mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
d6568e2fdd
llvm-svn: 354240
337 lines
8.5 KiB
C++
337 lines
8.5 KiB
C++
//===- Optional.h - Simple variant for passing optional values --*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file provides Optional, a template class modeled in the spirit of
|
|
// OCaml's 'opt' variant. The idea is to strongly type whether or not
|
|
// a value can be optional.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_OPTIONAL_H
|
|
#define LLVM_ADT_OPTIONAL_H
|
|
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/Support/AlignOf.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/type_traits.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <new>
|
|
#include <utility>
|
|
|
|
namespace llvm {
|
|
|
|
class raw_ostream;
|
|
|
|
namespace optional_detail {
|
|
/// Storage for any type.
|
|
template <typename T, bool = is_trivially_copyable<T>::value> struct OptionalStorage {
|
|
AlignedCharArrayUnion<T> storage;
|
|
bool hasVal = false;
|
|
|
|
OptionalStorage() = default;
|
|
|
|
OptionalStorage(const T &y) : hasVal(true) { new (storage.buffer) T(y); }
|
|
OptionalStorage(const OptionalStorage &O) : hasVal(O.hasVal) {
|
|
if (hasVal)
|
|
new (storage.buffer) T(*O.getPointer());
|
|
}
|
|
OptionalStorage(T &&y) : hasVal(true) {
|
|
new (storage.buffer) T(std::forward<T>(y));
|
|
}
|
|
OptionalStorage(OptionalStorage &&O) : hasVal(O.hasVal) {
|
|
if (O.hasVal) {
|
|
new (storage.buffer) T(std::move(*O.getPointer()));
|
|
}
|
|
}
|
|
|
|
OptionalStorage &operator=(T &&y) {
|
|
if (hasVal)
|
|
*getPointer() = std::move(y);
|
|
else {
|
|
new (storage.buffer) T(std::move(y));
|
|
hasVal = true;
|
|
}
|
|
return *this;
|
|
}
|
|
OptionalStorage &operator=(OptionalStorage &&O) {
|
|
if (!O.hasVal)
|
|
reset();
|
|
else {
|
|
*this = std::move(*O.getPointer());
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
// FIXME: these assignments (& the equivalent const T&/const Optional& ctors)
|
|
// could be made more efficient by passing by value, possibly unifying them
|
|
// with the rvalue versions above - but this could place a different set of
|
|
// requirements (notably: the existence of a default ctor) when implemented
|
|
// in that way. Careful SFINAE to avoid such pitfalls would be required.
|
|
OptionalStorage &operator=(const T &y) {
|
|
if (hasVal)
|
|
*getPointer() = y;
|
|
else {
|
|
new (storage.buffer) T(y);
|
|
hasVal = true;
|
|
}
|
|
return *this;
|
|
}
|
|
OptionalStorage &operator=(const OptionalStorage &O) {
|
|
if (!O.hasVal)
|
|
reset();
|
|
else
|
|
*this = *O.getPointer();
|
|
return *this;
|
|
}
|
|
|
|
~OptionalStorage() { reset(); }
|
|
|
|
void reset() {
|
|
if (hasVal) {
|
|
(*getPointer()).~T();
|
|
hasVal = false;
|
|
}
|
|
}
|
|
|
|
T *getPointer() {
|
|
assert(hasVal);
|
|
return reinterpret_cast<T *>(storage.buffer);
|
|
}
|
|
const T *getPointer() const {
|
|
assert(hasVal);
|
|
return reinterpret_cast<const T *>(storage.buffer);
|
|
}
|
|
};
|
|
|
|
} // namespace optional_detail
|
|
|
|
template <typename T> class Optional {
|
|
optional_detail::OptionalStorage<T> Storage;
|
|
|
|
public:
|
|
using value_type = T;
|
|
|
|
constexpr Optional() {}
|
|
constexpr Optional(NoneType) {}
|
|
|
|
Optional(const T &y) : Storage(y) {}
|
|
Optional(const Optional &O) = default;
|
|
|
|
Optional(T &&y) : Storage(std::forward<T>(y)) {}
|
|
Optional(Optional &&O) = default;
|
|
|
|
Optional &operator=(T &&y) {
|
|
Storage = std::move(y);
|
|
return *this;
|
|
}
|
|
Optional &operator=(Optional &&O) = default;
|
|
|
|
/// Create a new object by constructing it in place with the given arguments.
|
|
template <typename... ArgTypes> void emplace(ArgTypes &&... Args) {
|
|
reset();
|
|
Storage.hasVal = true;
|
|
new (getPointer()) T(std::forward<ArgTypes>(Args)...);
|
|
}
|
|
|
|
static inline Optional create(const T *y) {
|
|
return y ? Optional(*y) : Optional();
|
|
}
|
|
|
|
Optional &operator=(const T &y) {
|
|
Storage = y;
|
|
return *this;
|
|
}
|
|
Optional &operator=(const Optional &O) = default;
|
|
|
|
void reset() { Storage.reset(); }
|
|
|
|
const T *getPointer() const {
|
|
assert(Storage.hasVal);
|
|
return reinterpret_cast<const T *>(Storage.storage.buffer);
|
|
}
|
|
T *getPointer() {
|
|
assert(Storage.hasVal);
|
|
return reinterpret_cast<T *>(Storage.storage.buffer);
|
|
}
|
|
const T &getValue() const LLVM_LVALUE_FUNCTION { return *getPointer(); }
|
|
T &getValue() LLVM_LVALUE_FUNCTION { return *getPointer(); }
|
|
|
|
explicit operator bool() const { return Storage.hasVal; }
|
|
bool hasValue() const { return Storage.hasVal; }
|
|
const T *operator->() const { return getPointer(); }
|
|
T *operator->() { return getPointer(); }
|
|
const T &operator*() const LLVM_LVALUE_FUNCTION { return *getPointer(); }
|
|
T &operator*() LLVM_LVALUE_FUNCTION { return *getPointer(); }
|
|
|
|
template <typename U>
|
|
constexpr T getValueOr(U &&value) const LLVM_LVALUE_FUNCTION {
|
|
return hasValue() ? getValue() : std::forward<U>(value);
|
|
}
|
|
|
|
#if LLVM_HAS_RVALUE_REFERENCE_THIS
|
|
T &&getValue() && { return std::move(*getPointer()); }
|
|
T &&operator*() && { return std::move(*getPointer()); }
|
|
|
|
template <typename U>
|
|
T getValueOr(U &&value) && {
|
|
return hasValue() ? std::move(getValue()) : std::forward<U>(value);
|
|
}
|
|
#endif
|
|
};
|
|
|
|
template <typename T, typename U>
|
|
bool operator==(const Optional<T> &X, const Optional<U> &Y) {
|
|
if (X && Y)
|
|
return *X == *Y;
|
|
return X.hasValue() == Y.hasValue();
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
bool operator!=(const Optional<T> &X, const Optional<U> &Y) {
|
|
return !(X == Y);
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
bool operator<(const Optional<T> &X, const Optional<U> &Y) {
|
|
if (X && Y)
|
|
return *X < *Y;
|
|
return X.hasValue() < Y.hasValue();
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
bool operator<=(const Optional<T> &X, const Optional<U> &Y) {
|
|
return !(Y < X);
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
bool operator>(const Optional<T> &X, const Optional<U> &Y) {
|
|
return Y < X;
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
bool operator>=(const Optional<T> &X, const Optional<U> &Y) {
|
|
return !(X < Y);
|
|
}
|
|
|
|
template<typename T>
|
|
bool operator==(const Optional<T> &X, NoneType) {
|
|
return !X;
|
|
}
|
|
|
|
template<typename T>
|
|
bool operator==(NoneType, const Optional<T> &X) {
|
|
return X == None;
|
|
}
|
|
|
|
template<typename T>
|
|
bool operator!=(const Optional<T> &X, NoneType) {
|
|
return !(X == None);
|
|
}
|
|
|
|
template<typename T>
|
|
bool operator!=(NoneType, const Optional<T> &X) {
|
|
return X != None;
|
|
}
|
|
|
|
template <typename T> bool operator<(const Optional<T> &X, NoneType) {
|
|
return false;
|
|
}
|
|
|
|
template <typename T> bool operator<(NoneType, const Optional<T> &X) {
|
|
return X.hasValue();
|
|
}
|
|
|
|
template <typename T> bool operator<=(const Optional<T> &X, NoneType) {
|
|
return !(None < X);
|
|
}
|
|
|
|
template <typename T> bool operator<=(NoneType, const Optional<T> &X) {
|
|
return !(X < None);
|
|
}
|
|
|
|
template <typename T> bool operator>(const Optional<T> &X, NoneType) {
|
|
return None < X;
|
|
}
|
|
|
|
template <typename T> bool operator>(NoneType, const Optional<T> &X) {
|
|
return X < None;
|
|
}
|
|
|
|
template <typename T> bool operator>=(const Optional<T> &X, NoneType) {
|
|
return None <= X;
|
|
}
|
|
|
|
template <typename T> bool operator>=(NoneType, const Optional<T> &X) {
|
|
return X <= None;
|
|
}
|
|
|
|
template <typename T> bool operator==(const Optional<T> &X, const T &Y) {
|
|
return X && *X == Y;
|
|
}
|
|
|
|
template <typename T> bool operator==(const T &X, const Optional<T> &Y) {
|
|
return Y && X == *Y;
|
|
}
|
|
|
|
template <typename T> bool operator!=(const Optional<T> &X, const T &Y) {
|
|
return !(X == Y);
|
|
}
|
|
|
|
template <typename T> bool operator!=(const T &X, const Optional<T> &Y) {
|
|
return !(X == Y);
|
|
}
|
|
|
|
template <typename T> bool operator<(const Optional<T> &X, const T &Y) {
|
|
return !X || *X < Y;
|
|
}
|
|
|
|
template <typename T> bool operator<(const T &X, const Optional<T> &Y) {
|
|
return Y && X < *Y;
|
|
}
|
|
|
|
template <typename T> bool operator<=(const Optional<T> &X, const T &Y) {
|
|
return !(Y < X);
|
|
}
|
|
|
|
template <typename T> bool operator<=(const T &X, const Optional<T> &Y) {
|
|
return !(Y < X);
|
|
}
|
|
|
|
template <typename T> bool operator>(const Optional<T> &X, const T &Y) {
|
|
return Y < X;
|
|
}
|
|
|
|
template <typename T> bool operator>(const T &X, const Optional<T> &Y) {
|
|
return Y < X;
|
|
}
|
|
|
|
template <typename T> bool operator>=(const Optional<T> &X, const T &Y) {
|
|
return !(X < Y);
|
|
}
|
|
|
|
template <typename T> bool operator>=(const T &X, const Optional<T> &Y) {
|
|
return !(X < Y);
|
|
}
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS, NoneType);
|
|
|
|
template <typename T, typename = decltype(std::declval<raw_ostream &>()
|
|
<< std::declval<const T &>())>
|
|
raw_ostream &operator<<(raw_ostream &OS, const Optional<T> &O) {
|
|
if (O)
|
|
OS << *O;
|
|
else
|
|
OS << None;
|
|
return OS;
|
|
}
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_ADT_OPTIONAL_H
|