1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/tools/obj2yaml/elf2yaml.cpp
2021-01-13 19:14:44 -08:00

1553 lines
52 KiB
C++

//===------ utils/elf2yaml.cpp - obj2yaml conversion tool -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "obj2yaml.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/ObjectYAML/DWARFYAML.h"
#include "llvm/ObjectYAML/ELFYAML.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/YAMLTraits.h"
using namespace llvm;
namespace {
template <class ELFT>
class ELFDumper {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
ArrayRef<Elf_Shdr> Sections;
ArrayRef<Elf_Sym> SymTable;
DenseMap<StringRef, uint32_t> UsedSectionNames;
std::vector<std::string> SectionNames;
DenseMap<StringRef, uint32_t> UsedSymbolNames;
std::vector<std::string> SymbolNames;
BumpPtrAllocator StringAllocator;
Expected<StringRef> getUniquedSectionName(const Elf_Shdr &Sec);
Expected<StringRef> getUniquedSymbolName(const Elf_Sym *Sym,
StringRef StrTable,
const Elf_Shdr *SymTab);
Expected<StringRef> getSymbolName(uint32_t SymtabNdx, uint32_t SymbolNdx);
const object::ELFFile<ELFT> &Obj;
std::unique_ptr<DWARFContext> DWARFCtx;
DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables;
Expected<std::vector<ELFYAML::ProgramHeader>>
dumpProgramHeaders(ArrayRef<std::unique_ptr<ELFYAML::Chunk>> Sections);
Optional<DWARFYAML::Data>
dumpDWARFSections(std::vector<std::unique_ptr<ELFYAML::Chunk>> &Sections);
Error dumpSymbols(const Elf_Shdr *Symtab,
Optional<std::vector<ELFYAML::Symbol>> &Symbols);
Error dumpSymbol(const Elf_Sym *Sym, const Elf_Shdr *SymTab,
StringRef StrTable, ELFYAML::Symbol &S);
Expected<std::vector<std::unique_ptr<ELFYAML::Chunk>>> dumpSections();
Error dumpCommonSection(const Elf_Shdr *Shdr, ELFYAML::Section &S);
Error dumpCommonRelocationSection(const Elf_Shdr *Shdr,
ELFYAML::RelocationSection &S);
template <class RelT>
Error dumpRelocation(const RelT *Rel, const Elf_Shdr *SymTab,
ELFYAML::Relocation &R);
Expected<ELFYAML::AddrsigSection *> dumpAddrsigSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::LinkerOptionsSection *>
dumpLinkerOptionsSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::DependentLibrariesSection *>
dumpDependentLibrariesSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::CallGraphProfileSection *>
dumpCallGraphProfileSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::DynamicSection *> dumpDynamicSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::RelocationSection *> dumpRelocSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::RelrSection *> dumpRelrSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::RawContentSection *>
dumpContentSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::SymtabShndxSection *>
dumpSymtabShndxSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::NoBitsSection *> dumpNoBitsSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::HashSection *> dumpHashSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::NoteSection *> dumpNoteSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::GnuHashSection *> dumpGnuHashSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::VerdefSection *> dumpVerdefSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::SymverSection *> dumpSymverSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::VerneedSection *> dumpVerneedSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::GroupSection *> dumpGroupSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::ARMIndexTableSection *>
dumpARMIndexTableSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::MipsABIFlags *> dumpMipsABIFlags(const Elf_Shdr *Shdr);
Expected<ELFYAML::StackSizesSection *>
dumpStackSizesSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::BBAddrMapSection *>
dumpBBAddrMapSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::RawContentSection *>
dumpPlaceholderSection(const Elf_Shdr *Shdr);
bool shouldPrintSection(const ELFYAML::Section &S, const Elf_Shdr &SHdr,
Optional<DWARFYAML::Data> DWARF);
public:
ELFDumper(const object::ELFFile<ELFT> &O, std::unique_ptr<DWARFContext> DCtx);
Expected<ELFYAML::Object *> dump();
};
}
template <class ELFT>
ELFDumper<ELFT>::ELFDumper(const object::ELFFile<ELFT> &O,
std::unique_ptr<DWARFContext> DCtx)
: Obj(O), DWARFCtx(std::move(DCtx)) {}
template <class ELFT>
Expected<StringRef>
ELFDumper<ELFT>::getUniquedSectionName(const Elf_Shdr &Sec) {
unsigned SecIndex = &Sec - &Sections[0];
if (!SectionNames[SecIndex].empty())
return SectionNames[SecIndex];
auto NameOrErr = Obj.getSectionName(Sec);
if (!NameOrErr)
return NameOrErr;
StringRef Name = *NameOrErr;
// In some specific cases we might have more than one section without a
// name (sh_name == 0). It normally doesn't happen, but when we have this case
// it doesn't make sense to uniquify their names and add noise to the output.
if (Name.empty())
return "";
std::string &Ret = SectionNames[SecIndex];
auto It = UsedSectionNames.insert({Name, 0});
if (!It.second)
Ret = ELFYAML::appendUniqueSuffix(Name, Twine(++It.first->second));
else
Ret = std::string(Name);
return Ret;
}
template <class ELFT>
Expected<StringRef>
ELFDumper<ELFT>::getUniquedSymbolName(const Elf_Sym *Sym, StringRef StrTable,
const Elf_Shdr *SymTab) {
Expected<StringRef> SymbolNameOrErr = Sym->getName(StrTable);
if (!SymbolNameOrErr)
return SymbolNameOrErr;
StringRef Name = *SymbolNameOrErr;
if (Name.empty() && Sym->getType() == ELF::STT_SECTION) {
Expected<const Elf_Shdr *> ShdrOrErr =
Obj.getSection(*Sym, SymTab, ShndxTables.lookup(SymTab));
if (!ShdrOrErr)
return ShdrOrErr.takeError();
// The null section has no name.
return (*ShdrOrErr == nullptr) ? "" : getUniquedSectionName(**ShdrOrErr);
}
// Symbols in .symtab can have duplicate names. For example, it is a common
// situation for local symbols in a relocatable object. Here we assign unique
// suffixes for such symbols so that we can differentiate them.
if (SymTab->sh_type == ELF::SHT_SYMTAB) {
unsigned Index = Sym - SymTable.data();
if (!SymbolNames[Index].empty())
return SymbolNames[Index];
auto It = UsedSymbolNames.insert({Name, 0});
if (!It.second)
SymbolNames[Index] =
ELFYAML::appendUniqueSuffix(Name, Twine(++It.first->second));
else
SymbolNames[Index] = std::string(Name);
return SymbolNames[Index];
}
return Name;
}
template <class ELFT>
bool ELFDumper<ELFT>::shouldPrintSection(const ELFYAML::Section &S,
const Elf_Shdr &SHdr,
Optional<DWARFYAML::Data> DWARF) {
// We only print the SHT_NULL section at index 0 when it
// has at least one non-null field, because yaml2obj
// normally creates the zero section at index 0 implicitly.
if (S.Type == ELF::SHT_NULL && (&SHdr == &Sections[0])) {
const uint8_t *Begin = reinterpret_cast<const uint8_t *>(&SHdr);
const uint8_t *End = Begin + sizeof(Elf_Shdr);
return std::any_of(Begin, End, [](uint8_t V) { return V != 0; });
}
// Normally we use "DWARF:" to describe contents of DWARF sections. Sometimes
// the content of DWARF sections can be successfully parsed into the "DWARF:"
// entry but their section headers may have special flags, entry size, address
// alignment, etc. We will preserve the header for them under such
// circumstances.
StringRef SecName = S.Name.substr(1);
if (DWARF && DWARF->getNonEmptySectionNames().count(SecName)) {
if (const ELFYAML::RawContentSection *RawSec =
dyn_cast<const ELFYAML::RawContentSection>(&S)) {
if (RawSec->Type != ELF::SHT_PROGBITS || RawSec->Link || RawSec->Info ||
RawSec->AddressAlign != 1 || RawSec->Address || RawSec->EntSize)
return true;
ELFYAML::ELF_SHF ShFlags = RawSec->Flags.getValueOr(ELFYAML::ELF_SHF(0));
if (SecName == "debug_str")
return ShFlags != ELFYAML::ELF_SHF(ELF::SHF_MERGE | ELF::SHF_STRINGS);
return ShFlags != 0;
}
}
// Normally we use "Symbols:" and "DynamicSymbols:" to describe contents of
// symbol tables. We also build and emit corresponding string tables
// implicitly. But sometimes it is important to preserve positions and virtual
// addresses of allocatable sections, e.g. for creating program headers.
// Generally we are trying to reduce noise in the YAML output. Because
// of that we do not print non-allocatable versions of such sections and
// assume they are placed at the end.
// We also dump symbol tables when the Size field is set. It happens when they
// are empty, which should not normally happen.
if (S.Type == ELF::SHT_STRTAB || S.Type == ELF::SHT_SYMTAB ||
S.Type == ELF::SHT_DYNSYM) {
return S.Size || S.Flags.getValueOr(ELFYAML::ELF_SHF(0)) & ELF::SHF_ALLOC;
}
return true;
}
template <class ELFT>
static void dumpSectionOffsets(const typename ELFT::Ehdr &Header,
ArrayRef<ELFYAML::ProgramHeader> Phdrs,
std::vector<std::unique_ptr<ELFYAML::Chunk>> &V,
ArrayRef<typename ELFT::Shdr> S) {
if (V.empty())
return;
uint64_t ExpectedOffset;
if (Header.e_phoff > 0)
ExpectedOffset = Header.e_phoff + Header.e_phentsize * Header.e_phnum;
else
ExpectedOffset = sizeof(typename ELFT::Ehdr);
for (const std::unique_ptr<ELFYAML::Chunk> &C :
makeArrayRef(V).drop_front()) {
ELFYAML::Section &Sec = *cast<ELFYAML::Section>(C.get());
const typename ELFT::Shdr &SecHdr = S[Sec.OriginalSecNdx];
ExpectedOffset = alignTo(ExpectedOffset,
SecHdr.sh_addralign ? SecHdr.sh_addralign : 1uLL);
// We only set the "Offset" field when it can't be naturally derived
// from the offset and size of the previous section. This reduces
// the noise in the YAML output.
if (SecHdr.sh_offset != ExpectedOffset)
Sec.Offset = (yaml::Hex64)SecHdr.sh_offset;
if (Sec.Type == ELF::SHT_NOBITS &&
!ELFYAML::shouldAllocateFileSpace(Phdrs,
*cast<ELFYAML::NoBitsSection>(&Sec)))
ExpectedOffset = SecHdr.sh_offset;
else
ExpectedOffset = SecHdr.sh_offset + SecHdr.sh_size;
}
}
template <class ELFT> Expected<ELFYAML::Object *> ELFDumper<ELFT>::dump() {
auto Y = std::make_unique<ELFYAML::Object>();
// Dump header. We do not dump EPh* and ESh* fields. When not explicitly set,
// the values are set by yaml2obj automatically and there is no need to dump
// them here.
Y->Header.Class = ELFYAML::ELF_ELFCLASS(Obj.getHeader().getFileClass());
Y->Header.Data = ELFYAML::ELF_ELFDATA(Obj.getHeader().getDataEncoding());
Y->Header.OSABI = Obj.getHeader().e_ident[ELF::EI_OSABI];
Y->Header.ABIVersion = Obj.getHeader().e_ident[ELF::EI_ABIVERSION];
Y->Header.Type = Obj.getHeader().e_type;
if (Obj.getHeader().e_machine != 0)
Y->Header.Machine = ELFYAML::ELF_EM(Obj.getHeader().e_machine);
Y->Header.Flags = Obj.getHeader().e_flags;
Y->Header.Entry = Obj.getHeader().e_entry;
// Dump sections
auto SectionsOrErr = Obj.sections();
if (!SectionsOrErr)
return SectionsOrErr.takeError();
Sections = *SectionsOrErr;
SectionNames.resize(Sections.size());
// Normally an object that does not have sections has e_shnum == 0.
// Also, e_shnum might be 0, when the the number of entries in the section
// header table is larger than or equal to SHN_LORESERVE (0xff00). In this
// case the real number of entries is held in the sh_size member of the
// initial entry. We have a section header table when `e_shoff` is not 0.
if (Obj.getHeader().e_shoff != 0 && Obj.getHeader().e_shnum == 0)
Y->Header.EShNum = 0;
// Dump symbols. We need to do this early because other sections might want
// to access the deduplicated symbol names that we also create here.
const Elf_Shdr *SymTab = nullptr;
const Elf_Shdr *DynSymTab = nullptr;
for (const Elf_Shdr &Sec : Sections) {
if (Sec.sh_type == ELF::SHT_SYMTAB) {
SymTab = &Sec;
} else if (Sec.sh_type == ELF::SHT_DYNSYM) {
DynSymTab = &Sec;
} else if (Sec.sh_type == ELF::SHT_SYMTAB_SHNDX) {
// We need to locate SHT_SYMTAB_SHNDX sections early, because they
// might be needed for dumping symbols.
if (Expected<ArrayRef<Elf_Word>> TableOrErr = Obj.getSHNDXTable(Sec)) {
// The `getSHNDXTable` calls the `getSection` internally when validates
// the symbol table section linked to the SHT_SYMTAB_SHNDX section.
const Elf_Shdr *LinkedSymTab = cantFail(Obj.getSection(Sec.sh_link));
if (!ShndxTables.insert({LinkedSymTab, *TableOrErr}).second)
return createStringError(
errc::invalid_argument,
"multiple SHT_SYMTAB_SHNDX sections are "
"linked to the same symbol table with index " +
Twine(Sec.sh_link));
} else {
return createStringError(errc::invalid_argument,
"unable to read extended section indexes: " +
toString(TableOrErr.takeError()));
}
}
}
if (SymTab)
if (Error E = dumpSymbols(SymTab, Y->Symbols))
return std::move(E);
if (DynSymTab)
if (Error E = dumpSymbols(DynSymTab, Y->DynamicSymbols))
return std::move(E);
// We dump all sections first. It is simple and allows us to verify that all
// sections are valid and also to generalize the code. But we are not going to
// keep all of them in the final output (see comments for
// 'shouldPrintSection()'). Undesired chunks will be removed later.
Expected<std::vector<std::unique_ptr<ELFYAML::Chunk>>> ChunksOrErr =
dumpSections();
if (!ChunksOrErr)
return ChunksOrErr.takeError();
std::vector<std::unique_ptr<ELFYAML::Chunk>> Chunks = std::move(*ChunksOrErr);
std::vector<ELFYAML::Section *> OriginalOrder;
if (!Chunks.empty())
for (const std::unique_ptr<ELFYAML::Chunk> &C :
makeArrayRef(Chunks).drop_front())
OriginalOrder.push_back(cast<ELFYAML::Section>(C.get()));
// Sometimes the order of sections in the section header table does not match
// their actual order. Here we sort sections by the file offset.
llvm::stable_sort(Chunks, [&](const std::unique_ptr<ELFYAML::Chunk> &A,
const std::unique_ptr<ELFYAML::Chunk> &B) {
return Sections[cast<ELFYAML::Section>(A.get())->OriginalSecNdx].sh_offset <
Sections[cast<ELFYAML::Section>(B.get())->OriginalSecNdx].sh_offset;
});
// Dump program headers.
Expected<std::vector<ELFYAML::ProgramHeader>> PhdrsOrErr =
dumpProgramHeaders(Chunks);
if (!PhdrsOrErr)
return PhdrsOrErr.takeError();
Y->ProgramHeaders = std::move(*PhdrsOrErr);
dumpSectionOffsets<ELFT>(Obj.getHeader(), Y->ProgramHeaders, Chunks,
Sections);
// Dump DWARF sections.
Y->DWARF = dumpDWARFSections(Chunks);
// We emit the "SectionHeaderTable" key when the order of sections in the
// sections header table doesn't match the file order.
const bool SectionsSorted =
llvm::is_sorted(Chunks, [&](const std::unique_ptr<ELFYAML::Chunk> &A,
const std::unique_ptr<ELFYAML::Chunk> &B) {
return cast<ELFYAML::Section>(A.get())->OriginalSecNdx <
cast<ELFYAML::Section>(B.get())->OriginalSecNdx;
});
if (!SectionsSorted) {
Y->SectionHeaders.emplace();
Y->SectionHeaders->Sections.emplace();
for (ELFYAML::Section *S : OriginalOrder)
Y->SectionHeaders->Sections->push_back({S->Name});
}
llvm::erase_if(Chunks, [this, &Y](const std::unique_ptr<ELFYAML::Chunk> &C) {
const ELFYAML::Section &S = cast<ELFYAML::Section>(*C.get());
return !shouldPrintSection(S, Sections[S.OriginalSecNdx], Y->DWARF);
});
Y->Chunks = std::move(Chunks);
return Y.release();
}
template <class ELFT>
static bool isInSegment(const ELFYAML::Section &Sec,
const typename ELFT::Shdr &SHdr,
const typename ELFT::Phdr &Phdr) {
if (Sec.Type == ELF::SHT_NULL)
return false;
// A section is within a segment when its location in a file is within the
// [p_offset, p_offset + p_filesz] region.
bool FileOffsetsMatch =
SHdr.sh_offset >= Phdr.p_offset &&
(SHdr.sh_offset + SHdr.sh_size <= Phdr.p_offset + Phdr.p_filesz);
bool VirtualAddressesMatch = SHdr.sh_addr >= Phdr.p_vaddr &&
SHdr.sh_addr <= Phdr.p_vaddr + Phdr.p_memsz;
if (FileOffsetsMatch) {
// An empty section on the edges of a program header can be outside of the
// virtual address space of the segment. This means it is not included in
// the segment and we should ignore it.
if (SHdr.sh_size == 0 && (SHdr.sh_offset == Phdr.p_offset ||
SHdr.sh_offset == Phdr.p_offset + Phdr.p_filesz))
return VirtualAddressesMatch;
return true;
}
// SHT_NOBITS sections usually occupy no physical space in a file. Such
// sections belong to a segment when they reside in the segment's virtual
// address space.
if (Sec.Type != ELF::SHT_NOBITS)
return false;
return VirtualAddressesMatch;
}
template <class ELFT>
Expected<std::vector<ELFYAML::ProgramHeader>>
ELFDumper<ELFT>::dumpProgramHeaders(
ArrayRef<std::unique_ptr<ELFYAML::Chunk>> Chunks) {
std::vector<ELFYAML::ProgramHeader> Ret;
Expected<typename ELFT::PhdrRange> PhdrsOrErr = Obj.program_headers();
if (!PhdrsOrErr)
return PhdrsOrErr.takeError();
for (const typename ELFT::Phdr &Phdr : *PhdrsOrErr) {
ELFYAML::ProgramHeader PH;
PH.Type = Phdr.p_type;
PH.Flags = Phdr.p_flags;
PH.VAddr = Phdr.p_vaddr;
PH.PAddr = Phdr.p_paddr;
// yaml2obj sets the alignment of a segment to 1 by default.
// We do not print the default alignment to reduce noise in the output.
if (Phdr.p_align != 1)
PH.Align = static_cast<llvm::yaml::Hex64>(Phdr.p_align);
// Here we match sections with segments.
// It is not possible to have a non-Section chunk, because
// obj2yaml does not create Fill chunks.
for (const std::unique_ptr<ELFYAML::Chunk> &C : Chunks) {
ELFYAML::Section &S = cast<ELFYAML::Section>(*C.get());
if (isInSegment<ELFT>(S, Sections[S.OriginalSecNdx], Phdr)) {
if (!PH.FirstSec)
PH.FirstSec = S.Name;
PH.LastSec = S.Name;
PH.Chunks.push_back(C.get());
}
}
Ret.push_back(PH);
}
return Ret;
}
template <class ELFT>
Optional<DWARFYAML::Data> ELFDumper<ELFT>::dumpDWARFSections(
std::vector<std::unique_ptr<ELFYAML::Chunk>> &Sections) {
DWARFYAML::Data DWARF;
for (std::unique_ptr<ELFYAML::Chunk> &C : Sections) {
if (!C->Name.startswith(".debug_"))
continue;
if (ELFYAML::RawContentSection *RawSec =
dyn_cast<ELFYAML::RawContentSection>(C.get())) {
Error Err = Error::success();
cantFail(std::move(Err));
if (RawSec->Name == ".debug_aranges")
Err = dumpDebugARanges(*DWARFCtx.get(), DWARF);
else if (RawSec->Name == ".debug_str")
Err = dumpDebugStrings(*DWARFCtx.get(), DWARF);
else if (RawSec->Name == ".debug_ranges")
Err = dumpDebugRanges(*DWARFCtx.get(), DWARF);
else if (RawSec->Name == ".debug_addr")
Err = dumpDebugAddr(*DWARFCtx.get(), DWARF);
else
continue;
// If the DWARF section cannot be successfully parsed, emit raw content
// instead of an entry in the DWARF section of the YAML.
if (Err)
consumeError(std::move(Err));
else
RawSec->Content.reset();
}
}
if (DWARF.getNonEmptySectionNames().empty())
return None;
return DWARF;
}
template <class ELFT>
Expected<ELFYAML::RawContentSection *>
ELFDumper<ELFT>::dumpPlaceholderSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::RawContentSection>();
if (Error E = dumpCommonSection(Shdr, *S.get()))
return std::move(E);
// Normally symbol tables should not be empty. We dump the "Size"
// key when they are.
if ((Shdr->sh_type == ELF::SHT_SYMTAB || Shdr->sh_type == ELF::SHT_DYNSYM) &&
!Shdr->sh_size)
S->Size.emplace();
return S.release();
}
template <class ELFT>
Expected<std::vector<std::unique_ptr<ELFYAML::Chunk>>>
ELFDumper<ELFT>::dumpSections() {
std::vector<std::unique_ptr<ELFYAML::Chunk>> Ret;
auto Add = [&](Expected<ELFYAML::Chunk *> SecOrErr) -> Error {
if (!SecOrErr)
return SecOrErr.takeError();
Ret.emplace_back(*SecOrErr);
return Error::success();
};
auto GetDumper = [this](unsigned Type)
-> std::function<Expected<ELFYAML::Chunk *>(const Elf_Shdr *)> {
if (Obj.getHeader().e_machine == ELF::EM_ARM && Type == ELF::SHT_ARM_EXIDX)
return [this](const Elf_Shdr *S) { return dumpARMIndexTableSection(S); };
if (Obj.getHeader().e_machine == ELF::EM_MIPS &&
Type == ELF::SHT_MIPS_ABIFLAGS)
return [this](const Elf_Shdr *S) { return dumpMipsABIFlags(S); };
switch (Type) {
case ELF::SHT_DYNAMIC:
return [this](const Elf_Shdr *S) { return dumpDynamicSection(S); };
case ELF::SHT_SYMTAB_SHNDX:
return [this](const Elf_Shdr *S) { return dumpSymtabShndxSection(S); };
case ELF::SHT_REL:
case ELF::SHT_RELA:
return [this](const Elf_Shdr *S) { return dumpRelocSection(S); };
case ELF::SHT_RELR:
return [this](const Elf_Shdr *S) { return dumpRelrSection(S); };
case ELF::SHT_GROUP:
return [this](const Elf_Shdr *S) { return dumpGroupSection(S); };
case ELF::SHT_NOBITS:
return [this](const Elf_Shdr *S) { return dumpNoBitsSection(S); };
case ELF::SHT_NOTE:
return [this](const Elf_Shdr *S) { return dumpNoteSection(S); };
case ELF::SHT_HASH:
return [this](const Elf_Shdr *S) { return dumpHashSection(S); };
case ELF::SHT_GNU_HASH:
return [this](const Elf_Shdr *S) { return dumpGnuHashSection(S); };
case ELF::SHT_GNU_verdef:
return [this](const Elf_Shdr *S) { return dumpVerdefSection(S); };
case ELF::SHT_GNU_versym:
return [this](const Elf_Shdr *S) { return dumpSymverSection(S); };
case ELF::SHT_GNU_verneed:
return [this](const Elf_Shdr *S) { return dumpVerneedSection(S); };
case ELF::SHT_LLVM_ADDRSIG:
return [this](const Elf_Shdr *S) { return dumpAddrsigSection(S); };
case ELF::SHT_LLVM_LINKER_OPTIONS:
return [this](const Elf_Shdr *S) { return dumpLinkerOptionsSection(S); };
case ELF::SHT_LLVM_DEPENDENT_LIBRARIES:
return [this](const Elf_Shdr *S) {
return dumpDependentLibrariesSection(S);
};
case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
return
[this](const Elf_Shdr *S) { return dumpCallGraphProfileSection(S); };
case ELF::SHT_LLVM_BB_ADDR_MAP:
return [this](const Elf_Shdr *S) { return dumpBBAddrMapSection(S); };
case ELF::SHT_STRTAB:
case ELF::SHT_SYMTAB:
case ELF::SHT_DYNSYM:
// The contents of these sections are described by other parts of the YAML
// file. But we still want to dump them, because their properties can be
// important. See comments for 'shouldPrintSection()' for more details.
return [this](const Elf_Shdr *S) { return dumpPlaceholderSection(S); };
default:
return nullptr;
}
};
for (const Elf_Shdr &Sec : Sections) {
// We have dedicated dumping functions for most of the section types.
// Try to use one of them first.
if (std::function<Expected<ELFYAML::Chunk *>(const Elf_Shdr *)> DumpFn =
GetDumper(Sec.sh_type)) {
if (Error E = Add(DumpFn(&Sec)))
return std::move(E);
continue;
}
// Recognize some special SHT_PROGBITS sections by name.
if (Sec.sh_type == ELF::SHT_PROGBITS) {
auto NameOrErr = Obj.getSectionName(Sec);
if (!NameOrErr)
return NameOrErr.takeError();
if (ELFYAML::StackSizesSection::nameMatches(*NameOrErr)) {
if (Error E = Add(dumpStackSizesSection(&Sec)))
return std::move(E);
continue;
}
}
if (Error E = Add(dumpContentSection(&Sec)))
return std::move(E);
}
return std::move(Ret);
}
template <class ELFT>
Error ELFDumper<ELFT>::dumpSymbols(
const Elf_Shdr *Symtab, Optional<std::vector<ELFYAML::Symbol>> &Symbols) {
if (!Symtab)
return Error::success();
auto SymtabOrErr = Obj.symbols(Symtab);
if (!SymtabOrErr)
return SymtabOrErr.takeError();
if (SymtabOrErr->empty())
return Error::success();
auto StrTableOrErr = Obj.getStringTableForSymtab(*Symtab);
if (!StrTableOrErr)
return StrTableOrErr.takeError();
if (Symtab->sh_type == ELF::SHT_SYMTAB) {
SymTable = *SymtabOrErr;
SymbolNames.resize(SymTable.size());
}
Symbols.emplace();
for (const auto &Sym : (*SymtabOrErr).drop_front()) {
ELFYAML::Symbol S;
if (auto EC = dumpSymbol(&Sym, Symtab, *StrTableOrErr, S))
return EC;
Symbols->push_back(S);
}
return Error::success();
}
template <class ELFT>
Error ELFDumper<ELFT>::dumpSymbol(const Elf_Sym *Sym, const Elf_Shdr *SymTab,
StringRef StrTable, ELFYAML::Symbol &S) {
S.Type = Sym->getType();
if (Sym->st_value)
S.Value = (yaml::Hex64)Sym->st_value;
if (Sym->st_size)
S.Size = (yaml::Hex64)Sym->st_size;
S.Other = Sym->st_other;
S.Binding = Sym->getBinding();
Expected<StringRef> SymbolNameOrErr =
getUniquedSymbolName(Sym, StrTable, SymTab);
if (!SymbolNameOrErr)
return SymbolNameOrErr.takeError();
S.Name = SymbolNameOrErr.get();
if (Sym->st_shndx >= ELF::SHN_LORESERVE) {
S.Index = (ELFYAML::ELF_SHN)Sym->st_shndx;
return Error::success();
}
auto ShdrOrErr = Obj.getSection(*Sym, SymTab, ShndxTables.lookup(SymTab));
if (!ShdrOrErr)
return ShdrOrErr.takeError();
const Elf_Shdr *Shdr = *ShdrOrErr;
if (!Shdr)
return Error::success();
auto NameOrErr = getUniquedSectionName(*Shdr);
if (!NameOrErr)
return NameOrErr.takeError();
S.Section = NameOrErr.get();
return Error::success();
}
template <class ELFT>
template <class RelT>
Error ELFDumper<ELFT>::dumpRelocation(const RelT *Rel, const Elf_Shdr *SymTab,
ELFYAML::Relocation &R) {
R.Type = Rel->getType(Obj.isMips64EL());
R.Offset = Rel->r_offset;
R.Addend = 0;
auto SymOrErr = Obj.getRelocationSymbol(*Rel, SymTab);
if (!SymOrErr)
return SymOrErr.takeError();
// We have might have a relocation with symbol index 0,
// e.g. R_X86_64_NONE or R_X86_64_GOTPC32.
const Elf_Sym *Sym = *SymOrErr;
if (!Sym)
return Error::success();
auto StrTabSec = Obj.getSection(SymTab->sh_link);
if (!StrTabSec)
return StrTabSec.takeError();
auto StrTabOrErr = Obj.getStringTable(**StrTabSec);
if (!StrTabOrErr)
return StrTabOrErr.takeError();
Expected<StringRef> NameOrErr =
getUniquedSymbolName(Sym, *StrTabOrErr, SymTab);
if (!NameOrErr)
return NameOrErr.takeError();
R.Symbol = NameOrErr.get();
return Error::success();
}
template <class ELFT>
Error ELFDumper<ELFT>::dumpCommonSection(const Elf_Shdr *Shdr,
ELFYAML::Section &S) {
// Dump fields. We do not dump the ShOffset field. When not explicitly
// set, the value is set by yaml2obj automatically.
S.Type = Shdr->sh_type;
if (Shdr->sh_flags)
S.Flags = static_cast<ELFYAML::ELF_SHF>(Shdr->sh_flags);
if (Shdr->sh_addr)
S.Address = static_cast<uint64_t>(Shdr->sh_addr);
S.AddressAlign = Shdr->sh_addralign;
S.OriginalSecNdx = Shdr - &Sections[0];
Expected<StringRef> NameOrErr = getUniquedSectionName(*Shdr);
if (!NameOrErr)
return NameOrErr.takeError();
S.Name = NameOrErr.get();
if (Shdr->sh_entsize != ELFYAML::getDefaultShEntSize<ELFT>(
Obj.getHeader().e_machine, S.Type, S.Name))
S.EntSize = static_cast<llvm::yaml::Hex64>(Shdr->sh_entsize);
if (Shdr->sh_link != ELF::SHN_UNDEF) {
Expected<const Elf_Shdr *> LinkSection = Obj.getSection(Shdr->sh_link);
if (!LinkSection)
return make_error<StringError>(
"unable to resolve sh_link reference in section '" + S.Name +
"': " + toString(LinkSection.takeError()),
inconvertibleErrorCode());
NameOrErr = getUniquedSectionName(**LinkSection);
if (!NameOrErr)
return NameOrErr.takeError();
S.Link = NameOrErr.get();
}
return Error::success();
}
template <class ELFT>
Error ELFDumper<ELFT>::dumpCommonRelocationSection(
const Elf_Shdr *Shdr, ELFYAML::RelocationSection &S) {
if (Error E = dumpCommonSection(Shdr, S))
return E;
// Having a zero sh_info field is normal: .rela.dyn is a dynamic
// relocation section that normally has no value in this field.
if (!Shdr->sh_info)
return Error::success();
auto InfoSection = Obj.getSection(Shdr->sh_info);
if (!InfoSection)
return InfoSection.takeError();
Expected<StringRef> NameOrErr = getUniquedSectionName(**InfoSection);
if (!NameOrErr)
return NameOrErr.takeError();
S.RelocatableSec = NameOrErr.get();
return Error::success();
}
template <class ELFT>
Expected<ELFYAML::StackSizesSection *>
ELFDumper<ELFT>::dumpStackSizesSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::StackSizesSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
auto ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
ArrayRef<uint8_t> Content = *ContentOrErr;
DataExtractor Data(Content, Obj.isLE(), ELFT::Is64Bits ? 8 : 4);
std::vector<ELFYAML::StackSizeEntry> Entries;
DataExtractor::Cursor Cur(0);
while (Cur && Cur.tell() < Content.size()) {
uint64_t Address = Data.getAddress(Cur);
uint64_t Size = Data.getULEB128(Cur);
Entries.push_back({Address, Size});
}
if (Content.empty() || !Cur) {
// If .stack_sizes cannot be decoded, we dump it as an array of bytes.
consumeError(Cur.takeError());
S->Content = yaml::BinaryRef(Content);
} else {
S->Entries = std::move(Entries);
}
return S.release();
}
template <class ELFT>
Expected<ELFYAML::BBAddrMapSection *>
ELFDumper<ELFT>::dumpBBAddrMapSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::BBAddrMapSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
auto ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
ArrayRef<uint8_t> Content = *ContentOrErr;
if (Content.empty())
return S.release();
DataExtractor Data(Content, Obj.isLE(), ELFT::Is64Bits ? 8 : 4);
std::vector<ELFYAML::BBAddrMapEntry> Entries;
DataExtractor::Cursor Cur(0);
while (Cur && Cur.tell() < Content.size()) {
uint64_t Address = Data.getAddress(Cur);
uint32_t NumBlocks = Data.getULEB128(Cur);
std::vector<ELFYAML::BBAddrMapEntry::BBEntry> BBEntries;
// Read the specified number of BB entries, or until decoding fails.
for (uint32_t BlockID = 0; Cur && BlockID < NumBlocks; ++BlockID) {
uint32_t Offset = Data.getULEB128(Cur);
uint32_t Size = Data.getULEB128(Cur);
uint32_t Metadata = Data.getULEB128(Cur);
BBEntries.push_back({Offset, Size, Metadata});
}
Entries.push_back({Address, BBEntries});
}
if (!Cur) {
// If the section cannot be decoded, we dump it as an array of bytes.
consumeError(Cur.takeError());
S->Content = yaml::BinaryRef(Content);
} else {
S->Entries = std::move(Entries);
}
return S.release();
}
template <class ELFT>
Expected<ELFYAML::AddrsigSection *>
ELFDumper<ELFT>::dumpAddrsigSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::AddrsigSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
auto ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
ArrayRef<uint8_t> Content = *ContentOrErr;
DataExtractor::Cursor Cur(0);
DataExtractor Data(Content, Obj.isLE(), /*AddressSize=*/0);
std::vector<ELFYAML::YAMLFlowString> Symbols;
while (Cur && Cur.tell() < Content.size()) {
uint64_t SymNdx = Data.getULEB128(Cur);
if (!Cur)
break;
Expected<StringRef> SymbolName = getSymbolName(Shdr->sh_link, SymNdx);
if (!SymbolName || SymbolName->empty()) {
consumeError(SymbolName.takeError());
Symbols.emplace_back(
StringRef(std::to_string(SymNdx)).copy(StringAllocator));
continue;
}
Symbols.emplace_back(*SymbolName);
}
if (Cur) {
S->Symbols = std::move(Symbols);
return S.release();
}
consumeError(Cur.takeError());
S->Content = yaml::BinaryRef(Content);
return S.release();
}
template <class ELFT>
Expected<ELFYAML::LinkerOptionsSection *>
ELFDumper<ELFT>::dumpLinkerOptionsSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::LinkerOptionsSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
auto ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
ArrayRef<uint8_t> Content = *ContentOrErr;
if (Content.empty() || Content.back() != 0) {
S->Content = Content;
return S.release();
}
SmallVector<StringRef, 16> Strings;
toStringRef(Content.drop_back()).split(Strings, '\0');
if (Strings.size() % 2 != 0) {
S->Content = Content;
return S.release();
}
S->Options.emplace();
for (size_t I = 0, E = Strings.size(); I != E; I += 2)
S->Options->push_back({Strings[I], Strings[I + 1]});
return S.release();
}
template <class ELFT>
Expected<ELFYAML::DependentLibrariesSection *>
ELFDumper<ELFT>::dumpDependentLibrariesSection(const Elf_Shdr *Shdr) {
auto DL = std::make_unique<ELFYAML::DependentLibrariesSection>();
if (Error E = dumpCommonSection(Shdr, *DL))
return std::move(E);
Expected<ArrayRef<uint8_t>> ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
ArrayRef<uint8_t> Content = *ContentOrErr;
if (!Content.empty() && Content.back() != 0) {
DL->Content = Content;
return DL.release();
}
DL->Libs.emplace();
for (const uint8_t *I = Content.begin(), *E = Content.end(); I < E;) {
StringRef Lib((const char *)I);
DL->Libs->emplace_back(Lib);
I += Lib.size() + 1;
}
return DL.release();
}
template <class ELFT>
Expected<ELFYAML::CallGraphProfileSection *>
ELFDumper<ELFT>::dumpCallGraphProfileSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::CallGraphProfileSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
Expected<ArrayRef<uint8_t>> ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
ArrayRef<uint8_t> Content = *ContentOrErr;
// Dump the section by using the Content key when it is truncated.
// There is no need to create either "Content" or "Entries" fields when the
// section is empty.
if (Content.empty() || Content.size() % 16 != 0) {
if (!Content.empty())
S->Content = yaml::BinaryRef(Content);
return S.release();
}
std::vector<ELFYAML::CallGraphEntry> Entries(Content.size() / 16);
DataExtractor Data(Content, Obj.isLE(), /*AddressSize=*/0);
DataExtractor::Cursor Cur(0);
auto ReadEntry = [&](ELFYAML::CallGraphEntry &E) {
uint32_t FromSymIndex = Data.getU32(Cur);
uint32_t ToSymIndex = Data.getU32(Cur);
E.Weight = Data.getU64(Cur);
if (!Cur) {
consumeError(Cur.takeError());
return false;
}
Expected<StringRef> From = getSymbolName(Shdr->sh_link, FromSymIndex);
Expected<StringRef> To = getSymbolName(Shdr->sh_link, ToSymIndex);
if (From && To) {
E.From = *From;
E.To = *To;
return true;
}
consumeError(From.takeError());
consumeError(To.takeError());
return false;
};
for (ELFYAML::CallGraphEntry &E : Entries) {
if (ReadEntry(E))
continue;
S->Content = yaml::BinaryRef(Content);
return S.release();
}
S->Entries = std::move(Entries);
return S.release();
}
template <class ELFT>
Expected<ELFYAML::DynamicSection *>
ELFDumper<ELFT>::dumpDynamicSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::DynamicSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
auto DynTagsOrErr = Obj.template getSectionContentsAsArray<Elf_Dyn>(*Shdr);
if (!DynTagsOrErr)
return DynTagsOrErr.takeError();
S->Entries.emplace();
for (const Elf_Dyn &Dyn : *DynTagsOrErr)
S->Entries->push_back({(ELFYAML::ELF_DYNTAG)Dyn.getTag(), Dyn.getVal()});
return S.release();
}
template <class ELFT>
Expected<ELFYAML::RelocationSection *>
ELFDumper<ELFT>::dumpRelocSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::RelocationSection>();
if (auto E = dumpCommonRelocationSection(Shdr, *S))
return std::move(E);
auto SymTabOrErr = Obj.getSection(Shdr->sh_link);
if (!SymTabOrErr)
return SymTabOrErr.takeError();
if (Shdr->sh_size != 0)
S->Relocations.emplace();
if (Shdr->sh_type == ELF::SHT_REL) {
auto Rels = Obj.rels(*Shdr);
if (!Rels)
return Rels.takeError();
for (const Elf_Rel &Rel : *Rels) {
ELFYAML::Relocation R;
if (Error E = dumpRelocation(&Rel, *SymTabOrErr, R))
return std::move(E);
S->Relocations->push_back(R);
}
} else {
auto Rels = Obj.relas(*Shdr);
if (!Rels)
return Rels.takeError();
for (const Elf_Rela &Rel : *Rels) {
ELFYAML::Relocation R;
if (Error E = dumpRelocation(&Rel, *SymTabOrErr, R))
return std::move(E);
R.Addend = Rel.r_addend;
S->Relocations->push_back(R);
}
}
return S.release();
}
template <class ELFT>
Expected<ELFYAML::RelrSection *>
ELFDumper<ELFT>::dumpRelrSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::RelrSection>();
if (auto E = dumpCommonSection(Shdr, *S))
return std::move(E);
if (Expected<ArrayRef<Elf_Relr>> Relrs = Obj.relrs(*Shdr)) {
S->Entries.emplace();
for (Elf_Relr Rel : *Relrs)
S->Entries->emplace_back(Rel);
return S.release();
} else {
// Ignore. We are going to dump the data as raw content below.
consumeError(Relrs.takeError());
}
Expected<ArrayRef<uint8_t>> ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
S->Content = *ContentOrErr;
return S.release();
}
template <class ELFT>
Expected<ELFYAML::RawContentSection *>
ELFDumper<ELFT>::dumpContentSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::RawContentSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
unsigned SecIndex = Shdr - &Sections[0];
if (SecIndex != 0 || Shdr->sh_type != ELF::SHT_NULL) {
auto ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
ArrayRef<uint8_t> Content = *ContentOrErr;
if (!Content.empty())
S->Content = yaml::BinaryRef(Content);
} else {
S->Size = static_cast<llvm::yaml::Hex64>(Shdr->sh_size);
}
if (Shdr->sh_info)
S->Info = static_cast<llvm::yaml::Hex64>(Shdr->sh_info);
return S.release();
}
template <class ELFT>
Expected<ELFYAML::SymtabShndxSection *>
ELFDumper<ELFT>::dumpSymtabShndxSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::SymtabShndxSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
auto EntriesOrErr = Obj.template getSectionContentsAsArray<Elf_Word>(*Shdr);
if (!EntriesOrErr)
return EntriesOrErr.takeError();
S->Entries.emplace();
for (const Elf_Word &E : *EntriesOrErr)
S->Entries->push_back(E);
return S.release();
}
template <class ELFT>
Expected<ELFYAML::NoBitsSection *>
ELFDumper<ELFT>::dumpNoBitsSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::NoBitsSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
if (Shdr->sh_size)
S->Size = static_cast<llvm::yaml::Hex64>(Shdr->sh_size);
return S.release();
}
template <class ELFT>
Expected<ELFYAML::NoteSection *>
ELFDumper<ELFT>::dumpNoteSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::NoteSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
auto ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
std::vector<ELFYAML::NoteEntry> Entries;
ArrayRef<uint8_t> Content = *ContentOrErr;
while (!Content.empty()) {
if (Content.size() < sizeof(Elf_Nhdr)) {
S->Content = yaml::BinaryRef(*ContentOrErr);
return S.release();
}
const Elf_Nhdr *Header = reinterpret_cast<const Elf_Nhdr *>(Content.data());
if (Content.size() < Header->getSize()) {
S->Content = yaml::BinaryRef(*ContentOrErr);
return S.release();
}
Elf_Note Note(*Header);
Entries.push_back(
{Note.getName(), Note.getDesc(), (llvm::yaml::Hex32)Note.getType()});
Content = Content.drop_front(Header->getSize());
}
S->Notes = std::move(Entries);
return S.release();
}
template <class ELFT>
Expected<ELFYAML::HashSection *>
ELFDumper<ELFT>::dumpHashSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::HashSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
auto ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
ArrayRef<uint8_t> Content = *ContentOrErr;
if (Content.size() % 4 != 0 || Content.size() < 8) {
S->Content = yaml::BinaryRef(Content);
return S.release();
}
DataExtractor::Cursor Cur(0);
DataExtractor Data(Content, Obj.isLE(), /*AddressSize=*/0);
uint64_t NBucket = Data.getU32(Cur);
uint64_t NChain = Data.getU32(Cur);
if (Content.size() != (2 + NBucket + NChain) * 4) {
S->Content = yaml::BinaryRef(Content);
if (Cur)
return S.release();
llvm_unreachable("entries were not read correctly");
}
S->Bucket.emplace(NBucket);
for (uint32_t &V : *S->Bucket)
V = Data.getU32(Cur);
S->Chain.emplace(NChain);
for (uint32_t &V : *S->Chain)
V = Data.getU32(Cur);
if (Cur)
return S.release();
llvm_unreachable("entries were not read correctly");
}
template <class ELFT>
Expected<ELFYAML::GnuHashSection *>
ELFDumper<ELFT>::dumpGnuHashSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::GnuHashSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
auto ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
unsigned AddrSize = ELFT::Is64Bits ? 8 : 4;
ArrayRef<uint8_t> Content = *ContentOrErr;
DataExtractor Data(Content, Obj.isLE(), AddrSize);
ELFYAML::GnuHashHeader Header;
DataExtractor::Cursor Cur(0);
uint64_t NBuckets = Data.getU32(Cur);
Header.SymNdx = Data.getU32(Cur);
uint64_t MaskWords = Data.getU32(Cur);
Header.Shift2 = Data.getU32(Cur);
// Set just the raw binary content if we were unable to read the header
// or when the section data is truncated or malformed.
uint64_t Size = Data.getData().size() - Cur.tell();
if (!Cur || (Size < MaskWords * AddrSize + NBuckets * 4) ||
(Size % 4 != 0)) {
consumeError(Cur.takeError());
S->Content = yaml::BinaryRef(Content);
return S.release();
}
S->Header = Header;
S->BloomFilter.emplace(MaskWords);
for (llvm::yaml::Hex64 &Val : *S->BloomFilter)
Val = Data.getAddress(Cur);
S->HashBuckets.emplace(NBuckets);
for (llvm::yaml::Hex32 &Val : *S->HashBuckets)
Val = Data.getU32(Cur);
S->HashValues.emplace((Data.getData().size() - Cur.tell()) / 4);
for (llvm::yaml::Hex32 &Val : *S->HashValues)
Val = Data.getU32(Cur);
if (Cur)
return S.release();
llvm_unreachable("GnuHashSection was not read correctly");
}
template <class ELFT>
Expected<ELFYAML::VerdefSection *>
ELFDumper<ELFT>::dumpVerdefSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::VerdefSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
S->Info = Shdr->sh_info;
auto StringTableShdrOrErr = Obj.getSection(Shdr->sh_link);
if (!StringTableShdrOrErr)
return StringTableShdrOrErr.takeError();
auto StringTableOrErr = Obj.getStringTable(**StringTableShdrOrErr);
if (!StringTableOrErr)
return StringTableOrErr.takeError();
auto Contents = Obj.getSectionContents(*Shdr);
if (!Contents)
return Contents.takeError();
S->Entries.emplace();
llvm::ArrayRef<uint8_t> Data = *Contents;
const uint8_t *Buf = Data.data();
while (Buf) {
const Elf_Verdef *Verdef = reinterpret_cast<const Elf_Verdef *>(Buf);
ELFYAML::VerdefEntry Entry;
Entry.Version = Verdef->vd_version;
Entry.Flags = Verdef->vd_flags;
Entry.VersionNdx = Verdef->vd_ndx;
Entry.Hash = Verdef->vd_hash;
const uint8_t *BufAux = Buf + Verdef->vd_aux;
while (BufAux) {
const Elf_Verdaux *Verdaux =
reinterpret_cast<const Elf_Verdaux *>(BufAux);
Entry.VerNames.push_back(
StringTableOrErr->drop_front(Verdaux->vda_name).data());
BufAux = Verdaux->vda_next ? BufAux + Verdaux->vda_next : nullptr;
}
S->Entries->push_back(Entry);
Buf = Verdef->vd_next ? Buf + Verdef->vd_next : nullptr;
}
return S.release();
}
template <class ELFT>
Expected<ELFYAML::SymverSection *>
ELFDumper<ELFT>::dumpSymverSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::SymverSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
auto VersionsOrErr = Obj.template getSectionContentsAsArray<Elf_Half>(*Shdr);
if (!VersionsOrErr)
return VersionsOrErr.takeError();
S->Entries.emplace();
for (const Elf_Half &E : *VersionsOrErr)
S->Entries->push_back(E);
return S.release();
}
template <class ELFT>
Expected<ELFYAML::VerneedSection *>
ELFDumper<ELFT>::dumpVerneedSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::VerneedSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
S->Info = Shdr->sh_info;
auto Contents = Obj.getSectionContents(*Shdr);
if (!Contents)
return Contents.takeError();
auto StringTableShdrOrErr = Obj.getSection(Shdr->sh_link);
if (!StringTableShdrOrErr)
return StringTableShdrOrErr.takeError();
auto StringTableOrErr = Obj.getStringTable(**StringTableShdrOrErr);
if (!StringTableOrErr)
return StringTableOrErr.takeError();
S->VerneedV.emplace();
llvm::ArrayRef<uint8_t> Data = *Contents;
const uint8_t *Buf = Data.data();
while (Buf) {
const Elf_Verneed *Verneed = reinterpret_cast<const Elf_Verneed *>(Buf);
ELFYAML::VerneedEntry Entry;
Entry.Version = Verneed->vn_version;
Entry.File =
StringRef(StringTableOrErr->drop_front(Verneed->vn_file).data());
const uint8_t *BufAux = Buf + Verneed->vn_aux;
while (BufAux) {
const Elf_Vernaux *Vernaux =
reinterpret_cast<const Elf_Vernaux *>(BufAux);
ELFYAML::VernauxEntry Aux;
Aux.Hash = Vernaux->vna_hash;
Aux.Flags = Vernaux->vna_flags;
Aux.Other = Vernaux->vna_other;
Aux.Name =
StringRef(StringTableOrErr->drop_front(Vernaux->vna_name).data());
Entry.AuxV.push_back(Aux);
BufAux = Vernaux->vna_next ? BufAux + Vernaux->vna_next : nullptr;
}
S->VerneedV->push_back(Entry);
Buf = Verneed->vn_next ? Buf + Verneed->vn_next : nullptr;
}
return S.release();
}
template <class ELFT>
Expected<StringRef> ELFDumper<ELFT>::getSymbolName(uint32_t SymtabNdx,
uint32_t SymbolNdx) {
auto SymtabOrErr = Obj.getSection(SymtabNdx);
if (!SymtabOrErr)
return SymtabOrErr.takeError();
const Elf_Shdr *Symtab = *SymtabOrErr;
auto SymOrErr = Obj.getSymbol(Symtab, SymbolNdx);
if (!SymOrErr)
return SymOrErr.takeError();
auto StrTabOrErr = Obj.getStringTableForSymtab(*Symtab);
if (!StrTabOrErr)
return StrTabOrErr.takeError();
return getUniquedSymbolName(*SymOrErr, *StrTabOrErr, Symtab);
}
template <class ELFT>
Expected<ELFYAML::GroupSection *>
ELFDumper<ELFT>::dumpGroupSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::GroupSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
// Get symbol with index sh_info. This symbol's name is the signature of the group.
Expected<StringRef> SymbolName = getSymbolName(Shdr->sh_link, Shdr->sh_info);
if (!SymbolName)
return SymbolName.takeError();
S->Signature = *SymbolName;
auto MembersOrErr = Obj.template getSectionContentsAsArray<Elf_Word>(*Shdr);
if (!MembersOrErr)
return MembersOrErr.takeError();
S->Members.emplace();
for (Elf_Word Member : *MembersOrErr) {
if (Member == llvm::ELF::GRP_COMDAT) {
S->Members->push_back({"GRP_COMDAT"});
continue;
}
Expected<const Elf_Shdr *> SHdrOrErr = Obj.getSection(Member);
if (!SHdrOrErr)
return SHdrOrErr.takeError();
Expected<StringRef> NameOrErr = getUniquedSectionName(**SHdrOrErr);
if (!NameOrErr)
return NameOrErr.takeError();
S->Members->push_back({*NameOrErr});
}
return S.release();
}
template <class ELFT>
Expected<ELFYAML::ARMIndexTableSection *>
ELFDumper<ELFT>::dumpARMIndexTableSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::ARMIndexTableSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
Expected<ArrayRef<uint8_t>> ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
if (ContentOrErr->size() % (sizeof(Elf_Word) * 2) != 0) {
S->Content = yaml::BinaryRef(*ContentOrErr);
return S.release();
}
ArrayRef<Elf_Word> Words(
reinterpret_cast<const Elf_Word *>(ContentOrErr->data()),
ContentOrErr->size() / sizeof(Elf_Word));
S->Entries.emplace();
for (size_t I = 0, E = Words.size(); I != E; I += 2)
S->Entries->push_back({(yaml::Hex32)Words[I], (yaml::Hex32)Words[I + 1]});
return S.release();
}
template <class ELFT>
Expected<ELFYAML::MipsABIFlags *>
ELFDumper<ELFT>::dumpMipsABIFlags(const Elf_Shdr *Shdr) {
assert(Shdr->sh_type == ELF::SHT_MIPS_ABIFLAGS &&
"Section type is not SHT_MIPS_ABIFLAGS");
auto S = std::make_unique<ELFYAML::MipsABIFlags>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
auto ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
auto *Flags = reinterpret_cast<const object::Elf_Mips_ABIFlags<ELFT> *>(
ContentOrErr.get().data());
S->Version = Flags->version;
S->ISALevel = Flags->isa_level;
S->ISARevision = Flags->isa_rev;
S->GPRSize = Flags->gpr_size;
S->CPR1Size = Flags->cpr1_size;
S->CPR2Size = Flags->cpr2_size;
S->FpABI = Flags->fp_abi;
S->ISAExtension = Flags->isa_ext;
S->ASEs = Flags->ases;
S->Flags1 = Flags->flags1;
S->Flags2 = Flags->flags2;
return S.release();
}
template <class ELFT>
static Error elf2yaml(raw_ostream &Out, const object::ELFFile<ELFT> &Obj,
std::unique_ptr<DWARFContext> DWARFCtx) {
ELFDumper<ELFT> Dumper(Obj, std::move(DWARFCtx));
Expected<ELFYAML::Object *> YAMLOrErr = Dumper.dump();
if (!YAMLOrErr)
return YAMLOrErr.takeError();
std::unique_ptr<ELFYAML::Object> YAML(YAMLOrErr.get());
yaml::Output Yout(Out);
Yout << *YAML;
return Error::success();
}
Error elf2yaml(raw_ostream &Out, const object::ObjectFile &Obj) {
std::unique_ptr<DWARFContext> DWARFCtx = DWARFContext::create(Obj);
if (const auto *ELFObj = dyn_cast<object::ELF32LEObjectFile>(&Obj))
return elf2yaml(Out, ELFObj->getELFFile(), std::move(DWARFCtx));
if (const auto *ELFObj = dyn_cast<object::ELF32BEObjectFile>(&Obj))
return elf2yaml(Out, ELFObj->getELFFile(), std::move(DWARFCtx));
if (const auto *ELFObj = dyn_cast<object::ELF64LEObjectFile>(&Obj))
return elf2yaml(Out, ELFObj->getELFFile(), std::move(DWARFCtx));
if (const auto *ELFObj = dyn_cast<object::ELF64BEObjectFile>(&Obj))
return elf2yaml(Out, ELFObj->getELFFile(), std::move(DWARFCtx));
llvm_unreachable("unknown ELF file format");
}