHS.getPointer());
|
|
else {
|
|
SmallBitVector Copy = RHS;
|
|
Copy.resize(size());
|
|
getPointer()->operator^=(*Copy.getPointer());
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
SmallBitVector &operator<<=(unsigned N) {
|
|
if (isSmall())
|
|
setSmallBits(getSmallBits() << N);
|
|
else
|
|
getPointer()->operator<<=(N);
|
|
return *this;
|
|
}
|
|
|
|
SmallBitVector &operator>>=(unsigned N) {
|
|
if (isSmall())
|
|
setSmallBits(getSmallBits() >> N);
|
|
else
|
|
getPointer()->operator>>=(N);
|
|
return *this;
|
|
}
|
|
|
|
// Assignment operator.
|
|
const SmallBitVector &operator=(const SmallBitVector &RHS) {
|
|
if (isSmall()) {
|
|
if (RHS.isSmall())
|
|
X = RHS.X;
|
|
else
|
|
switchToLarge(new BitVector(*RHS.getPointer()));
|
|
} else {
|
|
if (!RHS.isSmall())
|
|
*getPointer() = *RHS.getPointer();
|
|
else {
|
|
delete getPointer();
|
|
X = RHS.X;
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
const SmallBitVector &operator=(SmallBitVector &&RHS) {
|
|
if (this != &RHS) {
|
|
clear();
|
|
swap(RHS);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
void swap(SmallBitVector &RHS) {
|
|
std::swap(X, RHS.X);
|
|
}
|
|
|
|
/// Add '1' bits from Mask to this vector. Don't resize.
|
|
/// This computes "*this |= Mask".
|
|
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
|
|
if (isSmall())
|
|
applyMask<true, false>(Mask, MaskWords);
|
|
else
|
|
getPointer()->setBitsInMask(Mask, MaskWords);
|
|
}
|
|
|
|
/// Clear any bits in this vector that are set in Mask. Don't resize.
|
|
/// This computes "*this &= ~Mask".
|
|
void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
|
|
if (isSmall())
|
|
applyMask<false, false>(Mask, MaskWords);
|
|
else
|
|
getPointer()->clearBitsInMask(Mask, MaskWords);
|
|
}
|
|
|
|
/// Add a bit to this vector for every '0' bit in Mask. Don't resize.
|
|
/// This computes "*this |= ~Mask".
|
|
void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
|
|
if (isSmall())
|
|
applyMask<true, true>(Mask, MaskWords);
|
|
else
|
|
getPointer()->setBitsNotInMask(Mask, MaskWords);
|
|
}
|
|
|
|
/// Clear a bit in this vector for every '0' bit in Mask. Don't resize.
|
|
/// This computes "*this &= Mask".
|
|
void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
|
|
if (isSmall())
|
|
applyMask<false, true>(Mask, MaskWords);
|
|
else
|
|
getPointer()->clearBitsNotInMask(Mask, MaskWords);
|
|
}
|
|
|
|
private:
|
|
template <bool AddBits, bool InvertMask>
|
|
void applyMask(const uint32_t *Mask, unsigned MaskWords) {
|
|
assert(MaskWords <= sizeof(uintptr_t) && "Mask is larger than base!");
|
|
uintptr_t M = Mask[0];
|
|
if (NumBaseBits == 64)
|
|
M |= uint64_t(Mask[1]) << 32;
|
|
if (InvertMask)
|
|
M = ~M;
|
|
if (AddBits)
|
|
setSmallBits(getSmallBits() | M);
|
|
else
|
|
setSmallBits(getSmallBits() & ~M);
|
|
}
|
|
};
|
|
|
|
inline SmallBitVector
|
|
operator&(const SmallBitVector &LHS, const SmallBitVector &RHS) {
|
|
SmallBitVector Result(LHS);
|
|
Result &= RHS;
|
|
return Result;
|
|
}
|
|
|
|
inline SmallBitVector
|
|
operator|(const SmallBitVector &LHS, const SmallBitVector &RHS) {
|
|
SmallBitVector Result(LHS);
|
|
Result |= RHS;
|
|
return Result;
|
|
}
|
|
|
|
inline SmallBitVector
|
|
operator^(const SmallBitVector &LHS, const SmallBitVector &RHS) {
|
|
SmallBitVector Result(LHS);
|
|
Result ^= RHS;
|
|
return Result;
|
|
}
|
|
|
|
} // end namespace llvm
|
|
|
|
namespace std {
|
|
|
|
/// Implement std::swap in terms of BitVector swap.
|
|
inline void
|
|
swap(llvm::SmallBitVector &LHS, llvm::SmallBitVector &RHS) {
|
|
LHS.swap(RHS);
|
|
}
|
|
|
|
} // end namespace std
|
|
|
|
#endif // LLVM_ADT_SMALLBITVECTOR_H
|