1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00
llvm-mirror/lib/Passes/PassBuilder.cpp
Artur Pilipenko c5d63dfc6a [Guards] Introduce loop-predication pass
This patch introduces guard based loop predication optimization. The new LoopPredication pass tries to convert loop variant range checks to loop invariant by widening checks across loop iterations. For example, it will convert

  for (i = 0; i < n; i++) {
    guard(i < len);
    ...
  }

to

  for (i = 0; i < n; i++) {
    guard(n - 1 < len);
    ...
  }

After this transformation the condition of the guard is loop invariant, so loop-unswitch can later unswitch the loop by this condition which basically predicates the loop by the widened condition:

  if (n - 1 < len)
    for (i = 0; i < n; i++) {
      ...
    } 
  else
    deoptimize

This patch relies on an NFC change to make ScalarEvolution::isMonotonicPredicate public (revision 293062).

Reviewed By: sanjoy

Differential Revision: https://reviews.llvm.org/D29034

llvm-svn: 293064
2017-01-25 16:00:44 +00:00

1321 lines
51 KiB
C++

//===- Parsing, selection, and construction of pass pipelines -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file provides the implementation of the PassBuilder based on our
/// static pass registry as well as related functionality. It also provides
/// helpers to aid in analyzing, debugging, and testing passes and pass
/// pipelines.
///
//===----------------------------------------------------------------------===//
#include "llvm/Passes/PassBuilder.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasAnalysisEvaluator.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/CFGPrinter.h"
#include "llvm/Analysis/CFLAndersAliasAnalysis.h"
#include "llvm/Analysis/CFLSteensAliasAnalysis.h"
#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/DemandedBits.h"
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/DominanceFrontier.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/IVUsers.h"
#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/ScopedNoAliasAA.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
#include "llvm/CodeGen/PreISelIntrinsicLowering.h"
#include "llvm/CodeGen/UnreachableBlockElim.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Regex.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/GCOVProfiler.h"
#include "llvm/Transforms/IPO/AlwaysInliner.h"
#include "llvm/Transforms/IPO/ConstantMerge.h"
#include "llvm/Transforms/IPO/CrossDSOCFI.h"
#include "llvm/Transforms/IPO/DeadArgumentElimination.h"
#include "llvm/Transforms/IPO/ElimAvailExtern.h"
#include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
#include "llvm/Transforms/IPO/FunctionAttrs.h"
#include "llvm/Transforms/IPO/FunctionImport.h"
#include "llvm/Transforms/IPO/GlobalDCE.h"
#include "llvm/Transforms/IPO/GlobalOpt.h"
#include "llvm/Transforms/IPO/GlobalSplit.h"
#include "llvm/Transforms/IPO/InferFunctionAttrs.h"
#include "llvm/Transforms/IPO/Inliner.h"
#include "llvm/Transforms/IPO/Internalize.h"
#include "llvm/Transforms/IPO/LowerTypeTests.h"
#include "llvm/Transforms/IPO/PartialInlining.h"
#include "llvm/Transforms/IPO/SCCP.h"
#include "llvm/Transforms/IPO/StripDeadPrototypes.h"
#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/InstrProfiling.h"
#include "llvm/Transforms/PGOInstrumentation.h"
#include "llvm/Transforms/SampleProfile.h"
#include "llvm/Transforms/Scalar/ADCE.h"
#include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
#include "llvm/Transforms/Scalar/BDCE.h"
#include "llvm/Transforms/Scalar/ConstantHoisting.h"
#include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h"
#include "llvm/Transforms/Scalar/DCE.h"
#include "llvm/Transforms/Scalar/DeadStoreElimination.h"
#include "llvm/Transforms/Scalar/EarlyCSE.h"
#include "llvm/Transforms/Scalar/Float2Int.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Scalar/GuardWidening.h"
#include "llvm/Transforms/Scalar/IVUsersPrinter.h"
#include "llvm/Transforms/Scalar/IndVarSimplify.h"
#include "llvm/Transforms/Scalar/JumpThreading.h"
#include "llvm/Transforms/Scalar/LICM.h"
#include "llvm/Transforms/Scalar/LoopAccessAnalysisPrinter.h"
#include "llvm/Transforms/Scalar/LoopDataPrefetch.h"
#include "llvm/Transforms/Scalar/LoopDeletion.h"
#include "llvm/Transforms/Scalar/LoopDistribute.h"
#include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
#include "llvm/Transforms/Scalar/LoopInstSimplify.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Transforms/Scalar/LoopPredication.h"
#include "llvm/Transforms/Scalar/LoopRotation.h"
#include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
#include "llvm/Transforms/Scalar/LoopSink.h"
#include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
#include "llvm/Transforms/Scalar/LoopUnrollPass.h"
#include "llvm/Transforms/Scalar/LowerAtomic.h"
#include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
#include "llvm/Transforms/Scalar/LowerGuardIntrinsic.h"
#include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
#include "llvm/Transforms/Scalar/MergedLoadStoreMotion.h"
#include "llvm/Transforms/Scalar/NaryReassociate.h"
#include "llvm/Transforms/Scalar/NewGVN.h"
#include "llvm/Transforms/Scalar/PartiallyInlineLibCalls.h"
#include "llvm/Transforms/Scalar/Reassociate.h"
#include "llvm/Transforms/Scalar/SCCP.h"
#include "llvm/Transforms/Scalar/SROA.h"
#include "llvm/Transforms/Scalar/SimplifyCFG.h"
#include "llvm/Transforms/Scalar/Sink.h"
#include "llvm/Transforms/Scalar/SpeculativeExecution.h"
#include "llvm/Transforms/Scalar/TailRecursionElimination.h"
#include "llvm/Transforms/Utils/AddDiscriminators.h"
#include "llvm/Transforms/Utils/BreakCriticalEdges.h"
#include "llvm/Transforms/Utils/LCSSA.h"
#include "llvm/Transforms/Utils/LibCallsShrinkWrap.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LowerInvoke.h"
#include "llvm/Transforms/Utils/Mem2Reg.h"
#include "llvm/Transforms/Utils/MemorySSA.h"
#include "llvm/Transforms/Utils/NameAnonGlobals.h"
#include "llvm/Transforms/Utils/SimplifyInstructions.h"
#include "llvm/Transforms/Utils/SymbolRewriter.h"
#include "llvm/Transforms/Vectorize/LoopVectorize.h"
#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
#include <type_traits>
using namespace llvm;
static Regex DefaultAliasRegex("^(default|lto-pre-link|lto)<(O[0123sz])>$");
static bool isOptimizingForSize(PassBuilder::OptimizationLevel Level) {
switch (Level) {
case PassBuilder::O0:
case PassBuilder::O1:
case PassBuilder::O2:
case PassBuilder::O3:
return false;
case PassBuilder::Os:
case PassBuilder::Oz:
return true;
}
llvm_unreachable("Invalid optimization level!");
}
namespace {
/// \brief No-op module pass which does nothing.
struct NoOpModulePass {
PreservedAnalyses run(Module &M, ModuleAnalysisManager &) {
return PreservedAnalyses::all();
}
static StringRef name() { return "NoOpModulePass"; }
};
/// \brief No-op module analysis.
class NoOpModuleAnalysis : public AnalysisInfoMixin<NoOpModuleAnalysis> {
friend AnalysisInfoMixin<NoOpModuleAnalysis>;
static AnalysisKey Key;
public:
struct Result {};
Result run(Module &, ModuleAnalysisManager &) { return Result(); }
static StringRef name() { return "NoOpModuleAnalysis"; }
};
/// \brief No-op CGSCC pass which does nothing.
struct NoOpCGSCCPass {
PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &,
LazyCallGraph &, CGSCCUpdateResult &UR) {
return PreservedAnalyses::all();
}
static StringRef name() { return "NoOpCGSCCPass"; }
};
/// \brief No-op CGSCC analysis.
class NoOpCGSCCAnalysis : public AnalysisInfoMixin<NoOpCGSCCAnalysis> {
friend AnalysisInfoMixin<NoOpCGSCCAnalysis>;
static AnalysisKey Key;
public:
struct Result {};
Result run(LazyCallGraph::SCC &, CGSCCAnalysisManager &, LazyCallGraph &G) {
return Result();
}
static StringRef name() { return "NoOpCGSCCAnalysis"; }
};
/// \brief No-op function pass which does nothing.
struct NoOpFunctionPass {
PreservedAnalyses run(Function &F, FunctionAnalysisManager &) {
return PreservedAnalyses::all();
}
static StringRef name() { return "NoOpFunctionPass"; }
};
/// \brief No-op function analysis.
class NoOpFunctionAnalysis : public AnalysisInfoMixin<NoOpFunctionAnalysis> {
friend AnalysisInfoMixin<NoOpFunctionAnalysis>;
static AnalysisKey Key;
public:
struct Result {};
Result run(Function &, FunctionAnalysisManager &) { return Result(); }
static StringRef name() { return "NoOpFunctionAnalysis"; }
};
/// \brief No-op loop pass which does nothing.
struct NoOpLoopPass {
PreservedAnalyses run(Loop &L, LoopAnalysisManager &,
LoopStandardAnalysisResults &, LPMUpdater &) {
return PreservedAnalyses::all();
}
static StringRef name() { return "NoOpLoopPass"; }
};
/// \brief No-op loop analysis.
class NoOpLoopAnalysis : public AnalysisInfoMixin<NoOpLoopAnalysis> {
friend AnalysisInfoMixin<NoOpLoopAnalysis>;
static AnalysisKey Key;
public:
struct Result {};
Result run(Loop &, LoopAnalysisManager &, LoopStandardAnalysisResults &) {
return Result();
}
static StringRef name() { return "NoOpLoopAnalysis"; }
};
AnalysisKey NoOpModuleAnalysis::Key;
AnalysisKey NoOpCGSCCAnalysis::Key;
AnalysisKey NoOpFunctionAnalysis::Key;
AnalysisKey NoOpLoopAnalysis::Key;
} // End anonymous namespace.
void PassBuilder::registerModuleAnalyses(ModuleAnalysisManager &MAM) {
#define MODULE_ANALYSIS(NAME, CREATE_PASS) \
MAM.registerPass([&] { return CREATE_PASS; });
#include "PassRegistry.def"
}
void PassBuilder::registerCGSCCAnalyses(CGSCCAnalysisManager &CGAM) {
#define CGSCC_ANALYSIS(NAME, CREATE_PASS) \
CGAM.registerPass([&] { return CREATE_PASS; });
#include "PassRegistry.def"
}
void PassBuilder::registerFunctionAnalyses(FunctionAnalysisManager &FAM) {
#define FUNCTION_ANALYSIS(NAME, CREATE_PASS) \
FAM.registerPass([&] { return CREATE_PASS; });
#include "PassRegistry.def"
}
void PassBuilder::registerLoopAnalyses(LoopAnalysisManager &LAM) {
#define LOOP_ANALYSIS(NAME, CREATE_PASS) \
LAM.registerPass([&] { return CREATE_PASS; });
#include "PassRegistry.def"
}
FunctionPassManager
PassBuilder::buildFunctionSimplificationPipeline(OptimizationLevel Level,
bool DebugLogging) {
assert(Level != O0 && "Must request optimizations!");
FunctionPassManager FPM(DebugLogging);
// Form SSA out of local memory accesses after breaking apart aggregates into
// scalars.
FPM.addPass(SROA());
// Catch trivial redundancies
FPM.addPass(EarlyCSEPass());
// Speculative execution if the target has divergent branches; otherwise nop.
FPM.addPass(SpeculativeExecutionPass());
// Optimize based on known information about branches, and cleanup afterward.
FPM.addPass(JumpThreadingPass());
FPM.addPass(CorrelatedValuePropagationPass());
FPM.addPass(SimplifyCFGPass());
FPM.addPass(InstCombinePass());
if (!isOptimizingForSize(Level))
FPM.addPass(LibCallsShrinkWrapPass());
FPM.addPass(TailCallElimPass());
FPM.addPass(SimplifyCFGPass());
// Form canonically associated expression trees, and simplify the trees using
// basic mathematical properties. For example, this will form (nearly)
// minimal multiplication trees.
FPM.addPass(ReassociatePass());
// Add the primary loop simplification pipeline.
// FIXME: Currently this is split into two loop pass pipelines because we run
// some function passes in between them. These can and should be replaced by
// loop pass equivalenst but those aren't ready yet. Specifically,
// `SimplifyCFGPass` and `InstCombinePass` are used. We have
// `LoopSimplifyCFGPass` which isn't yet powerful enough, and the closest to
// the other we have is `LoopInstSimplify`.
LoopPassManager LPM1(DebugLogging), LPM2(DebugLogging);
// FIXME: Enable these when the loop pass manager can support enforcing loop
// simplified and LCSSA form as well as updating the loop nest after
// transformations and we finsih porting the loop passes.
#if 0
// Rotate Loop - disable header duplication at -Oz
LPM1.addPass(LoopRotatePass(Level != Oz));
LPM1.addPass(LICMPass());
LPM1.addPass(LoopUnswitchPass(/* OptimizeForSize */ Level != O3));
LPM2.addPass(IndVarSimplifyPass());
LPM2.addPass(LoopIdiomPass());
LPM2.addPass(LoopDeletionPass());
LPM2.addPass(SimpleLoopUnrollPass());
#endif
FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM1)));
FPM.addPass(SimplifyCFGPass());
FPM.addPass(InstCombinePass());
FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM2)));
// Eliminate redundancies.
if (Level != O1) {
// These passes add substantial compile time so skip them at O1.
FPM.addPass(MergedLoadStoreMotionPass());
FPM.addPass(GVN());
}
// Specially optimize memory movement as it doesn't look like dataflow in SSA.
FPM.addPass(MemCpyOptPass());
// Sparse conditional constant propagation.
// FIXME: It isn't clear why we do this *after* loop passes rather than
// before...
FPM.addPass(SCCPPass());
// Delete dead bit computations (instcombine runs after to fold away the dead
// computations, and then ADCE will run later to exploit any new DCE
// opportunities that creates).
FPM.addPass(BDCEPass());
// Run instcombine after redundancy and dead bit elimination to exploit
// opportunities opened up by them.
FPM.addPass(InstCombinePass());
// Re-consider control flow based optimizations after redundancy elimination,
// redo DCE, etc.
FPM.addPass(JumpThreadingPass());
FPM.addPass(CorrelatedValuePropagationPass());
FPM.addPass(DSEPass());
// FIXME: Enable this when the loop pass manager can support enforcing loop
// simplified and LCSSA form as well as updating the loop nest after
// transformations and we finsih porting the loop passes.
#if 0
FPM.addPass(createFunctionToLoopPassAdaptor(LICMPass()));
#endif
// Finally, do an expensive DCE pass to catch all the dead code exposed by
// the simplifications and basic cleanup after all the simplifications.
FPM.addPass(ADCEPass());
FPM.addPass(SimplifyCFGPass());
FPM.addPass(InstCombinePass());
return FPM;
}
ModulePassManager
PassBuilder::buildPerModuleDefaultPipeline(OptimizationLevel Level,
bool DebugLogging) {
assert(Level != O0 && "Must request optimizations for the default pipeline!");
ModulePassManager MPM(DebugLogging);
// Force any function attributes we want the rest of the pipeline te observe.
MPM.addPass(ForceFunctionAttrsPass());
// Do basic inference of function attributes from known properties of system
// libraries and other oracles.
MPM.addPass(InferFunctionAttrsPass());
// Create an early function pass manager to cleanup the output of the
// frontend.
FunctionPassManager EarlyFPM(DebugLogging);
EarlyFPM.addPass(SimplifyCFGPass());
EarlyFPM.addPass(SROA());
EarlyFPM.addPass(EarlyCSEPass());
EarlyFPM.addPass(LowerExpectIntrinsicPass());
EarlyFPM.addPass(GVNHoistPass());
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(EarlyFPM)));
// Interprocedural constant propagation now that basic cleanup has occured
// and prior to optimizing globals.
// FIXME: This position in the pipeline hasn't been carefully considered in
// years, it should be re-analyzed.
MPM.addPass(IPSCCPPass());
// Optimize globals to try and fold them into constants.
MPM.addPass(GlobalOptPass());
// Promote any localized globals to SSA registers.
// FIXME: Should this instead by a run of SROA?
// FIXME: We should probably run instcombine and simplify-cfg afterward to
// delete control flows that are dead once globals have been folded to
// constants.
MPM.addPass(createModuleToFunctionPassAdaptor(PromotePass()));
// Remove any dead arguments exposed by cleanups and constand folding
// globals.
MPM.addPass(DeadArgumentEliminationPass());
// Create a small function pass pipeline to cleanup after all the global
// optimizations.
FunctionPassManager GlobalCleanupPM(DebugLogging);
GlobalCleanupPM.addPass(InstCombinePass());
GlobalCleanupPM.addPass(SimplifyCFGPass());
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(GlobalCleanupPM)));
// FIXME: Enable this when cross-IR-unit analysis invalidation is working.
#if 0
MPM.addPass(RequireAnalysisPass<GlobalsAA>());
#endif
// Now begin the main postorder CGSCC pipeline.
// FIXME: The current CGSCC pipeline has its origins in the legacy pass
// manager and trying to emulate its precise behavior. Much of this doesn't
// make a lot of sense and we should revisit the core CGSCC structure.
CGSCCPassManager MainCGPipeline(DebugLogging);
// Note: historically, the PruneEH pass was run first to deduce nounwind and
// generally clean up exception handling overhead. It isn't clear this is
// valuable as the inliner doesn't currently care whether it is inlining an
// invoke or a call.
// Run the inliner first. The theory is that we are walking bottom-up and so
// the callees have already been fully optimized, and we want to inline them
// into the callers so that our optimizations can reflect that.
// FIXME; Customize the threshold based on optimization level.
MainCGPipeline.addPass(InlinerPass());
// Now deduce any function attributes based in the current code.
MainCGPipeline.addPass(PostOrderFunctionAttrsPass());
// Lastly, add the core function simplification pipeline nested inside the
// CGSCC walk.
MainCGPipeline.addPass(createCGSCCToFunctionPassAdaptor(
buildFunctionSimplificationPipeline(Level, DebugLogging)));
MPM.addPass(
createModuleToPostOrderCGSCCPassAdaptor(std::move(MainCGPipeline)));
// This ends the canonicalization and simplification phase of the pipeline.
// At this point, we expect to have canonical and simple IR which we begin
// *optimizing* for efficient execution going forward.
// Eliminate externally available functions now that inlining is over -- we
// won't emit these anyways.
MPM.addPass(EliminateAvailableExternallyPass());
// Do RPO function attribute inference across the module to forward-propagate
// attributes where applicable.
// FIXME: Is this really an optimization rather than a canonicalization?
MPM.addPass(ReversePostOrderFunctionAttrsPass());
// Recompute GloblasAA here prior to function passes. This is particularly
// useful as the above will have inlined, DCE'ed, and function-attr
// propagated everything. We should at this point have a reasonably minimal
// and richly annotated call graph. By computing aliasing and mod/ref
// information for all local globals here, the late loop passes and notably
// the vectorizer will be able to use them to help recognize vectorizable
// memory operations.
// FIXME: Enable this once analysis invalidation is fully supported.
#if 0
MPM.addPass(Require<GlobalsAA>());
#endif
FunctionPassManager OptimizePM(DebugLogging);
OptimizePM.addPass(Float2IntPass());
// FIXME: We need to run some loop optimizations to re-rotate loops after
// simplify-cfg and others undo their rotation.
// Optimize the loop execution. These passes operate on entire loop nests
// rather than on each loop in an inside-out manner, and so they are actually
// function passes.
OptimizePM.addPass(LoopDistributePass());
OptimizePM.addPass(LoopVectorizePass());
// FIXME: Need to port Loop Load Elimination and add it here.
OptimizePM.addPass(InstCombinePass());
// Optimize parallel scalar instruction chains into SIMD instructions.
OptimizePM.addPass(SLPVectorizerPass());
// Cleanup after vectorizers.
OptimizePM.addPass(SimplifyCFGPass());
OptimizePM.addPass(InstCombinePass());
// Unroll small loops to hide loop backedge latency and saturate any parallel
// execution resources of an out-of-order processor.
// FIXME: Need to add once loop pass pipeline is available.
// FIXME: Add the loop sink pass when ported.
// FIXME: Add cleanup from the loop pass manager when we're forming LCSSA
// here.
// Now that we've vectorized and unrolled loops, we may have more refined
// alignment information, try to re-derive it here.
OptimizePM.addPass(AlignmentFromAssumptionsPass());
// ADd the core optimizing pipeline.
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(OptimizePM)));
// Now we need to do some global optimization transforms.
// FIXME: It would seem like these should come first in the optimization
// pipeline and maybe be the bottom of the canonicalization pipeline? Weird
// ordering here.
MPM.addPass(GlobalDCEPass());
MPM.addPass(ConstantMergePass());
return MPM;
}
ModulePassManager
PassBuilder::buildLTOPreLinkDefaultPipeline(OptimizationLevel Level,
bool DebugLogging) {
assert(Level != O0 && "Must request optimizations for the default pipeline!");
// FIXME: We should use a customized pre-link pipeline!
return buildPerModuleDefaultPipeline(Level, DebugLogging);
}
ModulePassManager PassBuilder::buildLTODefaultPipeline(OptimizationLevel Level,
bool DebugLogging) {
assert(Level != O0 && "Must request optimizations for the default pipeline!");
ModulePassManager MPM(DebugLogging);
// Remove unused virtual tables to improve the quality of code generated by
// whole-program devirtualization and bitset lowering.
MPM.addPass(GlobalDCEPass());
// Force any function attributes we want the rest of the pipeline to observe.
MPM.addPass(ForceFunctionAttrsPass());
// Do basic inference of function attributes from known properties of system
// libraries and other oracles.
MPM.addPass(InferFunctionAttrsPass());
if (Level > 1) {
// Indirect call promotion. This should promote all the targets that are
// left by the earlier promotion pass that promotes intra-module targets.
// This two-step promotion is to save the compile time. For LTO, it should
// produce the same result as if we only do promotion here.
MPM.addPass(PGOIndirectCallPromotion(true /* InLTO */));
// Propagate constants at call sites into the functions they call. This
// opens opportunities for globalopt (and inlining) by substituting function
// pointers passed as arguments to direct uses of functions.
MPM.addPass(IPSCCPPass());
}
// Now deduce any function attributes based in the current code.
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
PostOrderFunctionAttrsPass()));
// Do RPO function attribute inference across the module to forward-propagate
// attributes where applicable.
// FIXME: Is this really an optimization rather than a canonicalization?
MPM.addPass(ReversePostOrderFunctionAttrsPass());
// Use inragne annotations on GEP indices to split globals where beneficial.
MPM.addPass(GlobalSplitPass());
// Run whole program optimization of virtual call when the list of callees
// is fixed.
MPM.addPass(WholeProgramDevirtPass());
// Stop here at -O1.
if (Level == 1)
return MPM;
// Optimize globals to try and fold them into constants.
MPM.addPass(GlobalOptPass());
// Promote any localized globals to SSA registers.
MPM.addPass(createModuleToFunctionPassAdaptor(PromotePass()));
// Linking modules together can lead to duplicate global constant, only
// keep one copy of each constant.
MPM.addPass(ConstantMergePass());
// Remove unused arguments from functions.
MPM.addPass(DeadArgumentEliminationPass());
// Reduce the code after globalopt and ipsccp. Both can open up significant
// simplification opportunities, and both can propagate functions through
// function pointers. When this happens, we often have to resolve varargs
// calls, etc, so let instcombine do this.
// FIXME: add peephole extensions here as the legacy PM does.
MPM.addPass(createModuleToFunctionPassAdaptor(InstCombinePass()));
// Note: historically, the PruneEH pass was run first to deduce nounwind and
// generally clean up exception handling overhead. It isn't clear this is
// valuable as the inliner doesn't currently care whether it is inlining an
// invoke or a call.
// Run the inliner now.
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(InlinerPass()));
// Optimize globals again after we ran the inliner.
MPM.addPass(GlobalOptPass());
// Garbage collect dead functions.
// FIXME: Add ArgumentPromotion pass after once it's ported.
MPM.addPass(GlobalDCEPass());
FunctionPassManager FPM(DebugLogging);
// The IPO Passes may leave cruft around. Clean up after them.
// FIXME: add peephole extensions here as the legacy PM does.
FPM.addPass(InstCombinePass());
FPM.addPass(JumpThreadingPass());
// Break up allocas
FPM.addPass(SROA());
// Run a few AA driver optimizations here and now to cleanup the code.
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
PostOrderFunctionAttrsPass()));
// FIXME: here we run IP alias analysis in the legacy PM.
FunctionPassManager MainFPM;
// FIXME: once we fix LoopPass Manager, add LICM here.
// FIXME: once we provide support for enabling MLSM, add it here.
// FIXME: once we provide support for enabling NewGVN, add it here.
MainFPM.addPass(GVN());
// Remove dead memcpy()'s.
MainFPM.addPass(MemCpyOptPass());
// Nuke dead stores.
MainFPM.addPass(DSEPass());
// FIXME: at this point, we run a bunch of loop passes:
// indVarSimplify, loopDeletion, loopInterchange, loopUnrool,
// loopVectorize. Enable them once the remaining issue with LPM
// are sorted out.
MainFPM.addPass(InstCombinePass());
MainFPM.addPass(SimplifyCFGPass());
MainFPM.addPass(SCCPPass());
MainFPM.addPass(InstCombinePass());
MainFPM.addPass(BDCEPass());
// FIXME: We may want to run SLPVectorizer here.
// After vectorization, assume intrinsics may tell us more
// about pointer alignments.
#if 0
MainFPM.add(AlignmentFromAssumptionsPass());
#endif
// FIXME: Conditionally run LoadCombine here, after it's ported
// (in case we still have this pass, given its questionable usefulness).
// FIXME: add peephole extensions to the PM here.
MainFPM.addPass(InstCombinePass());
MainFPM.addPass(JumpThreadingPass());
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(MainFPM)));
// Create a function that performs CFI checks for cross-DSO calls with
// targets in the current module.
MPM.addPass(CrossDSOCFIPass());
// Lower type metadata and the type.test intrinsic. This pass supports
// clang's control flow integrity mechanisms (-fsanitize=cfi*) and needs
// to be run at link time if CFI is enabled. This pass does nothing if
// CFI is disabled.
// Enable once we add support for the summary in the new PM.
#if 0
MPM.addPass(LowerTypeTestsPass(Summary ? LowerTypeTestsSummaryAction::Export :
LowerTypeTestsSummaryAction::None,
Summary));
#endif
// Add late LTO optimization passes.
// Delete basic blocks, which optimization passes may have killed.
MPM.addPass(createModuleToFunctionPassAdaptor(SimplifyCFGPass()));
// Drop bodies of available eternally objects to improve GlobalDCE.
MPM.addPass(EliminateAvailableExternallyPass());
// Now that we have optimized the program, discard unreachable functions.
MPM.addPass(GlobalDCEPass());
// FIXME: Enable MergeFuncs, conditionally, after ported, maybe.
return MPM;
}
AAManager PassBuilder::buildDefaultAAPipeline() {
AAManager AA;
// The order in which these are registered determines their priority when
// being queried.
// First we register the basic alias analysis that provides the majority of
// per-function local AA logic. This is a stateless, on-demand local set of
// AA techniques.
AA.registerFunctionAnalysis<BasicAA>();
// Next we query fast, specialized alias analyses that wrap IR-embedded
// information about aliasing.
AA.registerFunctionAnalysis<ScopedNoAliasAA>();
AA.registerFunctionAnalysis<TypeBasedAA>();
// Add support for querying global aliasing information when available.
// Because the `AAManager` is a function analysis and `GlobalsAA` is a module
// analysis, all that the `AAManager` can do is query for any *cached*
// results from `GlobalsAA` through a readonly proxy..
#if 0
// FIXME: Enable once the invalidation logic supports this. Currently, the
// `AAManager` will hold stale references to the module analyses.
AA.registerModuleAnalysis<GlobalsAA>();
#endif
return AA;
}
static Optional<int> parseRepeatPassName(StringRef Name) {
if (!Name.consume_front("repeat<") || !Name.consume_back(">"))
return None;
int Count;
if (Name.getAsInteger(0, Count) || Count <= 0)
return None;
return Count;
}
static Optional<int> parseDevirtPassName(StringRef Name) {
if (!Name.consume_front("devirt<") || !Name.consume_back(">"))
return None;
int Count;
if (Name.getAsInteger(0, Count) || Count <= 0)
return None;
return Count;
}
static bool isModulePassName(StringRef Name) {
// Manually handle aliases for pre-configured pipeline fragments.
if (Name.startswith("default") || Name.startswith("lto"))
return DefaultAliasRegex.match(Name);
// Explicitly handle pass manager names.
if (Name == "module")
return true;
if (Name == "cgscc")
return true;
if (Name == "function")
return true;
// Explicitly handle custom-parsed pass names.
if (parseRepeatPassName(Name))
return true;
#define MODULE_PASS(NAME, CREATE_PASS) \
if (Name == NAME) \
return true;
#define MODULE_ANALYSIS(NAME, CREATE_PASS) \
if (Name == "require<" NAME ">" || Name == "invalidate<" NAME ">") \
return true;
#include "PassRegistry.def"
return false;
}
static bool isCGSCCPassName(StringRef Name) {
// Explicitly handle pass manager names.
if (Name == "cgscc")
return true;
if (Name == "function")
return true;
// Explicitly handle custom-parsed pass names.
if (parseRepeatPassName(Name))
return true;
if (parseDevirtPassName(Name))
return true;
#define CGSCC_PASS(NAME, CREATE_PASS) \
if (Name == NAME) \
return true;
#define CGSCC_ANALYSIS(NAME, CREATE_PASS) \
if (Name == "require<" NAME ">" || Name == "invalidate<" NAME ">") \
return true;
#include "PassRegistry.def"
return false;
}
static bool isFunctionPassName(StringRef Name) {
// Explicitly handle pass manager names.
if (Name == "function")
return true;
if (Name == "loop")
return true;
// Explicitly handle custom-parsed pass names.
if (parseRepeatPassName(Name))
return true;
#define FUNCTION_PASS(NAME, CREATE_PASS) \
if (Name == NAME) \
return true;
#define FUNCTION_ANALYSIS(NAME, CREATE_PASS) \
if (Name == "require<" NAME ">" || Name == "invalidate<" NAME ">") \
return true;
#include "PassRegistry.def"
return false;
}
static bool isLoopPassName(StringRef Name) {
// Explicitly handle pass manager names.
if (Name == "loop")
return true;
// Explicitly handle custom-parsed pass names.
if (parseRepeatPassName(Name))
return true;
#define LOOP_PASS(NAME, CREATE_PASS) \
if (Name == NAME) \
return true;
#define LOOP_ANALYSIS(NAME, CREATE_PASS) \
if (Name == "require<" NAME ">" || Name == "invalidate<" NAME ">") \
return true;
#include "PassRegistry.def"
return false;
}
Optional<std::vector<PassBuilder::PipelineElement>>
PassBuilder::parsePipelineText(StringRef Text) {
std::vector<PipelineElement> ResultPipeline;
SmallVector<std::vector<PipelineElement> *, 4> PipelineStack = {
&ResultPipeline};
for (;;) {
std::vector<PipelineElement> &Pipeline = *PipelineStack.back();
size_t Pos = Text.find_first_of(",()");
Pipeline.push_back({Text.substr(0, Pos), {}});
// If we have a single terminating name, we're done.
if (Pos == Text.npos)
break;
char Sep = Text[Pos];
Text = Text.substr(Pos + 1);
if (Sep == ',')
// Just a name ending in a comma, continue.
continue;
if (Sep == '(') {
// Push the inner pipeline onto the stack to continue processing.
PipelineStack.push_back(&Pipeline.back().InnerPipeline);
continue;
}
assert(Sep == ')' && "Bogus separator!");
// When handling the close parenthesis, we greedily consume them to avoid
// empty strings in the pipeline.
do {
// If we try to pop the outer pipeline we have unbalanced parentheses.
if (PipelineStack.size() == 1)
return None;
PipelineStack.pop_back();
} while (Text.consume_front(")"));
// Check if we've finished parsing.
if (Text.empty())
break;
// Otherwise, the end of an inner pipeline always has to be followed by
// a comma, and then we can continue.
if (!Text.consume_front(","))
return None;
}
if (PipelineStack.size() > 1)
// Unbalanced paretheses.
return None;
assert(PipelineStack.back() == &ResultPipeline &&
"Wrong pipeline at the bottom of the stack!");
return {std::move(ResultPipeline)};
}
bool PassBuilder::parseModulePass(ModulePassManager &MPM,
const PipelineElement &E, bool VerifyEachPass,
bool DebugLogging) {
auto &Name = E.Name;
auto &InnerPipeline = E.InnerPipeline;
// First handle complex passes like the pass managers which carry pipelines.
if (!InnerPipeline.empty()) {
if (Name == "module") {
ModulePassManager NestedMPM(DebugLogging);
if (!parseModulePassPipeline(NestedMPM, InnerPipeline, VerifyEachPass,
DebugLogging))
return false;
MPM.addPass(std::move(NestedMPM));
return true;
}
if (Name == "cgscc") {
CGSCCPassManager CGPM(DebugLogging);
if (!parseCGSCCPassPipeline(CGPM, InnerPipeline, VerifyEachPass,
DebugLogging))
return false;
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM),
DebugLogging));
return true;
}
if (Name == "function") {
FunctionPassManager FPM(DebugLogging);
if (!parseFunctionPassPipeline(FPM, InnerPipeline, VerifyEachPass,
DebugLogging))
return false;
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
return true;
}
if (auto Count = parseRepeatPassName(Name)) {
ModulePassManager NestedMPM(DebugLogging);
if (!parseModulePassPipeline(NestedMPM, InnerPipeline, VerifyEachPass,
DebugLogging))
return false;
MPM.addPass(createRepeatedPass(*Count, std::move(NestedMPM)));
return true;
}
// Normal passes can't have pipelines.
return false;
}
// Manually handle aliases for pre-configured pipeline fragments.
if (Name.startswith("default") || Name.startswith("lto")) {
SmallVector<StringRef, 3> Matches;
if (!DefaultAliasRegex.match(Name, &Matches))
return false;
assert(Matches.size() == 3 && "Must capture two matched strings!");
OptimizationLevel L = StringSwitch<OptimizationLevel>(Matches[2])
.Case("O0", O0)
.Case("O1", O1)
.Case("O2", O2)
.Case("O3", O3)
.Case("Os", Os)
.Case("Oz", Oz);
if (L == O0)
// At O0 we do nothing at all!
return true;
if (Matches[1] == "default") {
MPM.addPass(buildPerModuleDefaultPipeline(L, DebugLogging));
} else if (Matches[1] == "lto-pre-link") {
MPM.addPass(buildLTOPreLinkDefaultPipeline(L, DebugLogging));
} else {
assert(Matches[1] == "lto" && "Not one of the matched options!");
MPM.addPass(buildLTODefaultPipeline(L, DebugLogging));
}
return true;
}
// Finally expand the basic registered passes from the .inc file.
#define MODULE_PASS(NAME, CREATE_PASS) \
if (Name == NAME) { \
MPM.addPass(CREATE_PASS); \
return true; \
}
#define MODULE_ANALYSIS(NAME, CREATE_PASS) \
if (Name == "require<" NAME ">") { \
MPM.addPass( \
RequireAnalysisPass< \
std::remove_reference<decltype(CREATE_PASS)>::type, Module>()); \
return true; \
} \
if (Name == "invalidate<" NAME ">") { \
MPM.addPass(InvalidateAnalysisPass< \
std::remove_reference<decltype(CREATE_PASS)>::type>()); \
return true; \
}
#include "PassRegistry.def"
return false;
}
bool PassBuilder::parseCGSCCPass(CGSCCPassManager &CGPM,
const PipelineElement &E, bool VerifyEachPass,
bool DebugLogging) {
auto &Name = E.Name;
auto &InnerPipeline = E.InnerPipeline;
// First handle complex passes like the pass managers which carry pipelines.
if (!InnerPipeline.empty()) {
if (Name == "cgscc") {
CGSCCPassManager NestedCGPM(DebugLogging);
if (!parseCGSCCPassPipeline(NestedCGPM, InnerPipeline, VerifyEachPass,
DebugLogging))
return false;
// Add the nested pass manager with the appropriate adaptor.
CGPM.addPass(std::move(NestedCGPM));
return true;
}
if (Name == "function") {
FunctionPassManager FPM(DebugLogging);
if (!parseFunctionPassPipeline(FPM, InnerPipeline, VerifyEachPass,
DebugLogging))
return false;
// Add the nested pass manager with the appropriate adaptor.
CGPM.addPass(
createCGSCCToFunctionPassAdaptor(std::move(FPM), DebugLogging));
return true;
}
if (auto Count = parseRepeatPassName(Name)) {
CGSCCPassManager NestedCGPM(DebugLogging);
if (!parseCGSCCPassPipeline(NestedCGPM, InnerPipeline, VerifyEachPass,
DebugLogging))
return false;
CGPM.addPass(createRepeatedPass(*Count, std::move(NestedCGPM)));
return true;
}
if (auto MaxRepetitions = parseDevirtPassName(Name)) {
CGSCCPassManager NestedCGPM(DebugLogging);
if (!parseCGSCCPassPipeline(NestedCGPM, InnerPipeline, VerifyEachPass,
DebugLogging))
return false;
CGPM.addPass(createDevirtSCCRepeatedPass(std::move(NestedCGPM),
*MaxRepetitions, DebugLogging));
return true;
}
// Normal passes can't have pipelines.
return false;
}
// Now expand the basic registered passes from the .inc file.
#define CGSCC_PASS(NAME, CREATE_PASS) \
if (Name == NAME) { \
CGPM.addPass(CREATE_PASS); \
return true; \
}
#define CGSCC_ANALYSIS(NAME, CREATE_PASS) \
if (Name == "require<" NAME ">") { \
CGPM.addPass(RequireAnalysisPass< \
std::remove_reference<decltype(CREATE_PASS)>::type, \
LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, \
CGSCCUpdateResult &>()); \
return true; \
} \
if (Name == "invalidate<" NAME ">") { \
CGPM.addPass(InvalidateAnalysisPass< \
std::remove_reference<decltype(CREATE_PASS)>::type>()); \
return true; \
}
#include "PassRegistry.def"
return false;
}
bool PassBuilder::parseFunctionPass(FunctionPassManager &FPM,
const PipelineElement &E,
bool VerifyEachPass, bool DebugLogging) {
auto &Name = E.Name;
auto &InnerPipeline = E.InnerPipeline;
// First handle complex passes like the pass managers which carry pipelines.
if (!InnerPipeline.empty()) {
if (Name == "function") {
FunctionPassManager NestedFPM(DebugLogging);
if (!parseFunctionPassPipeline(NestedFPM, InnerPipeline, VerifyEachPass,
DebugLogging))
return false;
// Add the nested pass manager with the appropriate adaptor.
FPM.addPass(std::move(NestedFPM));
return true;
}
if (Name == "loop") {
LoopPassManager LPM(DebugLogging);
if (!parseLoopPassPipeline(LPM, InnerPipeline, VerifyEachPass,
DebugLogging))
return false;
// Add the nested pass manager with the appropriate adaptor.
FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
return true;
}
if (auto Count = parseRepeatPassName(Name)) {
FunctionPassManager NestedFPM(DebugLogging);
if (!parseFunctionPassPipeline(NestedFPM, InnerPipeline, VerifyEachPass,
DebugLogging))
return false;
FPM.addPass(createRepeatedPass(*Count, std::move(NestedFPM)));
return true;
}
// Normal passes can't have pipelines.
return false;
}
// Now expand the basic registered passes from the .inc file.
#define FUNCTION_PASS(NAME, CREATE_PASS) \
if (Name == NAME) { \
FPM.addPass(CREATE_PASS); \
return true; \
}
#define FUNCTION_ANALYSIS(NAME, CREATE_PASS) \
if (Name == "require<" NAME ">") { \
FPM.addPass( \
RequireAnalysisPass< \
std::remove_reference<decltype(CREATE_PASS)>::type, Function>()); \
return true; \
} \
if (Name == "invalidate<" NAME ">") { \
FPM.addPass(InvalidateAnalysisPass< \
std::remove_reference<decltype(CREATE_PASS)>::type>()); \
return true; \
}
#include "PassRegistry.def"
return false;
}
bool PassBuilder::parseLoopPass(LoopPassManager &LPM, const PipelineElement &E,
bool VerifyEachPass, bool DebugLogging) {
StringRef Name = E.Name;
auto &InnerPipeline = E.InnerPipeline;
// First handle complex passes like the pass managers which carry pipelines.
if (!InnerPipeline.empty()) {
if (Name == "loop") {
LoopPassManager NestedLPM(DebugLogging);
if (!parseLoopPassPipeline(NestedLPM, InnerPipeline, VerifyEachPass,
DebugLogging))
return false;
// Add the nested pass manager with the appropriate adaptor.
LPM.addPass(std::move(NestedLPM));
return true;
}
if (auto Count = parseRepeatPassName(Name)) {
LoopPassManager NestedLPM(DebugLogging);
if (!parseLoopPassPipeline(NestedLPM, InnerPipeline, VerifyEachPass,
DebugLogging))
return false;
LPM.addPass(createRepeatedPass(*Count, std::move(NestedLPM)));
return true;
}
// Normal passes can't have pipelines.
return false;
}
// Now expand the basic registered passes from the .inc file.
#define LOOP_PASS(NAME, CREATE_PASS) \
if (Name == NAME) { \
LPM.addPass(CREATE_PASS); \
return true; \
}
#define LOOP_ANALYSIS(NAME, CREATE_PASS) \
if (Name == "require<" NAME ">") { \
LPM.addPass(RequireAnalysisPass< \
std::remove_reference<decltype(CREATE_PASS)>::type, Loop, \
LoopAnalysisManager, LoopStandardAnalysisResults &, \
LPMUpdater &>()); \
return true; \
} \
if (Name == "invalidate<" NAME ">") { \
LPM.addPass(InvalidateAnalysisPass< \
std::remove_reference<decltype(CREATE_PASS)>::type>()); \
return true; \
}
#include "PassRegistry.def"
return false;
}
bool PassBuilder::parseAAPassName(AAManager &AA, StringRef Name) {
#define MODULE_ALIAS_ANALYSIS(NAME, CREATE_PASS) \
if (Name == NAME) { \
AA.registerModuleAnalysis< \
std::remove_reference<decltype(CREATE_PASS)>::type>(); \
return true; \
}
#define FUNCTION_ALIAS_ANALYSIS(NAME, CREATE_PASS) \
if (Name == NAME) { \
AA.registerFunctionAnalysis< \
std::remove_reference<decltype(CREATE_PASS)>::type>(); \
return true; \
}
#include "PassRegistry.def"
return false;
}
bool PassBuilder::parseLoopPassPipeline(LoopPassManager &LPM,
ArrayRef<PipelineElement> Pipeline,
bool VerifyEachPass,
bool DebugLogging) {
for (const auto &Element : Pipeline) {
if (!parseLoopPass(LPM, Element, VerifyEachPass, DebugLogging))
return false;
// FIXME: No verifier support for Loop passes!
}
return true;
}
bool PassBuilder::parseFunctionPassPipeline(FunctionPassManager &FPM,
ArrayRef<PipelineElement> Pipeline,
bool VerifyEachPass,
bool DebugLogging) {
for (const auto &Element : Pipeline) {
if (!parseFunctionPass(FPM, Element, VerifyEachPass, DebugLogging))
return false;
if (VerifyEachPass)
FPM.addPass(VerifierPass());
}
return true;
}
bool PassBuilder::parseCGSCCPassPipeline(CGSCCPassManager &CGPM,
ArrayRef<PipelineElement> Pipeline,
bool VerifyEachPass,
bool DebugLogging) {
for (const auto &Element : Pipeline) {
if (!parseCGSCCPass(CGPM, Element, VerifyEachPass, DebugLogging))
return false;
// FIXME: No verifier support for CGSCC passes!
}
return true;
}
void PassBuilder::crossRegisterProxies(LoopAnalysisManager &LAM,
FunctionAnalysisManager &FAM,
CGSCCAnalysisManager &CGAM,
ModuleAnalysisManager &MAM) {
MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
MAM.registerPass([&] { return CGSCCAnalysisManagerModuleProxy(CGAM); });
CGAM.registerPass([&] { return ModuleAnalysisManagerCGSCCProxy(MAM); });
FAM.registerPass([&] { return CGSCCAnalysisManagerFunctionProxy(CGAM); });
FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });
FAM.registerPass([&] { return LoopAnalysisManagerFunctionProxy(LAM); });
LAM.registerPass([&] { return FunctionAnalysisManagerLoopProxy(FAM); });
}
bool PassBuilder::parseModulePassPipeline(ModulePassManager &MPM,
ArrayRef<PipelineElement> Pipeline,
bool VerifyEachPass,
bool DebugLogging) {
for (const auto &Element : Pipeline) {
if (!parseModulePass(MPM, Element, VerifyEachPass, DebugLogging))
return false;
if (VerifyEachPass)
MPM.addPass(VerifierPass());
}
return true;
}
// Primary pass pipeline description parsing routine.
// FIXME: Should this routine accept a TargetMachine or require the caller to
// pre-populate the analysis managers with target-specific stuff?
bool PassBuilder::parsePassPipeline(ModulePassManager &MPM,
StringRef PipelineText, bool VerifyEachPass,
bool DebugLogging) {
auto Pipeline = parsePipelineText(PipelineText);
if (!Pipeline || Pipeline->empty())
return false;
// If the first name isn't at the module layer, wrap the pipeline up
// automatically.
StringRef FirstName = Pipeline->front().Name;
if (!isModulePassName(FirstName)) {
if (isCGSCCPassName(FirstName))
Pipeline = {{"cgscc", std::move(*Pipeline)}};
else if (isFunctionPassName(FirstName))
Pipeline = {{"function", std::move(*Pipeline)}};
else if (isLoopPassName(FirstName))
Pipeline = {{"function", {{"loop", std::move(*Pipeline)}}}};
else
// Unknown pass name!
return false;
}
return parseModulePassPipeline(MPM, *Pipeline, VerifyEachPass, DebugLogging);
}
bool PassBuilder::parseAAPipeline(AAManager &AA, StringRef PipelineText) {
// If the pipeline just consists of the word 'default' just replace the AA
// manager with our default one.
if (PipelineText == "default") {
AA = buildDefaultAAPipeline();
return true;
}
while (!PipelineText.empty()) {
StringRef Name;
std::tie(Name, PipelineText) = PipelineText.split(',');
if (!parseAAPassName(AA, Name))
return false;
}
return true;
}