1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/unittests/ExecutionEngine/MCJIT/MCJITMemoryManagerTest.cpp
Ahmed Charles 52ce0c101e Replace OwningPtr<T> with std::unique_ptr<T>.
This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.

llvm-svn: 203083
2014-03-06 05:51:42 +00:00

172 lines
4.8 KiB
C++

//===- MCJITMemoryManagerTest.cpp - Unit tests for the JIT memory manager -===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/ExecutionEngine/JIT.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
TEST(MCJITMemoryManagerTest, BasicAllocations) {
std::unique_ptr<SectionMemoryManager> MemMgr(new SectionMemoryManager());
uint8_t *code1 = MemMgr->allocateCodeSection(256, 0, 1, "");
uint8_t *data1 = MemMgr->allocateDataSection(256, 0, 2, "", true);
uint8_t *code2 = MemMgr->allocateCodeSection(256, 0, 3, "");
uint8_t *data2 = MemMgr->allocateDataSection(256, 0, 4, "", false);
EXPECT_NE((uint8_t*)0, code1);
EXPECT_NE((uint8_t*)0, code2);
EXPECT_NE((uint8_t*)0, data1);
EXPECT_NE((uint8_t*)0, data2);
// Initialize the data
for (unsigned i = 0; i < 256; ++i) {
code1[i] = 1;
code2[i] = 2;
data1[i] = 3;
data2[i] = 4;
}
// Verify the data (this is checking for overlaps in the addresses)
for (unsigned i = 0; i < 256; ++i) {
EXPECT_EQ(1, code1[i]);
EXPECT_EQ(2, code2[i]);
EXPECT_EQ(3, data1[i]);
EXPECT_EQ(4, data2[i]);
}
std::string Error;
EXPECT_FALSE(MemMgr->finalizeMemory(&Error));
}
TEST(MCJITMemoryManagerTest, LargeAllocations) {
std::unique_ptr<SectionMemoryManager> MemMgr(new SectionMemoryManager());
uint8_t *code1 = MemMgr->allocateCodeSection(0x100000, 0, 1, "");
uint8_t *data1 = MemMgr->allocateDataSection(0x100000, 0, 2, "", true);
uint8_t *code2 = MemMgr->allocateCodeSection(0x100000, 0, 3, "");
uint8_t *data2 = MemMgr->allocateDataSection(0x100000, 0, 4, "", false);
EXPECT_NE((uint8_t*)0, code1);
EXPECT_NE((uint8_t*)0, code2);
EXPECT_NE((uint8_t*)0, data1);
EXPECT_NE((uint8_t*)0, data2);
// Initialize the data
for (unsigned i = 0; i < 0x100000; ++i) {
code1[i] = 1;
code2[i] = 2;
data1[i] = 3;
data2[i] = 4;
}
// Verify the data (this is checking for overlaps in the addresses)
for (unsigned i = 0; i < 0x100000; ++i) {
EXPECT_EQ(1, code1[i]);
EXPECT_EQ(2, code2[i]);
EXPECT_EQ(3, data1[i]);
EXPECT_EQ(4, data2[i]);
}
std::string Error;
EXPECT_FALSE(MemMgr->finalizeMemory(&Error));
}
TEST(MCJITMemoryManagerTest, ManyAllocations) {
std::unique_ptr<SectionMemoryManager> MemMgr(new SectionMemoryManager());
uint8_t* code[10000];
uint8_t* data[10000];
for (unsigned i = 0; i < 10000; ++i) {
const bool isReadOnly = i % 2 == 0;
code[i] = MemMgr->allocateCodeSection(32, 0, 1, "");
data[i] = MemMgr->allocateDataSection(32, 0, 2, "", isReadOnly);
for (unsigned j = 0; j < 32; j++) {
code[i][j] = 1 + (i % 254);
data[i][j] = 2 + (i % 254);
}
EXPECT_NE((uint8_t *)0, code[i]);
EXPECT_NE((uint8_t *)0, data[i]);
}
// Verify the data (this is checking for overlaps in the addresses)
for (unsigned i = 0; i < 10000; ++i) {
for (unsigned j = 0; j < 32;j++ ) {
uint8_t ExpectedCode = 1 + (i % 254);
uint8_t ExpectedData = 2 + (i % 254);
EXPECT_EQ(ExpectedCode, code[i][j]);
EXPECT_EQ(ExpectedData, data[i][j]);
}
}
std::string Error;
EXPECT_FALSE(MemMgr->finalizeMemory(&Error));
}
TEST(MCJITMemoryManagerTest, ManyVariedAllocations) {
std::unique_ptr<SectionMemoryManager> MemMgr(new SectionMemoryManager());
uint8_t* code[10000];
uint8_t* data[10000];
for (unsigned i = 0; i < 10000; ++i) {
uintptr_t CodeSize = i % 16 + 1;
uintptr_t DataSize = i % 8 + 1;
bool isReadOnly = i % 3 == 0;
unsigned Align = 8 << (i % 4);
code[i] = MemMgr->allocateCodeSection(CodeSize, Align, i, "");
data[i] = MemMgr->allocateDataSection(DataSize, Align, i + 10000, "",
isReadOnly);
for (unsigned j = 0; j < CodeSize; j++) {
code[i][j] = 1 + (i % 254);
}
for (unsigned j = 0; j < DataSize; j++) {
data[i][j] = 2 + (i % 254);
}
EXPECT_NE((uint8_t *)0, code[i]);
EXPECT_NE((uint8_t *)0, data[i]);
uintptr_t CodeAlign = Align ? (uintptr_t)code[i] % Align : 0;
uintptr_t DataAlign = Align ? (uintptr_t)data[i] % Align : 0;
EXPECT_EQ((uintptr_t)0, CodeAlign);
EXPECT_EQ((uintptr_t)0, DataAlign);
}
for (unsigned i = 0; i < 10000; ++i) {
uintptr_t CodeSize = i % 16 + 1;
uintptr_t DataSize = i % 8 + 1;
for (unsigned j = 0; j < CodeSize; j++) {
uint8_t ExpectedCode = 1 + (i % 254);
EXPECT_EQ(ExpectedCode, code[i][j]);
}
for (unsigned j = 0; j < DataSize; j++) {
uint8_t ExpectedData = 2 + (i % 254);
EXPECT_EQ(ExpectedData, data[i][j]);
}
}
}
} // Namespace