mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 12:12:47 +01:00
ae65e281f3
to reflect the new license. We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach. Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository. llvm-svn: 351636
392 lines
15 KiB
C++
392 lines
15 KiB
C++
//===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/MustExecute.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/Passes.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/AssemblyAnnotationWriter.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/FormattedStream.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace llvm;
|
|
|
|
const DenseMap<BasicBlock *, ColorVector> &
|
|
LoopSafetyInfo::getBlockColors() const {
|
|
return BlockColors;
|
|
}
|
|
|
|
void LoopSafetyInfo::copyColors(BasicBlock *New, BasicBlock *Old) {
|
|
ColorVector &ColorsForNewBlock = BlockColors[New];
|
|
ColorVector &ColorsForOldBlock = BlockColors[Old];
|
|
ColorsForNewBlock = ColorsForOldBlock;
|
|
}
|
|
|
|
bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
|
|
(void)BB;
|
|
return anyBlockMayThrow();
|
|
}
|
|
|
|
bool SimpleLoopSafetyInfo::anyBlockMayThrow() const {
|
|
return MayThrow;
|
|
}
|
|
|
|
void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
|
|
assert(CurLoop != nullptr && "CurLoop can't be null");
|
|
BasicBlock *Header = CurLoop->getHeader();
|
|
// Iterate over header and compute safety info.
|
|
HeaderMayThrow = !isGuaranteedToTransferExecutionToSuccessor(Header);
|
|
MayThrow = HeaderMayThrow;
|
|
// Iterate over loop instructions and compute safety info.
|
|
// Skip header as it has been computed and stored in HeaderMayThrow.
|
|
// The first block in loopinfo.Blocks is guaranteed to be the header.
|
|
assert(Header == *CurLoop->getBlocks().begin() &&
|
|
"First block must be header");
|
|
for (Loop::block_iterator BB = std::next(CurLoop->block_begin()),
|
|
BBE = CurLoop->block_end();
|
|
(BB != BBE) && !MayThrow; ++BB)
|
|
MayThrow |= !isGuaranteedToTransferExecutionToSuccessor(*BB);
|
|
|
|
computeBlockColors(CurLoop);
|
|
}
|
|
|
|
bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
|
|
return ICF.hasICF(BB);
|
|
}
|
|
|
|
bool ICFLoopSafetyInfo::anyBlockMayThrow() const {
|
|
return MayThrow;
|
|
}
|
|
|
|
void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
|
|
assert(CurLoop != nullptr && "CurLoop can't be null");
|
|
ICF.clear();
|
|
MW.clear();
|
|
MayThrow = false;
|
|
// Figure out the fact that at least one block may throw.
|
|
for (auto &BB : CurLoop->blocks())
|
|
if (ICF.hasICF(&*BB)) {
|
|
MayThrow = true;
|
|
break;
|
|
}
|
|
computeBlockColors(CurLoop);
|
|
}
|
|
|
|
void ICFLoopSafetyInfo::insertInstructionTo(const Instruction *Inst,
|
|
const BasicBlock *BB) {
|
|
ICF.insertInstructionTo(Inst, BB);
|
|
MW.insertInstructionTo(Inst, BB);
|
|
}
|
|
|
|
void ICFLoopSafetyInfo::removeInstruction(const Instruction *Inst) {
|
|
ICF.removeInstruction(Inst);
|
|
MW.removeInstruction(Inst);
|
|
}
|
|
|
|
void LoopSafetyInfo::computeBlockColors(const Loop *CurLoop) {
|
|
// Compute funclet colors if we might sink/hoist in a function with a funclet
|
|
// personality routine.
|
|
Function *Fn = CurLoop->getHeader()->getParent();
|
|
if (Fn->hasPersonalityFn())
|
|
if (Constant *PersonalityFn = Fn->getPersonalityFn())
|
|
if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn)))
|
|
BlockColors = colorEHFunclets(*Fn);
|
|
}
|
|
|
|
/// Return true if we can prove that the given ExitBlock is not reached on the
|
|
/// first iteration of the given loop. That is, the backedge of the loop must
|
|
/// be executed before the ExitBlock is executed in any dynamic execution trace.
|
|
static bool CanProveNotTakenFirstIteration(const BasicBlock *ExitBlock,
|
|
const DominatorTree *DT,
|
|
const Loop *CurLoop) {
|
|
auto *CondExitBlock = ExitBlock->getSinglePredecessor();
|
|
if (!CondExitBlock)
|
|
// expect unique exits
|
|
return false;
|
|
assert(CurLoop->contains(CondExitBlock) && "meaning of exit block");
|
|
auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator());
|
|
if (!BI || !BI->isConditional())
|
|
return false;
|
|
// If condition is constant and false leads to ExitBlock then we always
|
|
// execute the true branch.
|
|
if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition()))
|
|
return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock;
|
|
auto *Cond = dyn_cast<CmpInst>(BI->getCondition());
|
|
if (!Cond)
|
|
return false;
|
|
// todo: this would be a lot more powerful if we used scev, but all the
|
|
// plumbing is currently missing to pass a pointer in from the pass
|
|
// Check for cmp (phi [x, preheader] ...), y where (pred x, y is known
|
|
auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0));
|
|
auto *RHS = Cond->getOperand(1);
|
|
if (!LHS || LHS->getParent() != CurLoop->getHeader())
|
|
return false;
|
|
auto DL = ExitBlock->getModule()->getDataLayout();
|
|
auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader());
|
|
auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(),
|
|
IVStart, RHS,
|
|
{DL, /*TLI*/ nullptr,
|
|
DT, /*AC*/ nullptr, BI});
|
|
auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull);
|
|
if (!SimpleCst)
|
|
return false;
|
|
if (ExitBlock == BI->getSuccessor(0))
|
|
return SimpleCst->isZeroValue();
|
|
assert(ExitBlock == BI->getSuccessor(1) && "implied by above");
|
|
return SimpleCst->isAllOnesValue();
|
|
}
|
|
|
|
/// Collect all blocks from \p CurLoop which lie on all possible paths from
|
|
/// the header of \p CurLoop (inclusive) to BB (exclusive) into the set
|
|
/// \p Predecessors. If \p BB is the header, \p Predecessors will be empty.
|
|
static void collectTransitivePredecessors(
|
|
const Loop *CurLoop, const BasicBlock *BB,
|
|
SmallPtrSetImpl<const BasicBlock *> &Predecessors) {
|
|
assert(Predecessors.empty() && "Garbage in predecessors set?");
|
|
assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
|
|
if (BB == CurLoop->getHeader())
|
|
return;
|
|
SmallVector<const BasicBlock *, 4> WorkList;
|
|
for (auto *Pred : predecessors(BB)) {
|
|
Predecessors.insert(Pred);
|
|
WorkList.push_back(Pred);
|
|
}
|
|
while (!WorkList.empty()) {
|
|
auto *Pred = WorkList.pop_back_val();
|
|
assert(CurLoop->contains(Pred) && "Should only reach loop blocks!");
|
|
// We are not interested in backedges and we don't want to leave loop.
|
|
if (Pred == CurLoop->getHeader())
|
|
continue;
|
|
// TODO: If BB lies in an inner loop of CurLoop, this will traverse over all
|
|
// blocks of this inner loop, even those that are always executed AFTER the
|
|
// BB. It may make our analysis more conservative than it could be, see test
|
|
// @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll.
|
|
// We can ignore backedge of all loops containing BB to get a sligtly more
|
|
// optimistic result.
|
|
for (auto *PredPred : predecessors(Pred))
|
|
if (Predecessors.insert(PredPred).second)
|
|
WorkList.push_back(PredPred);
|
|
}
|
|
}
|
|
|
|
bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop *CurLoop,
|
|
const BasicBlock *BB,
|
|
const DominatorTree *DT) const {
|
|
assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
|
|
|
|
// Fast path: header is always reached once the loop is entered.
|
|
if (BB == CurLoop->getHeader())
|
|
return true;
|
|
|
|
// Collect all transitive predecessors of BB in the same loop. This set will
|
|
// be a subset of the blocks within the loop.
|
|
SmallPtrSet<const BasicBlock *, 4> Predecessors;
|
|
collectTransitivePredecessors(CurLoop, BB, Predecessors);
|
|
|
|
// Make sure that all successors of all predecessors of BB are either:
|
|
// 1) BB,
|
|
// 2) Also predecessors of BB,
|
|
// 3) Exit blocks which are not taken on 1st iteration.
|
|
// Memoize blocks we've already checked.
|
|
SmallPtrSet<const BasicBlock *, 4> CheckedSuccessors;
|
|
for (auto *Pred : Predecessors) {
|
|
// Predecessor block may throw, so it has a side exit.
|
|
if (blockMayThrow(Pred))
|
|
return false;
|
|
for (auto *Succ : successors(Pred))
|
|
if (CheckedSuccessors.insert(Succ).second &&
|
|
Succ != BB && !Predecessors.count(Succ))
|
|
// By discharging conditions that are not executed on the 1st iteration,
|
|
// we guarantee that *at least* on the first iteration all paths from
|
|
// header that *may* execute will lead us to the block of interest. So
|
|
// that if we had virtually peeled one iteration away, in this peeled
|
|
// iteration the set of predecessors would contain only paths from
|
|
// header to BB without any exiting edges that may execute.
|
|
//
|
|
// TODO: We only do it for exiting edges currently. We could use the
|
|
// same function to skip some of the edges within the loop if we know
|
|
// that they will not be taken on the 1st iteration.
|
|
//
|
|
// TODO: If we somehow know the number of iterations in loop, the same
|
|
// check may be done for any arbitrary N-th iteration as long as N is
|
|
// not greater than minimum number of iterations in this loop.
|
|
if (CurLoop->contains(Succ) ||
|
|
!CanProveNotTakenFirstIteration(Succ, DT, CurLoop))
|
|
return false;
|
|
}
|
|
|
|
// All predecessors can only lead us to BB.
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if the instruction in a loop is guaranteed to execute at least
|
|
/// once.
|
|
bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
|
|
const DominatorTree *DT,
|
|
const Loop *CurLoop) const {
|
|
// If the instruction is in the header block for the loop (which is very
|
|
// common), it is always guaranteed to dominate the exit blocks. Since this
|
|
// is a common case, and can save some work, check it now.
|
|
if (Inst.getParent() == CurLoop->getHeader())
|
|
// If there's a throw in the header block, we can't guarantee we'll reach
|
|
// Inst unless we can prove that Inst comes before the potential implicit
|
|
// exit. At the moment, we use a (cheap) hack for the common case where
|
|
// the instruction of interest is the first one in the block.
|
|
return !HeaderMayThrow ||
|
|
Inst.getParent()->getFirstNonPHIOrDbg() == &Inst;
|
|
|
|
// If there is a path from header to exit or latch that doesn't lead to our
|
|
// instruction's block, return false.
|
|
return allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
|
|
}
|
|
|
|
bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
|
|
const DominatorTree *DT,
|
|
const Loop *CurLoop) const {
|
|
return !ICF.isDominatedByICFIFromSameBlock(&Inst) &&
|
|
allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
|
|
}
|
|
|
|
bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const BasicBlock *BB,
|
|
const Loop *CurLoop) const {
|
|
assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
|
|
|
|
// Fast path: there are no instructions before header.
|
|
if (BB == CurLoop->getHeader())
|
|
return true;
|
|
|
|
// Collect all transitive predecessors of BB in the same loop. This set will
|
|
// be a subset of the blocks within the loop.
|
|
SmallPtrSet<const BasicBlock *, 4> Predecessors;
|
|
collectTransitivePredecessors(CurLoop, BB, Predecessors);
|
|
// Find if there any instruction in either predecessor that could write
|
|
// to memory.
|
|
for (auto *Pred : Predecessors)
|
|
if (MW.mayWriteToMemory(Pred))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const Instruction &I,
|
|
const Loop *CurLoop) const {
|
|
auto *BB = I.getParent();
|
|
assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
|
|
return !MW.isDominatedByMemoryWriteFromSameBlock(&I) &&
|
|
doesNotWriteMemoryBefore(BB, CurLoop);
|
|
}
|
|
|
|
namespace {
|
|
struct MustExecutePrinter : public FunctionPass {
|
|
|
|
static char ID; // Pass identification, replacement for typeid
|
|
MustExecutePrinter() : FunctionPass(ID) {
|
|
initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
}
|
|
bool runOnFunction(Function &F) override;
|
|
};
|
|
}
|
|
|
|
char MustExecutePrinter::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute",
|
|
"Instructions which execute on loop entry", false, true)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
|
INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute",
|
|
"Instructions which execute on loop entry", false, true)
|
|
|
|
FunctionPass *llvm::createMustExecutePrinter() {
|
|
return new MustExecutePrinter();
|
|
}
|
|
|
|
static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) {
|
|
// TODO: merge these two routines. For the moment, we display the best
|
|
// result obtained by *either* implementation. This is a bit unfair since no
|
|
// caller actually gets the full power at the moment.
|
|
SimpleLoopSafetyInfo LSI;
|
|
LSI.computeLoopSafetyInfo(L);
|
|
return LSI.isGuaranteedToExecute(I, DT, L) ||
|
|
isGuaranteedToExecuteForEveryIteration(&I, L);
|
|
}
|
|
|
|
namespace {
|
|
/// An assembly annotator class to print must execute information in
|
|
/// comments.
|
|
class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter {
|
|
DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec;
|
|
|
|
public:
|
|
MustExecuteAnnotatedWriter(const Function &F,
|
|
DominatorTree &DT, LoopInfo &LI) {
|
|
for (auto &I: instructions(F)) {
|
|
Loop *L = LI.getLoopFor(I.getParent());
|
|
while (L) {
|
|
if (isMustExecuteIn(I, L, &DT)) {
|
|
MustExec[&I].push_back(L);
|
|
}
|
|
L = L->getParentLoop();
|
|
};
|
|
}
|
|
}
|
|
MustExecuteAnnotatedWriter(const Module &M,
|
|
DominatorTree &DT, LoopInfo &LI) {
|
|
for (auto &F : M)
|
|
for (auto &I: instructions(F)) {
|
|
Loop *L = LI.getLoopFor(I.getParent());
|
|
while (L) {
|
|
if (isMustExecuteIn(I, L, &DT)) {
|
|
MustExec[&I].push_back(L);
|
|
}
|
|
L = L->getParentLoop();
|
|
};
|
|
}
|
|
}
|
|
|
|
|
|
void printInfoComment(const Value &V, formatted_raw_ostream &OS) override {
|
|
if (!MustExec.count(&V))
|
|
return;
|
|
|
|
const auto &Loops = MustExec.lookup(&V);
|
|
const auto NumLoops = Loops.size();
|
|
if (NumLoops > 1)
|
|
OS << " ; (mustexec in " << NumLoops << " loops: ";
|
|
else
|
|
OS << " ; (mustexec in: ";
|
|
|
|
bool first = true;
|
|
for (const Loop *L : Loops) {
|
|
if (!first)
|
|
OS << ", ";
|
|
first = false;
|
|
OS << L->getHeader()->getName();
|
|
}
|
|
OS << ")";
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
bool MustExecutePrinter::runOnFunction(Function &F) {
|
|
auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
|
|
MustExecuteAnnotatedWriter Writer(F, DT, LI);
|
|
F.print(dbgs(), &Writer);
|
|
|
|
return false;
|
|
}
|