1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 11:02:59 +02:00
llvm-mirror/lib/MC/MCAssembler.cpp
Chandler Carruth d4d44b30bf [ptr-traits] Split the MCFragment type hierarchy out of the MCAssembler
header to its own header, allowing users of fragments to have a narrower
header file, and avoid circular header dependencies when getting the
definition of MCSection prior to inspecting traits on MCSection
pointers.

This is part of a series of patches to allow LLVM to check for complete
pointee types when computing its pointer traits. This is absolutely
necessary to get correct (or reproducible) results for things like how
many low bits are guaranteed to be zero.

Note that this doesn't in any way change the design of MC, it is just
moving code around to allow the *header files* to be more fine grained.
Without this, it is impossible to get a complete type for MCSection
where it is needed.

If anyone would prefer a different slicing of the header files, I'm
happy to oblige of course. =]

llvm-svn: 256548
2015-12-29 09:06:16 +00:00

876 lines
30 KiB
C++

//===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCAssembler.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <tuple>
using namespace llvm;
#define DEBUG_TYPE "assembler"
namespace {
namespace stats {
STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
STATISTIC(EmittedRelaxableFragments,
"Number of emitted assembler fragments - relaxable");
STATISTIC(EmittedDataFragments,
"Number of emitted assembler fragments - data");
STATISTIC(EmittedCompactEncodedInstFragments,
"Number of emitted assembler fragments - compact encoded inst");
STATISTIC(EmittedAlignFragments,
"Number of emitted assembler fragments - align");
STATISTIC(EmittedFillFragments,
"Number of emitted assembler fragments - fill");
STATISTIC(EmittedOrgFragments,
"Number of emitted assembler fragments - org");
STATISTIC(evaluateFixup, "Number of evaluated fixups");
STATISTIC(FragmentLayouts, "Number of fragment layouts");
STATISTIC(ObjectBytes, "Number of emitted object file bytes");
STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
}
}
// FIXME FIXME FIXME: There are number of places in this file where we convert
// what is a 64-bit assembler value used for computation into a value in the
// object file, which may truncate it. We should detect that truncation where
// invalid and report errors back.
/* *** */
MCAssembler::MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
MCCodeEmitter &Emitter_, MCObjectWriter &Writer_)
: Context(Context_), Backend(Backend_), Emitter(Emitter_), Writer(Writer_),
BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false),
IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) {
VersionMinInfo.Major = 0; // Major version == 0 for "none specified"
}
MCAssembler::~MCAssembler() {
}
void MCAssembler::reset() {
Sections.clear();
Symbols.clear();
IndirectSymbols.clear();
DataRegions.clear();
LinkerOptions.clear();
FileNames.clear();
ThumbFuncs.clear();
BundleAlignSize = 0;
RelaxAll = false;
SubsectionsViaSymbols = false;
IncrementalLinkerCompatible = false;
ELFHeaderEFlags = 0;
LOHContainer.reset();
VersionMinInfo.Major = 0;
// reset objects owned by us
getBackend().reset();
getEmitter().reset();
getWriter().reset();
getLOHContainer().reset();
}
bool MCAssembler::registerSection(MCSection &Section) {
if (Section.isRegistered())
return false;
Sections.push_back(&Section);
Section.setIsRegistered(true);
return true;
}
bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
if (ThumbFuncs.count(Symbol))
return true;
if (!Symbol->isVariable())
return false;
// FIXME: It looks like gas supports some cases of the form "foo + 2". It
// is not clear if that is a bug or a feature.
const MCExpr *Expr = Symbol->getVariableValue();
const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr);
if (!Ref)
return false;
if (Ref->getKind() != MCSymbolRefExpr::VK_None)
return false;
const MCSymbol &Sym = Ref->getSymbol();
if (!isThumbFunc(&Sym))
return false;
ThumbFuncs.insert(Symbol); // Cache it.
return true;
}
bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
// Non-temporary labels should always be visible to the linker.
if (!Symbol.isTemporary())
return true;
// Absolute temporary labels are never visible.
if (!Symbol.isInSection())
return false;
if (Symbol.isUsedInReloc())
return true;
return false;
}
const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const {
// Linker visible symbols define atoms.
if (isSymbolLinkerVisible(S))
return &S;
// Absolute and undefined symbols have no defining atom.
if (!S.isInSection())
return nullptr;
// Non-linker visible symbols in sections which can't be atomized have no
// defining atom.
if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
*S.getFragment()->getParent()))
return nullptr;
// Otherwise, return the atom for the containing fragment.
return S.getFragment()->getAtom();
}
bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
const MCFixup &Fixup, const MCFragment *DF,
MCValue &Target, uint64_t &Value) const {
++stats::evaluateFixup;
// FIXME: This code has some duplication with recordRelocation. We should
// probably merge the two into a single callback that tries to evaluate a
// fixup and records a relocation if one is needed.
const MCExpr *Expr = Fixup.getValue();
if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) {
getContext().reportError(Fixup.getLoc(), "expected relocatable expression");
// Claim to have completely evaluated the fixup, to prevent any further
// processing from being done.
Value = 0;
return true;
}
bool IsPCRel = Backend.getFixupKindInfo(
Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
bool IsResolved;
if (IsPCRel) {
if (Target.getSymB()) {
IsResolved = false;
} else if (!Target.getSymA()) {
IsResolved = false;
} else {
const MCSymbolRefExpr *A = Target.getSymA();
const MCSymbol &SA = A->getSymbol();
if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
IsResolved = false;
} else {
IsResolved = getWriter().isSymbolRefDifferenceFullyResolvedImpl(
*this, SA, *DF, false, true);
}
}
} else {
IsResolved = Target.isAbsolute();
}
Value = Target.getConstant();
if (const MCSymbolRefExpr *A = Target.getSymA()) {
const MCSymbol &Sym = A->getSymbol();
if (Sym.isDefined())
Value += Layout.getSymbolOffset(Sym);
}
if (const MCSymbolRefExpr *B = Target.getSymB()) {
const MCSymbol &Sym = B->getSymbol();
if (Sym.isDefined())
Value -= Layout.getSymbolOffset(Sym);
}
bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
assert((ShouldAlignPC ? IsPCRel : true) &&
"FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
if (IsPCRel) {
uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
// A number of ARM fixups in Thumb mode require that the effective PC
// address be determined as the 32-bit aligned version of the actual offset.
if (ShouldAlignPC) Offset &= ~0x3;
Value -= Offset;
}
// Let the backend adjust the fixup value if necessary, including whether
// we need a relocation.
Backend.processFixupValue(*this, Layout, Fixup, DF, Target, Value,
IsResolved);
return IsResolved;
}
uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
const MCFragment &F) const {
switch (F.getKind()) {
case MCFragment::FT_Data:
return cast<MCDataFragment>(F).getContents().size();
case MCFragment::FT_Relaxable:
return cast<MCRelaxableFragment>(F).getContents().size();
case MCFragment::FT_CompactEncodedInst:
return cast<MCCompactEncodedInstFragment>(F).getContents().size();
case MCFragment::FT_Fill:
return cast<MCFillFragment>(F).getSize();
case MCFragment::FT_LEB:
return cast<MCLEBFragment>(F).getContents().size();
case MCFragment::FT_SafeSEH:
return 4;
case MCFragment::FT_Align: {
const MCAlignFragment &AF = cast<MCAlignFragment>(F);
unsigned Offset = Layout.getFragmentOffset(&AF);
unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
// If we are padding with nops, force the padding to be larger than the
// minimum nop size.
if (Size > 0 && AF.hasEmitNops()) {
while (Size % getBackend().getMinimumNopSize())
Size += AF.getAlignment();
}
if (Size > AF.getMaxBytesToEmit())
return 0;
return Size;
}
case MCFragment::FT_Org: {
const MCOrgFragment &OF = cast<MCOrgFragment>(F);
MCValue Value;
if (!OF.getOffset().evaluateAsValue(Value, Layout))
report_fatal_error("expected assembly-time absolute expression");
// FIXME: We need a way to communicate this error.
uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
int64_t TargetLocation = Value.getConstant();
if (const MCSymbolRefExpr *A = Value.getSymA()) {
uint64_t Val;
if (!Layout.getSymbolOffset(A->getSymbol(), Val))
report_fatal_error("expected absolute expression");
TargetLocation += Val;
}
int64_t Size = TargetLocation - FragmentOffset;
if (Size < 0 || Size >= 0x40000000)
report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
"' (at offset '" + Twine(FragmentOffset) + "')");
return Size;
}
case MCFragment::FT_Dwarf:
return cast<MCDwarfLineAddrFragment>(F).getContents().size();
case MCFragment::FT_DwarfFrame:
return cast<MCDwarfCallFrameFragment>(F).getContents().size();
case MCFragment::FT_Dummy:
llvm_unreachable("Should not have been added");
}
llvm_unreachable("invalid fragment kind");
}
void MCAsmLayout::layoutFragment(MCFragment *F) {
MCFragment *Prev = F->getPrevNode();
// We should never try to recompute something which is valid.
assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
// We should never try to compute the fragment layout if its predecessor
// isn't valid.
assert((!Prev || isFragmentValid(Prev)) &&
"Attempt to compute fragment before its predecessor!");
++stats::FragmentLayouts;
// Compute fragment offset and size.
if (Prev)
F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
else
F->Offset = 0;
LastValidFragment[F->getParent()] = F;
// If bundling is enabled and this fragment has instructions in it, it has to
// obey the bundling restrictions. With padding, we'll have:
//
//
// BundlePadding
// |||
// -------------------------------------
// Prev |##########| F |
// -------------------------------------
// ^
// |
// F->Offset
//
// The fragment's offset will point to after the padding, and its computed
// size won't include the padding.
//
// When the -mc-relax-all flag is used, we optimize bundling by writting the
// padding directly into fragments when the instructions are emitted inside
// the streamer. When the fragment is larger than the bundle size, we need to
// ensure that it's bundle aligned. This means that if we end up with
// multiple fragments, we must emit bundle padding between fragments.
//
// ".align N" is an example of a directive that introduces multiple
// fragments. We could add a special case to handle ".align N" by emitting
// within-fragment padding (which would produce less padding when N is less
// than the bundle size), but for now we don't.
//
if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
assert(isa<MCEncodedFragment>(F) &&
"Only MCEncodedFragment implementations have instructions");
uint64_t FSize = Assembler.computeFragmentSize(*this, *F);
if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize())
report_fatal_error("Fragment can't be larger than a bundle size");
uint64_t RequiredBundlePadding = computeBundlePadding(Assembler, F,
F->Offset, FSize);
if (RequiredBundlePadding > UINT8_MAX)
report_fatal_error("Padding cannot exceed 255 bytes");
F->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
F->Offset += RequiredBundlePadding;
}
}
void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) {
bool New = !Symbol.isRegistered();
if (Created)
*Created = New;
if (New) {
Symbol.setIsRegistered(true);
Symbols.push_back(&Symbol);
}
}
void MCAssembler::writeFragmentPadding(const MCFragment &F, uint64_t FSize,
MCObjectWriter *OW) const {
// Should NOP padding be written out before this fragment?
unsigned BundlePadding = F.getBundlePadding();
if (BundlePadding > 0) {
assert(isBundlingEnabled() &&
"Writing bundle padding with disabled bundling");
assert(F.hasInstructions() &&
"Writing bundle padding for a fragment without instructions");
unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
if (F.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
// If the padding itself crosses a bundle boundary, it must be emitted
// in 2 pieces, since even nop instructions must not cross boundaries.
// v--------------v <- BundleAlignSize
// v---------v <- BundlePadding
// ----------------------------
// | Prev |####|####| F |
// ----------------------------
// ^-------------------^ <- TotalLength
unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
if (!getBackend().writeNopData(DistanceToBoundary, OW))
report_fatal_error("unable to write NOP sequence of " +
Twine(DistanceToBoundary) + " bytes");
BundlePadding -= DistanceToBoundary;
}
if (!getBackend().writeNopData(BundlePadding, OW))
report_fatal_error("unable to write NOP sequence of " +
Twine(BundlePadding) + " bytes");
}
}
/// \brief Write the fragment \p F to the output file.
static void writeFragment(const MCAssembler &Asm, const MCAsmLayout &Layout,
const MCFragment &F) {
MCObjectWriter *OW = &Asm.getWriter();
// FIXME: Embed in fragments instead?
uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
Asm.writeFragmentPadding(F, FragmentSize, OW);
// This variable (and its dummy usage) is to participate in the assert at
// the end of the function.
uint64_t Start = OW->getStream().tell();
(void) Start;
++stats::EmittedFragments;
switch (F.getKind()) {
case MCFragment::FT_Align: {
++stats::EmittedAlignFragments;
const MCAlignFragment &AF = cast<MCAlignFragment>(F);
assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
uint64_t Count = FragmentSize / AF.getValueSize();
// FIXME: This error shouldn't actually occur (the front end should emit
// multiple .align directives to enforce the semantics it wants), but is
// severe enough that we want to report it. How to handle this?
if (Count * AF.getValueSize() != FragmentSize)
report_fatal_error("undefined .align directive, value size '" +
Twine(AF.getValueSize()) +
"' is not a divisor of padding size '" +
Twine(FragmentSize) + "'");
// See if we are aligning with nops, and if so do that first to try to fill
// the Count bytes. Then if that did not fill any bytes or there are any
// bytes left to fill use the Value and ValueSize to fill the rest.
// If we are aligning with nops, ask that target to emit the right data.
if (AF.hasEmitNops()) {
if (!Asm.getBackend().writeNopData(Count, OW))
report_fatal_error("unable to write nop sequence of " +
Twine(Count) + " bytes");
break;
}
// Otherwise, write out in multiples of the value size.
for (uint64_t i = 0; i != Count; ++i) {
switch (AF.getValueSize()) {
default: llvm_unreachable("Invalid size!");
case 1: OW->write8 (uint8_t (AF.getValue())); break;
case 2: OW->write16(uint16_t(AF.getValue())); break;
case 4: OW->write32(uint32_t(AF.getValue())); break;
case 8: OW->write64(uint64_t(AF.getValue())); break;
}
}
break;
}
case MCFragment::FT_Data:
++stats::EmittedDataFragments;
OW->writeBytes(cast<MCDataFragment>(F).getContents());
break;
case MCFragment::FT_Relaxable:
++stats::EmittedRelaxableFragments;
OW->writeBytes(cast<MCRelaxableFragment>(F).getContents());
break;
case MCFragment::FT_CompactEncodedInst:
++stats::EmittedCompactEncodedInstFragments;
OW->writeBytes(cast<MCCompactEncodedInstFragment>(F).getContents());
break;
case MCFragment::FT_Fill: {
++stats::EmittedFillFragments;
const MCFillFragment &FF = cast<MCFillFragment>(F);
assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!");
for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) {
switch (FF.getValueSize()) {
default: llvm_unreachable("Invalid size!");
case 1: OW->write8 (uint8_t (FF.getValue())); break;
case 2: OW->write16(uint16_t(FF.getValue())); break;
case 4: OW->write32(uint32_t(FF.getValue())); break;
case 8: OW->write64(uint64_t(FF.getValue())); break;
}
}
break;
}
case MCFragment::FT_LEB: {
const MCLEBFragment &LF = cast<MCLEBFragment>(F);
OW->writeBytes(LF.getContents());
break;
}
case MCFragment::FT_SafeSEH: {
const MCSafeSEHFragment &SF = cast<MCSafeSEHFragment>(F);
OW->write32(SF.getSymbol()->getIndex());
break;
}
case MCFragment::FT_Org: {
++stats::EmittedOrgFragments;
const MCOrgFragment &OF = cast<MCOrgFragment>(F);
for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
OW->write8(uint8_t(OF.getValue()));
break;
}
case MCFragment::FT_Dwarf: {
const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
OW->writeBytes(OF.getContents());
break;
}
case MCFragment::FT_DwarfFrame: {
const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
OW->writeBytes(CF.getContents());
break;
}
case MCFragment::FT_Dummy:
llvm_unreachable("Should not have been added");
}
assert(OW->getStream().tell() - Start == FragmentSize &&
"The stream should advance by fragment size");
}
void MCAssembler::writeSectionData(const MCSection *Sec,
const MCAsmLayout &Layout) const {
// Ignore virtual sections.
if (Sec->isVirtualSection()) {
assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!");
// Check that contents are only things legal inside a virtual section.
for (const MCFragment &F : *Sec) {
switch (F.getKind()) {
default: llvm_unreachable("Invalid fragment in virtual section!");
case MCFragment::FT_Data: {
// Check that we aren't trying to write a non-zero contents (or fixups)
// into a virtual section. This is to support clients which use standard
// directives to fill the contents of virtual sections.
const MCDataFragment &DF = cast<MCDataFragment>(F);
assert(DF.fixup_begin() == DF.fixup_end() &&
"Cannot have fixups in virtual section!");
for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
if (DF.getContents()[i]) {
if (auto *ELFSec = dyn_cast<const MCSectionELF>(Sec))
report_fatal_error("non-zero initializer found in section '" +
ELFSec->getSectionName() + "'");
else
report_fatal_error("non-zero initializer found in virtual section");
}
break;
}
case MCFragment::FT_Align:
// Check that we aren't trying to write a non-zero value into a virtual
// section.
assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
cast<MCAlignFragment>(F).getValue() == 0) &&
"Invalid align in virtual section!");
break;
case MCFragment::FT_Fill:
assert((cast<MCFillFragment>(F).getValueSize() == 0 ||
cast<MCFillFragment>(F).getValue() == 0) &&
"Invalid fill in virtual section!");
break;
}
}
return;
}
uint64_t Start = getWriter().getStream().tell();
(void)Start;
for (const MCFragment &F : *Sec)
writeFragment(*this, Layout, F);
assert(getWriter().getStream().tell() - Start ==
Layout.getSectionAddressSize(Sec));
}
std::pair<uint64_t, bool> MCAssembler::handleFixup(const MCAsmLayout &Layout,
MCFragment &F,
const MCFixup &Fixup) {
// Evaluate the fixup.
MCValue Target;
uint64_t FixedValue;
bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
MCFixupKindInfo::FKF_IsPCRel;
if (!evaluateFixup(Layout, Fixup, &F, Target, FixedValue)) {
// The fixup was unresolved, we need a relocation. Inform the object
// writer of the relocation, and give it an opportunity to adjust the
// fixup value if need be.
getWriter().recordRelocation(*this, Layout, &F, Fixup, Target, IsPCRel,
FixedValue);
}
return std::make_pair(FixedValue, IsPCRel);
}
void MCAssembler::layout(MCAsmLayout &Layout) {
DEBUG_WITH_TYPE("mc-dump", {
llvm::errs() << "assembler backend - pre-layout\n--\n";
dump(); });
// Create dummy fragments and assign section ordinals.
unsigned SectionIndex = 0;
for (MCSection &Sec : *this) {
// Create dummy fragments to eliminate any empty sections, this simplifies
// layout.
if (Sec.getFragmentList().empty())
new MCDataFragment(&Sec);
Sec.setOrdinal(SectionIndex++);
}
// Assign layout order indices to sections and fragments.
for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
MCSection *Sec = Layout.getSectionOrder()[i];
Sec->setLayoutOrder(i);
unsigned FragmentIndex = 0;
for (MCFragment &Frag : *Sec)
Frag.setLayoutOrder(FragmentIndex++);
}
// Layout until everything fits.
while (layoutOnce(Layout))
continue;
DEBUG_WITH_TYPE("mc-dump", {
llvm::errs() << "assembler backend - post-relaxation\n--\n";
dump(); });
// Finalize the layout, including fragment lowering.
finishLayout(Layout);
DEBUG_WITH_TYPE("mc-dump", {
llvm::errs() << "assembler backend - final-layout\n--\n";
dump(); });
// Allow the object writer a chance to perform post-layout binding (for
// example, to set the index fields in the symbol data).
getWriter().executePostLayoutBinding(*this, Layout);
// Evaluate and apply the fixups, generating relocation entries as necessary.
for (MCSection &Sec : *this) {
for (MCFragment &Frag : Sec) {
MCEncodedFragment *F = dyn_cast<MCEncodedFragment>(&Frag);
// Data and relaxable fragments both have fixups. So only process
// those here.
// FIXME: Is there a better way to do this? MCEncodedFragmentWithFixups
// being templated makes this tricky.
if (!F || isa<MCCompactEncodedInstFragment>(F))
continue;
ArrayRef<MCFixup> Fixups;
MutableArrayRef<char> Contents;
if (auto *FragWithFixups = dyn_cast<MCDataFragment>(F)) {
Fixups = FragWithFixups->getFixups();
Contents = FragWithFixups->getContents();
} else if (auto *FragWithFixups = dyn_cast<MCRelaxableFragment>(F)) {
Fixups = FragWithFixups->getFixups();
Contents = FragWithFixups->getContents();
} else
llvm_unreachable("Unknown fragment with fixups!");
for (const MCFixup &Fixup : Fixups) {
uint64_t FixedValue;
bool IsPCRel;
std::tie(FixedValue, IsPCRel) = handleFixup(Layout, *F, Fixup);
getBackend().applyFixup(Fixup, Contents.data(),
Contents.size(), FixedValue, IsPCRel);
}
}
}
}
void MCAssembler::Finish() {
// Create the layout object.
MCAsmLayout Layout(*this);
layout(Layout);
raw_ostream &OS = getWriter().getStream();
uint64_t StartOffset = OS.tell();
// Write the object file.
getWriter().writeObject(*this, Layout);
stats::ObjectBytes += OS.tell() - StartOffset;
}
bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
const MCRelaxableFragment *DF,
const MCAsmLayout &Layout) const {
MCValue Target;
uint64_t Value;
bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value);
return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF,
Layout);
}
bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
const MCAsmLayout &Layout) const {
// If this inst doesn't ever need relaxation, ignore it. This occurs when we
// are intentionally pushing out inst fragments, or because we relaxed a
// previous instruction to one that doesn't need relaxation.
if (!getBackend().mayNeedRelaxation(F->getInst()))
return false;
for (const MCFixup &Fixup : F->getFixups())
if (fixupNeedsRelaxation(Fixup, F, Layout))
return true;
return false;
}
bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
MCRelaxableFragment &F) {
if (!fragmentNeedsRelaxation(&F, Layout))
return false;
++stats::RelaxedInstructions;
// FIXME-PERF: We could immediately lower out instructions if we can tell
// they are fully resolved, to avoid retesting on later passes.
// Relax the fragment.
MCInst Relaxed;
getBackend().relaxInstruction(F.getInst(), Relaxed);
// Encode the new instruction.
//
// FIXME-PERF: If it matters, we could let the target do this. It can
// probably do so more efficiently in many cases.
SmallVector<MCFixup, 4> Fixups;
SmallString<256> Code;
raw_svector_ostream VecOS(Code);
getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, F.getSubtargetInfo());
// Update the fragment.
F.setInst(Relaxed);
F.getContents() = Code;
F.getFixups() = Fixups;
return true;
}
bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
uint64_t OldSize = LF.getContents().size();
int64_t Value;
bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout);
if (!Abs)
report_fatal_error("sleb128 and uleb128 expressions must be absolute");
SmallString<8> &Data = LF.getContents();
Data.clear();
raw_svector_ostream OSE(Data);
if (LF.isSigned())
encodeSLEB128(Value, OSE);
else
encodeULEB128(Value, OSE);
return OldSize != LF.getContents().size();
}
bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
MCDwarfLineAddrFragment &DF) {
MCContext &Context = Layout.getAssembler().getContext();
uint64_t OldSize = DF.getContents().size();
int64_t AddrDelta;
bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
assert(Abs && "We created a line delta with an invalid expression");
(void) Abs;
int64_t LineDelta;
LineDelta = DF.getLineDelta();
SmallString<8> &Data = DF.getContents();
Data.clear();
raw_svector_ostream OSE(Data);
MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta,
AddrDelta, OSE);
return OldSize != Data.size();
}
bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
MCDwarfCallFrameFragment &DF) {
MCContext &Context = Layout.getAssembler().getContext();
uint64_t OldSize = DF.getContents().size();
int64_t AddrDelta;
bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
assert(Abs && "We created call frame with an invalid expression");
(void) Abs;
SmallString<8> &Data = DF.getContents();
Data.clear();
raw_svector_ostream OSE(Data);
MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
return OldSize != Data.size();
}
bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) {
// Holds the first fragment which needed relaxing during this layout. It will
// remain NULL if none were relaxed.
// When a fragment is relaxed, all the fragments following it should get
// invalidated because their offset is going to change.
MCFragment *FirstRelaxedFragment = nullptr;
// Attempt to relax all the fragments in the section.
for (MCSection::iterator I = Sec.begin(), IE = Sec.end(); I != IE; ++I) {
// Check if this is a fragment that needs relaxation.
bool RelaxedFrag = false;
switch(I->getKind()) {
default:
break;
case MCFragment::FT_Relaxable:
assert(!getRelaxAll() &&
"Did not expect a MCRelaxableFragment in RelaxAll mode");
RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
break;
case MCFragment::FT_Dwarf:
RelaxedFrag = relaxDwarfLineAddr(Layout,
*cast<MCDwarfLineAddrFragment>(I));
break;
case MCFragment::FT_DwarfFrame:
RelaxedFrag =
relaxDwarfCallFrameFragment(Layout,
*cast<MCDwarfCallFrameFragment>(I));
break;
case MCFragment::FT_LEB:
RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
break;
}
if (RelaxedFrag && !FirstRelaxedFragment)
FirstRelaxedFragment = &*I;
}
if (FirstRelaxedFragment) {
Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
return true;
}
return false;
}
bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
++stats::RelaxationSteps;
bool WasRelaxed = false;
for (iterator it = begin(), ie = end(); it != ie; ++it) {
MCSection &Sec = *it;
while (layoutSectionOnce(Layout, Sec))
WasRelaxed = true;
}
return WasRelaxed;
}
void MCAssembler::finishLayout(MCAsmLayout &Layout) {
// The layout is done. Mark every fragment as valid.
for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
Layout.getFragmentOffset(&*Layout.getSectionOrder()[i]->rbegin());
}
}