mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 11:13:28 +01:00
b5aaa6b41e
This change implements lowering of references global symbols in PIC mode. This change implements lowering of global references in PIC mode using a new @GOT reference type. @GOT references can be used with function or data symbol names combined with the get_global instruction. In this case the linker will insert the wasm global that stores the address of the symbol (either in memory for data symbols or in the wasm table for function symbols). For now I'm continuing to use the R_WASM_GLOBAL_INDEX_LEB relocation type for this type of reference which means that this relocation type can refer to either a global or a function or data symbol. We could choose to introduce specific relocation types for GOT entries in the future. See the current dynamic linking proposal: https://github.com/WebAssembly/tool-conventions/blob/master/DynamicLinking.md Differential Revision: https://reviews.llvm.org/D54647 llvm-svn: 357022 |
||
---|---|---|
.. | ||
AsmParser | ||
Disassembler | ||
InstPrinter | ||
MCTargetDesc | ||
TargetInfo | ||
CMakeLists.txt | ||
known_gcc_test_failures.txt | ||
LLVMBuild.txt | ||
README.txt | ||
WebAssembly.h | ||
WebAssembly.td | ||
WebAssemblyAddMissingPrototypes.cpp | ||
WebAssemblyArgumentMove.cpp | ||
WebAssemblyAsmPrinter.cpp | ||
WebAssemblyAsmPrinter.h | ||
WebAssemblyCallIndirectFixup.cpp | ||
WebAssemblyCFGSort.cpp | ||
WebAssemblyCFGStackify.cpp | ||
WebAssemblyDebugValueManager.cpp | ||
WebAssemblyDebugValueManager.h | ||
WebAssemblyExceptionInfo.cpp | ||
WebAssemblyExceptionInfo.h | ||
WebAssemblyExplicitLocals.cpp | ||
WebAssemblyFastISel.cpp | ||
WebAssemblyFixFunctionBitcasts.cpp | ||
WebAssemblyFixIrreducibleControlFlow.cpp | ||
WebAssemblyFrameLowering.cpp | ||
WebAssemblyFrameLowering.h | ||
WebAssemblyInstrAtomics.td | ||
WebAssemblyInstrBulkMemory.td | ||
WebAssemblyInstrCall.td | ||
WebAssemblyInstrControl.td | ||
WebAssemblyInstrConv.td | ||
WebAssemblyInstrExceptRef.td | ||
WebAssemblyInstrFloat.td | ||
WebAssemblyInstrFormats.td | ||
WebAssemblyInstrInfo.cpp | ||
WebAssemblyInstrInfo.h | ||
WebAssemblyInstrInfo.td | ||
WebAssemblyInstrInteger.td | ||
WebAssemblyInstrMemory.td | ||
WebAssemblyInstrSIMD.td | ||
WebAssemblyISD.def | ||
WebAssemblyISelDAGToDAG.cpp | ||
WebAssemblyISelLowering.cpp | ||
WebAssemblyISelLowering.h | ||
WebAssemblyLateEHPrepare.cpp | ||
WebAssemblyLowerBrUnless.cpp | ||
WebAssemblyLowerEmscriptenEHSjLj.cpp | ||
WebAssemblyLowerGlobalDtors.cpp | ||
WebAssemblyMachineFunctionInfo.cpp | ||
WebAssemblyMachineFunctionInfo.h | ||
WebAssemblyMCInstLower.cpp | ||
WebAssemblyMCInstLower.h | ||
WebAssemblyMemIntrinsicResults.cpp | ||
WebAssemblyOptimizeLiveIntervals.cpp | ||
WebAssemblyOptimizeReturned.cpp | ||
WebAssemblyPeephole.cpp | ||
WebAssemblyPrepareForLiveIntervals.cpp | ||
WebAssemblyRegColoring.cpp | ||
WebAssemblyRegisterInfo.cpp | ||
WebAssemblyRegisterInfo.h | ||
WebAssemblyRegisterInfo.td | ||
WebAssemblyRegNumbering.cpp | ||
WebAssemblyRegStackify.cpp | ||
WebAssemblyReplacePhysRegs.cpp | ||
WebAssemblyRuntimeLibcallSignatures.cpp | ||
WebAssemblyRuntimeLibcallSignatures.h | ||
WebAssemblySelectionDAGInfo.cpp | ||
WebAssemblySelectionDAGInfo.h | ||
WebAssemblySetP2AlignOperands.cpp | ||
WebAssemblySubtarget.cpp | ||
WebAssemblySubtarget.h | ||
WebAssemblyTargetMachine.cpp | ||
WebAssemblyTargetMachine.h | ||
WebAssemblyTargetObjectFile.cpp | ||
WebAssemblyTargetObjectFile.h | ||
WebAssemblyTargetTransformInfo.cpp | ||
WebAssemblyTargetTransformInfo.h | ||
WebAssemblyUtilities.cpp | ||
WebAssemblyUtilities.h |
//===-- README.txt - Notes for WebAssembly code gen -----------------------===// This WebAssembly backend is presently under development. The most notable feature which is not yet stable is the ".o" file format. ".o" file support is needed for many common ways of using LLVM, such as using it through "clang -c", so this backend is not yet considered widely usable. However, this backend is usable within some language toolchain packages: Emscripten provides a C/C++ compilation environment that includes standard libraries, tools, and packaging for producing WebAssembly applications that can run in browsers and other environments. For more information, see the Emscripten documentation in general, and this page in particular: * https://github.com/kripken/emscripten/wiki/New-WebAssembly-Backend Rust provides WebAssembly support integrated into Cargo. There are two main options: - wasm32-unknown-unknown, which provides a relatively minimal environment that has an emphasis on being "native" - wasm32-unknown-emscripten, which uses Emscripten internally and provides standard C/C++ libraries, filesystem emulation, GL and SDL bindings For more information, see: * https://www.hellorust.com/ This backend does not yet support debug info. Full DWARF support needs a design for how DWARF should be represented in WebAssembly. Sourcemap support has an existing design and some corresponding browser implementations, so it just needs implementing in LLVM. Work-in-progress documentation for the ".o" file format is here: * https://github.com/WebAssembly/tool-conventions/blob/master/Linking.md A corresponding linker implementation is also under development: * https://lld.llvm.org/WebAssembly.html For more information on WebAssembly itself, see the home page: * https://webassembly.github.io/ The following documents contain some information on the semantics and binary encoding of WebAssembly itself: * https://github.com/WebAssembly/design/blob/master/Semantics.md * https://github.com/WebAssembly/design/blob/master/BinaryEncoding.md The backend is built, tested and archived on the following waterfall: https://wasm-stat.us The backend's bringup is done in part by using the GCC torture test suite, since it doesn't require C library support. Current known failures are in known_gcc_test_failures.txt, all other tests should pass. The waterfall will turn red if not. Once most of these pass, further testing will use LLVM's own test suite. The tests can be run locally using: https://github.com/WebAssembly/waterfall/blob/master/src/compile_torture_tests.py Some notes on ways that the generated code could be improved follow: //===---------------------------------------------------------------------===// Br, br_if, and br_table instructions can support having a value on the value stack across the jump (sometimes). We should (a) model this, and (b) extend the stackifier to utilize it. //===---------------------------------------------------------------------===// The min/max instructions aren't exactly a<b?a:b because of NaN and negative zero behavior. The ARM target has the same kind of min/max instructions and has implemented optimizations for them; we should do similar optimizations for WebAssembly. //===---------------------------------------------------------------------===// AArch64 runs SeparateConstOffsetFromGEPPass, followed by EarlyCSE and LICM. Would these be useful to run for WebAssembly too? Also, it has an option to run SimplifyCFG after running the AtomicExpand pass. Would this be useful for us too? //===---------------------------------------------------------------------===// Register stackification uses the VALUE_STACK physical register to impose ordering dependencies on instructions with stack operands. This is pessimistic; we should consider alternate ways to model stack dependencies. //===---------------------------------------------------------------------===// Lots of things could be done in WebAssemblyTargetTransformInfo.cpp. Similarly, there are numerous optimization-related hooks that can be overridden in WebAssemblyTargetLowering. //===---------------------------------------------------------------------===// Instead of the OptimizeReturned pass, which should consider preserving the "returned" attribute through to MachineInstrs and extending the MemIntrinsicResults pass to do this optimization on calls too. That would also let the WebAssemblyPeephole pass clean up dead defs for such calls, as it does for stores. //===---------------------------------------------------------------------===// Consider implementing optimizeSelect, optimizeCompareInstr, optimizeCondBranch, optimizeLoadInstr, and/or getMachineCombinerPatterns. //===---------------------------------------------------------------------===// Find a clean way to fix the problem which leads to the Shrink Wrapping pass being run after the WebAssembly PEI pass. //===---------------------------------------------------------------------===// When setting multiple local variables to the same constant, we currently get code like this: i32.const $4=, 0 i32.const $3=, 0 It could be done with a smaller encoding like this: i32.const $push5=, 0 local.tee $push6=, $4=, $pop5 local.copy $3=, $pop6 //===---------------------------------------------------------------------===// WebAssembly registers are implicitly initialized to zero. Explicit zeroing is therefore often redundant and could be optimized away. //===---------------------------------------------------------------------===// Small indices may use smaller encodings than large indices. WebAssemblyRegColoring and/or WebAssemblyRegRenumbering should sort registers according to their usage frequency to maximize the usage of smaller encodings. //===---------------------------------------------------------------------===// Many cases of irreducible control flow could be transformed more optimally than via the transform in WebAssemblyFixIrreducibleControlFlow.cpp. It may also be worthwhile to do transforms before register coloring, particularly when duplicating code, to allow register coloring to be aware of the duplication. //===---------------------------------------------------------------------===// WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more aggressively. //===---------------------------------------------------------------------===// WebAssemblyRegStackify is currently a greedy algorithm. This means that, for example, a binary operator will stackify with its user before its operands. However, if moving the binary operator to its user moves it to a place where its operands can't be moved to, it would be better to leave it in place, or perhaps move it up, so that it can stackify its operands. A binary operator has two operands and one result, so in such cases there could be a net win by preferring the operands. //===---------------------------------------------------------------------===// Instruction ordering has a significant influence on register stackification and coloring. Consider experimenting with the MachineScheduler (enable via enableMachineScheduler) and determine if it can be configured to schedule instructions advantageously for this purpose. //===---------------------------------------------------------------------===// WebAssemblyRegStackify currently assumes that the stack must be empty after an instruction with no return values, however wasm doesn't actually require this. WebAssemblyRegStackify could be extended, or possibly rewritten, to take full advantage of what WebAssembly permits. //===---------------------------------------------------------------------===// Add support for mergeable sections in the Wasm writer, such as for strings and floating-point constants. //===---------------------------------------------------------------------===// The function @dynamic_alloca_redzone in test/CodeGen/WebAssembly/userstack.ll ends up with a local.tee in its prolog which has an unused result, requiring an extra drop: global.get $push8=, 0 local.tee $push9=, 1, $pop8 drop $pop9 [...] The prologue code initially thinks it needs an FP register, but later it turns out to be unneeded, so one could either approach this by being more clever about not inserting code for an FP in the first place, or optimizing away the copy later. //===---------------------------------------------------------------------===//