1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-23 21:13:02 +02:00
llvm-mirror/lib/Target/NVPTX/NVPTXPeephole.cpp
Chandler Carruth eb66b33867 Sort the remaining #include lines in include/... and lib/....
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.

I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.

This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.

Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).

llvm-svn: 304787
2017-06-06 11:49:48 +00:00

158 lines
4.9 KiB
C++

//===-- NVPTXPeephole.cpp - NVPTX Peephole Optimiztions -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// In NVPTX, NVPTXFrameLowering will emit following instruction at the beginning
// of a MachineFunction.
//
// mov %SPL, %depot
// cvta.local %SP, %SPL
//
// Because Frame Index is a generic address and alloca can only return generic
// pointer, without this pass the instructions producing alloca'ed address will
// be based on %SP. NVPTXLowerAlloca tends to help replace store and load on
// this address with their .local versions, but this may introduce a lot of
// cvta.to.local instructions. Performance can be improved if we avoid casting
// address back and forth and directly calculate local address based on %SPL.
// This peephole pass optimizes these cases, for example
//
// It will transform the following pattern
// %vreg0<def> = LEA_ADDRi64 %VRFrame, 4
// %vreg1<def> = cvta_to_local_yes_64 %vreg0
//
// into
// %vreg1<def> = LEA_ADDRi64 %VRFrameLocal, 4
//
// %VRFrameLocal is the virtual register name of %SPL
//
//===----------------------------------------------------------------------===//
#include "NVPTX.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;
#define DEBUG_TYPE "nvptx-peephole"
namespace llvm {
void initializeNVPTXPeepholePass(PassRegistry &);
}
namespace {
struct NVPTXPeephole : public MachineFunctionPass {
public:
static char ID;
NVPTXPeephole() : MachineFunctionPass(ID) {
initializeNVPTXPeepholePass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override {
return "NVPTX optimize redundant cvta.to.local instruction";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
MachineFunctionPass::getAnalysisUsage(AU);
}
};
}
char NVPTXPeephole::ID = 0;
INITIALIZE_PASS(NVPTXPeephole, "nvptx-peephole", "NVPTX Peephole", false, false)
static bool isCVTAToLocalCombinationCandidate(MachineInstr &Root) {
auto &MBB = *Root.getParent();
auto &MF = *MBB.getParent();
// Check current instruction is cvta.to.local
if (Root.getOpcode() != NVPTX::cvta_to_local_yes_64 &&
Root.getOpcode() != NVPTX::cvta_to_local_yes)
return false;
auto &Op = Root.getOperand(1);
const auto &MRI = MF.getRegInfo();
MachineInstr *GenericAddrDef = nullptr;
if (Op.isReg() && TargetRegisterInfo::isVirtualRegister(Op.getReg())) {
GenericAddrDef = MRI.getUniqueVRegDef(Op.getReg());
}
// Check the register operand is uniquely defined by LEA_ADDRi instruction
if (!GenericAddrDef || GenericAddrDef->getParent() != &MBB ||
(GenericAddrDef->getOpcode() != NVPTX::LEA_ADDRi64 &&
GenericAddrDef->getOpcode() != NVPTX::LEA_ADDRi)) {
return false;
}
// Check the LEA_ADDRi operand is Frame index
auto &BaseAddrOp = GenericAddrDef->getOperand(1);
if (BaseAddrOp.isReg() && BaseAddrOp.getReg() == NVPTX::VRFrame) {
return true;
}
return false;
}
static void CombineCVTAToLocal(MachineInstr &Root) {
auto &MBB = *Root.getParent();
auto &MF = *MBB.getParent();
const auto &MRI = MF.getRegInfo();
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
auto &Prev = *MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
MachineInstrBuilder MIB =
BuildMI(MF, Root.getDebugLoc(), TII->get(Prev.getOpcode()),
Root.getOperand(0).getReg())
.addReg(NVPTX::VRFrameLocal)
.add(Prev.getOperand(2));
MBB.insert((MachineBasicBlock::iterator)&Root, MIB);
// Check if MRI has only one non dbg use, which is Root
if (MRI.hasOneNonDBGUse(Prev.getOperand(0).getReg())) {
Prev.eraseFromParentAndMarkDBGValuesForRemoval();
}
Root.eraseFromParentAndMarkDBGValuesForRemoval();
}
bool NVPTXPeephole::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(*MF.getFunction()))
return false;
bool Changed = false;
// Loop over all of the basic blocks.
for (auto &MBB : MF) {
// Traverse the basic block.
auto BlockIter = MBB.begin();
while (BlockIter != MBB.end()) {
auto &MI = *BlockIter++;
if (isCVTAToLocalCombinationCandidate(MI)) {
CombineCVTAToLocal(MI);
Changed = true;
}
} // Instruction
} // Basic Block
// Remove unnecessary %VRFrame = cvta.local %VRFrameLocal
const auto &MRI = MF.getRegInfo();
if (MRI.use_empty(NVPTX::VRFrame)) {
if (auto MI = MRI.getUniqueVRegDef(NVPTX::VRFrame)) {
MI->eraseFromParentAndMarkDBGValuesForRemoval();
}
}
return Changed;
}
MachineFunctionPass *llvm::createNVPTXPeephole() { return new NVPTXPeephole(); }