1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 10:42:39 +01:00
llvm-mirror/include/llvm/ProfileData/SampleProf.h
Hongtao Yu 3594bb4c1b [CSSPGO] Introducing distribution factor for pseudo probe.
Sample re-annotation is required in LTO time to achieve a reasonable post-inline profile quality. However, we have seen that such LTO-time re-annotation degrades profile quality. This is mainly caused by preLTO code duplication that is done by passes such as loop unrolling, jump threading, indirect call promotion etc, where samples corresponding to a source location are aggregated multiple times due to the duplicates. In this change we are introducing a concept of distribution factor for pseudo probes so that samples can be distributed for duplicated probes scaled by a factor. We hope that optimizations duplicating code well-maintain the branch frequency information (BFI) based on which probe distribution factors are calculated. Distribution factors are updated at the end of preLTO pipeline to reflect an estimated portion of the real execution count.

This change also introduces a pseudo probe verifier that can be run after each IR passes to detect duplicated pseudo probes.

A saturated distribution factor stands for 1.0. A pesudo probe will carry a factor with the value ranged from 0.0 to 1.0. A 64-bit integral distribution factor field that represents [0.0, 1.0] is associated to each block probe. Unfortunately this cannot be done for callsite probes due to the size limitation of a 32-bit Dwarf discriminator. A 7-bit distribution factor is used instead.

Changes are also needed to the sample profile inliner to deal with prorated callsite counts. Call sites duplicated by PreLTO passes, when later on inlined in LTO time, should have the callees’s probe prorated based on the Prelink-computed distribution factors. The distribution factors should also be taken into account when computing hotness for inline candidates. Also, Indirect call promotion results in multiple callisites. The original samples should be distributed across them. This is fixed by adjusting the callisites' distribution factors.

Reviewed By: wmi

Differential Revision: https://reviews.llvm.org/D93264
2021-02-02 11:55:01 -08:00

993 lines
36 KiB
C++

//===- SampleProf.h - Sampling profiling format support ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains common definitions used in the reading and writing of
// sample profile data.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_PROFILEDATA_SAMPLEPROF_H
#define LLVM_PROFILEDATA_SAMPLEPROF_H
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstdint>
#include <map>
#include <set>
#include <string>
#include <system_error>
#include <utility>
namespace llvm {
const std::error_category &sampleprof_category();
enum class sampleprof_error {
success = 0,
bad_magic,
unsupported_version,
too_large,
truncated,
malformed,
unrecognized_format,
unsupported_writing_format,
truncated_name_table,
not_implemented,
counter_overflow,
ostream_seek_unsupported,
compress_failed,
uncompress_failed,
zlib_unavailable,
hash_mismatch
};
inline std::error_code make_error_code(sampleprof_error E) {
return std::error_code(static_cast<int>(E), sampleprof_category());
}
inline sampleprof_error MergeResult(sampleprof_error &Accumulator,
sampleprof_error Result) {
// Prefer first error encountered as later errors may be secondary effects of
// the initial problem.
if (Accumulator == sampleprof_error::success &&
Result != sampleprof_error::success)
Accumulator = Result;
return Accumulator;
}
} // end namespace llvm
namespace std {
template <>
struct is_error_code_enum<llvm::sampleprof_error> : std::true_type {};
} // end namespace std
namespace llvm {
namespace sampleprof {
enum SampleProfileFormat {
SPF_None = 0,
SPF_Text = 0x1,
SPF_Compact_Binary = 0x2,
SPF_GCC = 0x3,
SPF_Ext_Binary = 0x4,
SPF_Binary = 0xff
};
static inline uint64_t SPMagic(SampleProfileFormat Format = SPF_Binary) {
return uint64_t('S') << (64 - 8) | uint64_t('P') << (64 - 16) |
uint64_t('R') << (64 - 24) | uint64_t('O') << (64 - 32) |
uint64_t('F') << (64 - 40) | uint64_t('4') << (64 - 48) |
uint64_t('2') << (64 - 56) | uint64_t(Format);
}
/// Get the proper representation of a string according to whether the
/// current Format uses MD5 to represent the string.
static inline StringRef getRepInFormat(StringRef Name, bool UseMD5,
std::string &GUIDBuf) {
if (Name.empty())
return Name;
GUIDBuf = std::to_string(Function::getGUID(Name));
return UseMD5 ? StringRef(GUIDBuf) : Name;
}
static inline uint64_t SPVersion() { return 103; }
// Section Type used by SampleProfileExtBinaryBaseReader and
// SampleProfileExtBinaryBaseWriter. Never change the existing
// value of enum. Only append new ones.
enum SecType {
SecInValid = 0,
SecProfSummary = 1,
SecNameTable = 2,
SecProfileSymbolList = 3,
SecFuncOffsetTable = 4,
SecFuncMetadata = 5,
// marker for the first type of profile.
SecFuncProfileFirst = 32,
SecLBRProfile = SecFuncProfileFirst
};
static inline std::string getSecName(SecType Type) {
switch (Type) {
case SecInValid:
return "InvalidSection";
case SecProfSummary:
return "ProfileSummarySection";
case SecNameTable:
return "NameTableSection";
case SecProfileSymbolList:
return "ProfileSymbolListSection";
case SecFuncOffsetTable:
return "FuncOffsetTableSection";
case SecFuncMetadata:
return "FunctionMetadata";
case SecLBRProfile:
return "LBRProfileSection";
}
llvm_unreachable("A SecType has no name for output");
}
// Entry type of section header table used by SampleProfileExtBinaryBaseReader
// and SampleProfileExtBinaryBaseWriter.
struct SecHdrTableEntry {
SecType Type;
uint64_t Flags;
uint64_t Offset;
uint64_t Size;
// The index indicating the location of the current entry in
// SectionHdrLayout table.
uint32_t LayoutIndex;
};
// Flags common for all sections are defined here. In SecHdrTableEntry::Flags,
// common flags will be saved in the lower 32bits and section specific flags
// will be saved in the higher 32 bits.
enum class SecCommonFlags : uint32_t {
SecFlagInValid = 0,
SecFlagCompress = (1 << 0),
// Indicate the section contains only profile without context.
SecFlagFlat = (1 << 1)
};
// Section specific flags are defined here.
// !!!Note: Everytime a new enum class is created here, please add
// a new check in verifySecFlag.
enum class SecNameTableFlags : uint32_t {
SecFlagInValid = 0,
SecFlagMD5Name = (1 << 0),
// Store MD5 in fixed length instead of ULEB128 so NameTable can be
// accessed like an array.
SecFlagFixedLengthMD5 = (1 << 1)
};
enum class SecProfSummaryFlags : uint32_t {
SecFlagInValid = 0,
/// SecFlagPartial means the profile is for common/shared code.
/// The common profile is usually merged from profiles collected
/// from running other targets.
SecFlagPartial = (1 << 0)
};
enum class SecFuncMetadataFlags : uint32_t {
SecFlagInvalid = 0,
SecFlagIsProbeBased = (1 << 0),
};
// Verify section specific flag is used for the correct section.
template <class SecFlagType>
static inline void verifySecFlag(SecType Type, SecFlagType Flag) {
// No verification is needed for common flags.
if (std::is_same<SecCommonFlags, SecFlagType>())
return;
// Verification starts here for section specific flag.
bool IsFlagLegal = false;
switch (Type) {
case SecNameTable:
IsFlagLegal = std::is_same<SecNameTableFlags, SecFlagType>();
break;
case SecProfSummary:
IsFlagLegal = std::is_same<SecProfSummaryFlags, SecFlagType>();
break;
case SecFuncMetadata:
IsFlagLegal = std::is_same<SecFuncMetadataFlags, SecFlagType>();
break;
default:
break;
}
if (!IsFlagLegal)
llvm_unreachable("Misuse of a flag in an incompatible section");
}
template <class SecFlagType>
static inline void addSecFlag(SecHdrTableEntry &Entry, SecFlagType Flag) {
verifySecFlag(Entry.Type, Flag);
auto FVal = static_cast<uint64_t>(Flag);
bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
Entry.Flags |= IsCommon ? FVal : (FVal << 32);
}
template <class SecFlagType>
static inline void removeSecFlag(SecHdrTableEntry &Entry, SecFlagType Flag) {
verifySecFlag(Entry.Type, Flag);
auto FVal = static_cast<uint64_t>(Flag);
bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
Entry.Flags &= ~(IsCommon ? FVal : (FVal << 32));
}
template <class SecFlagType>
static inline bool hasSecFlag(const SecHdrTableEntry &Entry, SecFlagType Flag) {
verifySecFlag(Entry.Type, Flag);
auto FVal = static_cast<uint64_t>(Flag);
bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
return Entry.Flags & (IsCommon ? FVal : (FVal << 32));
}
/// Represents the relative location of an instruction.
///
/// Instruction locations are specified by the line offset from the
/// beginning of the function (marked by the line where the function
/// header is) and the discriminator value within that line.
///
/// The discriminator value is useful to distinguish instructions
/// that are on the same line but belong to different basic blocks
/// (e.g., the two post-increment instructions in "if (p) x++; else y++;").
struct LineLocation {
LineLocation(uint32_t L, uint32_t D) : LineOffset(L), Discriminator(D) {}
void print(raw_ostream &OS) const;
void dump() const;
bool operator<(const LineLocation &O) const {
return LineOffset < O.LineOffset ||
(LineOffset == O.LineOffset && Discriminator < O.Discriminator);
}
bool operator==(const LineLocation &O) const {
return LineOffset == O.LineOffset && Discriminator == O.Discriminator;
}
bool operator!=(const LineLocation &O) const {
return LineOffset != O.LineOffset || Discriminator != O.Discriminator;
}
uint32_t LineOffset;
uint32_t Discriminator;
};
raw_ostream &operator<<(raw_ostream &OS, const LineLocation &Loc);
/// Representation of a single sample record.
///
/// A sample record is represented by a positive integer value, which
/// indicates how frequently was the associated line location executed.
///
/// Additionally, if the associated location contains a function call,
/// the record will hold a list of all the possible called targets. For
/// direct calls, this will be the exact function being invoked. For
/// indirect calls (function pointers, virtual table dispatch), this
/// will be a list of one or more functions.
class SampleRecord {
public:
using CallTarget = std::pair<StringRef, uint64_t>;
struct CallTargetComparator {
bool operator()(const CallTarget &LHS, const CallTarget &RHS) const {
if (LHS.second != RHS.second)
return LHS.second > RHS.second;
return LHS.first < RHS.first;
}
};
using SortedCallTargetSet = std::set<CallTarget, CallTargetComparator>;
using CallTargetMap = StringMap<uint64_t>;
SampleRecord() = default;
/// Increment the number of samples for this record by \p S.
/// Optionally scale sample count \p S by \p Weight.
///
/// Sample counts accumulate using saturating arithmetic, to avoid wrapping
/// around unsigned integers.
sampleprof_error addSamples(uint64_t S, uint64_t Weight = 1) {
bool Overflowed;
NumSamples = SaturatingMultiplyAdd(S, Weight, NumSamples, &Overflowed);
return Overflowed ? sampleprof_error::counter_overflow
: sampleprof_error::success;
}
/// Add called function \p F with samples \p S.
/// Optionally scale sample count \p S by \p Weight.
///
/// Sample counts accumulate using saturating arithmetic, to avoid wrapping
/// around unsigned integers.
sampleprof_error addCalledTarget(StringRef F, uint64_t S,
uint64_t Weight = 1) {
uint64_t &TargetSamples = CallTargets[F];
bool Overflowed;
TargetSamples =
SaturatingMultiplyAdd(S, Weight, TargetSamples, &Overflowed);
return Overflowed ? sampleprof_error::counter_overflow
: sampleprof_error::success;
}
/// Return true if this sample record contains function calls.
bool hasCalls() const { return !CallTargets.empty(); }
uint64_t getSamples() const { return NumSamples; }
const CallTargetMap &getCallTargets() const { return CallTargets; }
const SortedCallTargetSet getSortedCallTargets() const {
return SortCallTargets(CallTargets);
}
/// Sort call targets in descending order of call frequency.
static const SortedCallTargetSet SortCallTargets(const CallTargetMap &Targets) {
SortedCallTargetSet SortedTargets;
for (const auto &I : Targets) {
SortedTargets.emplace(I.first(), I.second);
}
return SortedTargets;
}
/// Prorate call targets by a distribution factor.
static const CallTargetMap adjustCallTargets(const CallTargetMap &Targets,
float DistributionFactor) {
CallTargetMap AdjustedTargets;
for (const auto &I : Targets) {
AdjustedTargets[I.first()] = I.second * DistributionFactor;
}
return AdjustedTargets;
}
/// Merge the samples in \p Other into this record.
/// Optionally scale sample counts by \p Weight.
sampleprof_error merge(const SampleRecord &Other, uint64_t Weight = 1) {
sampleprof_error Result = addSamples(Other.getSamples(), Weight);
for (const auto &I : Other.getCallTargets()) {
MergeResult(Result, addCalledTarget(I.first(), I.second, Weight));
}
return Result;
}
void print(raw_ostream &OS, unsigned Indent) const;
void dump() const;
private:
uint64_t NumSamples = 0;
CallTargetMap CallTargets;
};
raw_ostream &operator<<(raw_ostream &OS, const SampleRecord &Sample);
// State of context associated with FunctionSamples
enum ContextStateMask {
UnknownContext = 0x0, // Profile without context
RawContext = 0x1, // Full context profile from input profile
SyntheticContext = 0x2, // Synthetic context created for context promotion
InlinedContext = 0x4, // Profile for context that is inlined into caller
MergedContext = 0x8 // Profile for context merged into base profile
};
// Sample context for FunctionSamples. It consists of the calling context,
// the function name and context state. Internally sample context is represented
// using StringRef, which is also the input for constructing a `SampleContext`.
// It can accept and represent both full context string as well as context-less
// function name.
// Example of full context string (note the wrapping `[]`):
// `[main:3 @ _Z5funcAi:1 @ _Z8funcLeafi]`
// Example of context-less function name (same as AutoFDO):
// `_Z8funcLeafi`
class SampleContext {
public:
SampleContext() : State(UnknownContext) {}
SampleContext(StringRef ContextStr,
ContextStateMask CState = UnknownContext) {
setContext(ContextStr, CState);
}
// Promote context by removing top frames (represented by `ContextStrToRemove`).
// Note that with string representation of context, the promotion is effectively
// a substr operation with `ContextStrToRemove` removed from left.
void promoteOnPath(StringRef ContextStrToRemove) {
assert(FullContext.startswith(ContextStrToRemove));
// Remove leading context and frame separator " @ ".
FullContext = FullContext.substr(ContextStrToRemove.size() + 3);
CallingContext = CallingContext.substr(ContextStrToRemove.size() + 3);
}
// Split the top context frame (left-most substr) from context.
static std::pair<StringRef, StringRef>
splitContextString(StringRef ContextStr) {
return ContextStr.split(" @ ");
}
// Decode context string for a frame to get function name and location.
// `ContextStr` is in the form of `FuncName:StartLine.Discriminator`.
static void decodeContextString(StringRef ContextStr, StringRef &FName,
LineLocation &LineLoc) {
// Get function name
auto EntrySplit = ContextStr.split(':');
FName = EntrySplit.first;
LineLoc = {0, 0};
if (!EntrySplit.second.empty()) {
// Get line offset, use signed int for getAsInteger so string will
// be parsed as signed.
int LineOffset = 0;
auto LocSplit = EntrySplit.second.split('.');
LocSplit.first.getAsInteger(10, LineOffset);
LineLoc.LineOffset = LineOffset;
// Get discriminator
if (!LocSplit.second.empty())
LocSplit.second.getAsInteger(10, LineLoc.Discriminator);
}
}
operator StringRef() const { return FullContext; }
bool hasState(ContextStateMask S) { return State & (uint32_t)S; }
void setState(ContextStateMask S) { State |= (uint32_t)S; }
void clearState(ContextStateMask S) { State &= (uint32_t)~S; }
bool hasContext() const { return State != UnknownContext; }
bool isBaseContext() const { return CallingContext.empty(); }
StringRef getNameWithoutContext() const { return Name; }
StringRef getCallingContext() const { return CallingContext; }
StringRef getNameWithContext(bool WithBracket = false) const {
return WithBracket ? InputContext : FullContext;
}
private:
// Give a context string, decode and populate internal states like
// Function name, Calling context and context state. Example of input
// `ContextStr`: `[main:3 @ _Z5funcAi:1 @ _Z8funcLeafi]`
void setContext(StringRef ContextStr, ContextStateMask CState) {
assert(!ContextStr.empty());
InputContext = ContextStr;
// Note that `[]` wrapped input indicates a full context string, otherwise
// it's treated as context-less function name only.
bool HasContext = ContextStr.startswith("[");
if (!HasContext && CState == UnknownContext) {
State = UnknownContext;
Name = FullContext = ContextStr;
} else {
// Assume raw context profile if unspecified
if (CState == UnknownContext)
State = RawContext;
else
State = CState;
// Remove encapsulating '[' and ']' if any
if (HasContext)
FullContext = ContextStr.substr(1, ContextStr.size() - 2);
else
FullContext = ContextStr;
// Caller is to the left of callee in context string
auto NameContext = FullContext.rsplit(" @ ");
if (NameContext.second.empty()) {
Name = NameContext.first;
CallingContext = NameContext.second;
} else {
Name = NameContext.second;
CallingContext = NameContext.first;
}
}
}
// Input context string including bracketed calling context and leaf function
// name
StringRef InputContext;
// Full context string including calling context and leaf function name
StringRef FullContext;
// Function name for the associated sample profile
StringRef Name;
// Calling context (leaf function excluded) for the associated sample profile
StringRef CallingContext;
// State of the associated sample profile
uint32_t State;
};
class FunctionSamples;
class SampleProfileReaderItaniumRemapper;
using BodySampleMap = std::map<LineLocation, SampleRecord>;
// NOTE: Using a StringMap here makes parsed profiles consume around 17% more
// memory, which is *very* significant for large profiles.
using FunctionSamplesMap = std::map<std::string, FunctionSamples, std::less<>>;
using CallsiteSampleMap = std::map<LineLocation, FunctionSamplesMap>;
/// Representation of the samples collected for a function.
///
/// This data structure contains all the collected samples for the body
/// of a function. Each sample corresponds to a LineLocation instance
/// within the body of the function.
class FunctionSamples {
public:
FunctionSamples() = default;
void print(raw_ostream &OS = dbgs(), unsigned Indent = 0) const;
void dump() const;
sampleprof_error addTotalSamples(uint64_t Num, uint64_t Weight = 1) {
bool Overflowed;
TotalSamples =
SaturatingMultiplyAdd(Num, Weight, TotalSamples, &Overflowed);
return Overflowed ? sampleprof_error::counter_overflow
: sampleprof_error::success;
}
void setTotalSamples(uint64_t Num) { TotalSamples = Num; }
sampleprof_error addHeadSamples(uint64_t Num, uint64_t Weight = 1) {
bool Overflowed;
TotalHeadSamples =
SaturatingMultiplyAdd(Num, Weight, TotalHeadSamples, &Overflowed);
return Overflowed ? sampleprof_error::counter_overflow
: sampleprof_error::success;
}
sampleprof_error addBodySamples(uint32_t LineOffset, uint32_t Discriminator,
uint64_t Num, uint64_t Weight = 1) {
return BodySamples[LineLocation(LineOffset, Discriminator)].addSamples(
Num, Weight);
}
sampleprof_error addCalledTargetSamples(uint32_t LineOffset,
uint32_t Discriminator,
StringRef FName, uint64_t Num,
uint64_t Weight = 1) {
return BodySamples[LineLocation(LineOffset, Discriminator)].addCalledTarget(
FName, Num, Weight);
}
/// Return the number of samples collected at the given location.
/// Each location is specified by \p LineOffset and \p Discriminator.
/// If the location is not found in profile, return error.
ErrorOr<uint64_t> findSamplesAt(uint32_t LineOffset,
uint32_t Discriminator) const {
const auto &ret = BodySamples.find(LineLocation(LineOffset, Discriminator));
if (ret == BodySamples.end()) {
// For CSSPGO, in order to conserve profile size, we no longer write out
// locations profile for those not hit during training, so we need to
// treat them as zero instead of error here.
if (ProfileIsCS)
return 0;
return std::error_code();
// A missing counter for a probe likely means the probe was not executed.
// Treat it as a zero count instead of an unknown count to help edge
// weight inference.
if (FunctionSamples::ProfileIsProbeBased)
return 0;
return std::error_code();
} else {
return ret->second.getSamples();
}
}
/// Returns the call target map collected at a given location.
/// Each location is specified by \p LineOffset and \p Discriminator.
/// If the location is not found in profile, return error.
ErrorOr<SampleRecord::CallTargetMap>
findCallTargetMapAt(uint32_t LineOffset, uint32_t Discriminator) const {
const auto &ret = BodySamples.find(LineLocation(LineOffset, Discriminator));
if (ret == BodySamples.end())
return std::error_code();
return ret->second.getCallTargets();
}
/// Returns the call target map collected at a given location specified by \p
/// CallSite. If the location is not found in profile, return error.
ErrorOr<SampleRecord::CallTargetMap>
findCallTargetMapAt(const LineLocation &CallSite) const {
const auto &Ret = BodySamples.find(CallSite);
if (Ret == BodySamples.end())
return std::error_code();
return Ret->second.getCallTargets();
}
/// Return the function samples at the given callsite location.
FunctionSamplesMap &functionSamplesAt(const LineLocation &Loc) {
return CallsiteSamples[Loc];
}
/// Returns the FunctionSamplesMap at the given \p Loc.
const FunctionSamplesMap *
findFunctionSamplesMapAt(const LineLocation &Loc) const {
auto iter = CallsiteSamples.find(Loc);
if (iter == CallsiteSamples.end())
return nullptr;
return &iter->second;
}
/// Returns a pointer to FunctionSamples at the given callsite location
/// \p Loc with callee \p CalleeName. If no callsite can be found, relax
/// the restriction to return the FunctionSamples at callsite location
/// \p Loc with the maximum total sample count. If \p Remapper is not
/// nullptr, use \p Remapper to find FunctionSamples with equivalent name
/// as \p CalleeName.
const FunctionSamples *
findFunctionSamplesAt(const LineLocation &Loc, StringRef CalleeName,
SampleProfileReaderItaniumRemapper *Remapper) const;
bool empty() const { return TotalSamples == 0; }
/// Return the total number of samples collected inside the function.
uint64_t getTotalSamples() const { return TotalSamples; }
/// Return the total number of branch samples that have the function as the
/// branch target. This should be equivalent to the sample of the first
/// instruction of the symbol. But as we directly get this info for raw
/// profile without referring to potentially inaccurate debug info, this
/// gives more accurate profile data and is preferred for standalone symbols.
uint64_t getHeadSamples() const { return TotalHeadSamples; }
/// Return the sample count of the first instruction of the function.
/// The function can be either a standalone symbol or an inlined function.
uint64_t getEntrySamples() const {
if (FunctionSamples::ProfileIsCS && getHeadSamples()) {
// For CS profile, if we already have more accurate head samples
// counted by branch sample from caller, use them as entry samples.
return getHeadSamples();
}
uint64_t Count = 0;
// Use either BodySamples or CallsiteSamples which ever has the smaller
// lineno.
if (!BodySamples.empty() &&
(CallsiteSamples.empty() ||
BodySamples.begin()->first < CallsiteSamples.begin()->first))
Count = BodySamples.begin()->second.getSamples();
else if (!CallsiteSamples.empty()) {
// An indirect callsite may be promoted to several inlined direct calls.
// We need to get the sum of them.
for (const auto &N_FS : CallsiteSamples.begin()->second)
Count += N_FS.second.getEntrySamples();
}
// Return at least 1 if total sample is not 0.
return Count ? Count : TotalSamples > 0;
}
/// Return all the samples collected in the body of the function.
const BodySampleMap &getBodySamples() const { return BodySamples; }
/// Return all the callsite samples collected in the body of the function.
const CallsiteSampleMap &getCallsiteSamples() const {
return CallsiteSamples;
}
/// Return the maximum of sample counts in a function body including functions
/// inlined in it.
uint64_t getMaxCountInside() const {
uint64_t MaxCount = 0;
for (const auto &L : getBodySamples())
MaxCount = std::max(MaxCount, L.second.getSamples());
for (const auto &C : getCallsiteSamples())
for (const FunctionSamplesMap::value_type &F : C.second)
MaxCount = std::max(MaxCount, F.second.getMaxCountInside());
return MaxCount;
}
/// Merge the samples in \p Other into this one.
/// Optionally scale samples by \p Weight.
sampleprof_error merge(const FunctionSamples &Other, uint64_t Weight = 1) {
sampleprof_error Result = sampleprof_error::success;
Name = Other.getName();
if (!GUIDToFuncNameMap)
GUIDToFuncNameMap = Other.GUIDToFuncNameMap;
if (Context.getNameWithContext(true).empty())
Context = Other.getContext();
if (FunctionHash == 0) {
// Set the function hash code for the target profile.
FunctionHash = Other.getFunctionHash();
} else if (FunctionHash != Other.getFunctionHash()) {
// The two profiles coming with different valid hash codes indicates
// either:
// 1. They are same-named static functions from different compilation
// units (without using -unique-internal-linkage-names), or
// 2. They are really the same function but from different compilations.
// Let's bail out in either case for now, which means one profile is
// dropped.
return sampleprof_error::hash_mismatch;
}
MergeResult(Result, addTotalSamples(Other.getTotalSamples(), Weight));
MergeResult(Result, addHeadSamples(Other.getHeadSamples(), Weight));
for (const auto &I : Other.getBodySamples()) {
const LineLocation &Loc = I.first;
const SampleRecord &Rec = I.second;
MergeResult(Result, BodySamples[Loc].merge(Rec, Weight));
}
for (const auto &I : Other.getCallsiteSamples()) {
const LineLocation &Loc = I.first;
FunctionSamplesMap &FSMap = functionSamplesAt(Loc);
for (const auto &Rec : I.second)
MergeResult(Result, FSMap[Rec.first].merge(Rec.second, Weight));
}
return Result;
}
/// Recursively traverses all children, if the total sample count of the
/// corresponding function is no less than \p Threshold, add its corresponding
/// GUID to \p S. Also traverse the BodySamples to add hot CallTarget's GUID
/// to \p S.
void findInlinedFunctions(DenseSet<GlobalValue::GUID> &S, const Module *M,
uint64_t Threshold) const {
if (TotalSamples <= Threshold)
return;
auto isDeclaration = [](const Function *F) {
return !F || F->isDeclaration();
};
if (isDeclaration(M->getFunction(getFuncName()))) {
// Add to the import list only when it's defined out of module.
S.insert(getGUID(Name));
}
// Import hot CallTargets, which may not be available in IR because full
// profile annotation cannot be done until backend compilation in ThinLTO.
for (const auto &BS : BodySamples)
for (const auto &TS : BS.second.getCallTargets())
if (TS.getValue() > Threshold) {
const Function *Callee = M->getFunction(getFuncName(TS.getKey()));
if (isDeclaration(Callee))
S.insert(getGUID(TS.getKey()));
}
for (const auto &CS : CallsiteSamples)
for (const auto &NameFS : CS.second)
NameFS.second.findInlinedFunctions(S, M, Threshold);
}
/// Set the name of the function.
void setName(StringRef FunctionName) { Name = FunctionName; }
/// Return the function name.
StringRef getName() const { return Name; }
/// Return function name with context.
StringRef getNameWithContext(bool WithBracket = false) const {
return FunctionSamples::ProfileIsCS
? Context.getNameWithContext(WithBracket)
: Name;
}
/// Return the original function name.
StringRef getFuncName() const { return getFuncName(Name); }
void setFunctionHash(uint64_t Hash) { FunctionHash = Hash; }
uint64_t getFunctionHash() const { return FunctionHash; }
/// Return the canonical name for a function, taking into account
/// suffix elision policy attributes.
static StringRef getCanonicalFnName(const Function &F) {
auto AttrName = "sample-profile-suffix-elision-policy";
auto Attr = F.getFnAttribute(AttrName).getValueAsString();
return getCanonicalFnName(F.getName(), Attr);
}
static StringRef getCanonicalFnName(StringRef FnName, StringRef Attr = "") {
static const char *knownSuffixes[] = { ".llvm.", ".part." };
if (Attr == "" || Attr == "all") {
return FnName.split('.').first;
} else if (Attr == "selected") {
StringRef Cand(FnName);
for (const auto &Suf : knownSuffixes) {
StringRef Suffix(Suf);
auto It = Cand.rfind(Suffix);
if (It == StringRef::npos)
return Cand;
auto Dit = Cand.rfind('.');
if (Dit == It + Suffix.size() - 1)
Cand = Cand.substr(0, It);
}
return Cand;
} else if (Attr == "none") {
return FnName;
} else {
assert(false && "internal error: unknown suffix elision policy");
}
return FnName;
}
/// Translate \p Name into its original name.
/// When profile doesn't use MD5, \p Name needs no translation.
/// When profile uses MD5, \p Name in current FunctionSamples
/// is actually GUID of the original function name. getFuncName will
/// translate \p Name in current FunctionSamples into its original name
/// by looking up in the function map GUIDToFuncNameMap.
/// If the original name doesn't exist in the map, return empty StringRef.
StringRef getFuncName(StringRef Name) const {
if (!UseMD5)
return Name;
assert(GUIDToFuncNameMap && "GUIDToFuncNameMap needs to be popluated first");
return GUIDToFuncNameMap->lookup(std::stoull(Name.data()));
}
/// Returns the line offset to the start line of the subprogram.
/// We assume that a single function will not exceed 65535 LOC.
static unsigned getOffset(const DILocation *DIL);
/// Returns a unique call site identifier for a given debug location of a call
/// instruction. This is wrapper of two scenarios, the probe-based profile and
/// regular profile, to hide implementation details from the sample loader and
/// the context tracker.
static LineLocation getCallSiteIdentifier(const DILocation *DIL);
/// Get the FunctionSamples of the inline instance where DIL originates
/// from.
///
/// The FunctionSamples of the instruction (Machine or IR) associated to
/// \p DIL is the inlined instance in which that instruction is coming from.
/// We traverse the inline stack of that instruction, and match it with the
/// tree nodes in the profile.
///
/// \returns the FunctionSamples pointer to the inlined instance.
/// If \p Remapper is not nullptr, it will be used to find matching
/// FunctionSamples with not exactly the same but equivalent name.
const FunctionSamples *findFunctionSamples(
const DILocation *DIL,
SampleProfileReaderItaniumRemapper *Remapper = nullptr) const;
static bool ProfileIsProbeBased;
static bool ProfileIsCS;
SampleContext &getContext() const { return Context; }
void setContext(const SampleContext &FContext) { Context = FContext; }
static SampleProfileFormat Format;
/// Whether the profile uses MD5 to represent string.
static bool UseMD5;
/// GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
/// all the function symbols defined or declared in current module.
DenseMap<uint64_t, StringRef> *GUIDToFuncNameMap = nullptr;
// Assume the input \p Name is a name coming from FunctionSamples itself.
// If UseMD5 is true, the name is already a GUID and we
// don't want to return the GUID of GUID.
static uint64_t getGUID(StringRef Name) {
return UseMD5 ? std::stoull(Name.data()) : Function::getGUID(Name);
}
// Find all the names in the current FunctionSamples including names in
// all the inline instances and names of call targets.
void findAllNames(DenseSet<StringRef> &NameSet) const;
private:
/// Mangled name of the function.
StringRef Name;
/// CFG hash value for the function.
uint64_t FunctionHash = 0;
/// Calling context for function profile
mutable SampleContext Context;
/// Total number of samples collected inside this function.
///
/// Samples are cumulative, they include all the samples collected
/// inside this function and all its inlined callees.
uint64_t TotalSamples = 0;
/// Total number of samples collected at the head of the function.
/// This is an approximation of the number of calls made to this function
/// at runtime.
uint64_t TotalHeadSamples = 0;
/// Map instruction locations to collected samples.
///
/// Each entry in this map contains the number of samples
/// collected at the corresponding line offset. All line locations
/// are an offset from the start of the function.
BodySampleMap BodySamples;
/// Map call sites to collected samples for the called function.
///
/// Each entry in this map corresponds to all the samples
/// collected for the inlined function call at the given
/// location. For example, given:
///
/// void foo() {
/// 1 bar();
/// ...
/// 8 baz();
/// }
///
/// If the bar() and baz() calls were inlined inside foo(), this
/// map will contain two entries. One for all the samples collected
/// in the call to bar() at line offset 1, the other for all the samples
/// collected in the call to baz() at line offset 8.
CallsiteSampleMap CallsiteSamples;
};
raw_ostream &operator<<(raw_ostream &OS, const FunctionSamples &FS);
/// Sort a LocationT->SampleT map by LocationT.
///
/// It produces a sorted list of <LocationT, SampleT> records by ascending
/// order of LocationT.
template <class LocationT, class SampleT> class SampleSorter {
public:
using SamplesWithLoc = std::pair<const LocationT, SampleT>;
using SamplesWithLocList = SmallVector<const SamplesWithLoc *, 20>;
SampleSorter(const std::map<LocationT, SampleT> &Samples) {
for (const auto &I : Samples)
V.push_back(&I);
llvm::stable_sort(V, [](const SamplesWithLoc *A, const SamplesWithLoc *B) {
return A->first < B->first;
});
}
const SamplesWithLocList &get() const { return V; }
private:
SamplesWithLocList V;
};
/// ProfileSymbolList records the list of function symbols shown up
/// in the binary used to generate the profile. It is useful to
/// to discriminate a function being so cold as not to shown up
/// in the profile and a function newly added.
class ProfileSymbolList {
public:
/// copy indicates whether we need to copy the underlying memory
/// for the input Name.
void add(StringRef Name, bool copy = false) {
if (!copy) {
Syms.insert(Name);
return;
}
Syms.insert(Name.copy(Allocator));
}
bool contains(StringRef Name) { return Syms.count(Name); }
void merge(const ProfileSymbolList &List) {
for (auto Sym : List.Syms)
add(Sym, true);
}
unsigned size() { return Syms.size(); }
void setToCompress(bool TC) { ToCompress = TC; }
bool toCompress() { return ToCompress; }
std::error_code read(const uint8_t *Data, uint64_t ListSize);
std::error_code write(raw_ostream &OS);
void dump(raw_ostream &OS = dbgs()) const;
private:
// Determine whether or not to compress the symbol list when
// writing it into profile. The variable is unused when the symbol
// list is read from an existing profile.
bool ToCompress = false;
DenseSet<StringRef> Syms;
BumpPtrAllocator Allocator;
};
} // end namespace sampleprof
} // end namespace llvm
#endif // LLVM_PROFILEDATA_SAMPLEPROF_H