1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 02:52:53 +02:00
llvm-mirror/lib/Target/PowerPC/PPCRegisterInfo.cpp
Stanislav Mekhanoshin dd3332e2e5 Change materializeFrameBaseRegister() to return register
The only caller of this function is in the LocalStackSlotAllocation
and it creates base register of class returned by the target's
getPointerRegClass(). AMDGPU wants to use a different reg class
here so let materializeFrameBaseRegister to just create and return
whatever it wants.

Differential Revision: https://reviews.llvm.org/D95268
2021-01-22 15:51:06 -08:00

1445 lines
56 KiB
C++

//===-- PPCRegisterInfo.cpp - PowerPC Register Information ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the PowerPC implementation of the TargetRegisterInfo
// class.
//
//===----------------------------------------------------------------------===//
#include "PPCRegisterInfo.h"
#include "PPCFrameLowering.h"
#include "PPCInstrBuilder.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCSubtarget.h"
#include "PPCTargetMachine.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <cstdlib>
using namespace llvm;
#define DEBUG_TYPE "reginfo"
#define GET_REGINFO_TARGET_DESC
#include "PPCGenRegisterInfo.inc"
STATISTIC(InflateGPRC, "Number of gprc inputs for getLargestLegalClass");
STATISTIC(InflateGP8RC, "Number of g8rc inputs for getLargestLegalClass");
static cl::opt<bool>
EnableBasePointer("ppc-use-base-pointer", cl::Hidden, cl::init(true),
cl::desc("Enable use of a base pointer for complex stack frames"));
static cl::opt<bool>
AlwaysBasePointer("ppc-always-use-base-pointer", cl::Hidden, cl::init(false),
cl::desc("Force the use of a base pointer in every function"));
static cl::opt<bool>
EnableGPRToVecSpills("ppc-enable-gpr-to-vsr-spills", cl::Hidden, cl::init(false),
cl::desc("Enable spills from gpr to vsr rather than stack"));
static cl::opt<bool>
StackPtrConst("ppc-stack-ptr-caller-preserved",
cl::desc("Consider R1 caller preserved so stack saves of "
"caller preserved registers can be LICM candidates"),
cl::init(true), cl::Hidden);
static cl::opt<unsigned>
MaxCRBitSpillDist("ppc-max-crbit-spill-dist",
cl::desc("Maximum search distance for definition of CR bit "
"spill on ppc"),
cl::Hidden, cl::init(100));
// Copies/moves of physical accumulators are expensive operations
// that should be avoided whenever possible. MMA instructions are
// meant to be used in performance-sensitive computational kernels.
// This option is provided, at least for the time being, to give the
// user a tool to detect this expensive operation and either rework
// their code or report a compiler bug if that turns out to be the
// cause.
#ifndef NDEBUG
static cl::opt<bool>
ReportAccMoves("ppc-report-acc-moves",
cl::desc("Emit information about accumulator register spills "
"and copies"),
cl::Hidden, cl::init(false));
#endif
static unsigned offsetMinAlignForOpcode(unsigned OpC);
PPCRegisterInfo::PPCRegisterInfo(const PPCTargetMachine &TM)
: PPCGenRegisterInfo(TM.isPPC64() ? PPC::LR8 : PPC::LR,
TM.isPPC64() ? 0 : 1,
TM.isPPC64() ? 0 : 1),
TM(TM) {
ImmToIdxMap[PPC::LD] = PPC::LDX; ImmToIdxMap[PPC::STD] = PPC::STDX;
ImmToIdxMap[PPC::LBZ] = PPC::LBZX; ImmToIdxMap[PPC::STB] = PPC::STBX;
ImmToIdxMap[PPC::LHZ] = PPC::LHZX; ImmToIdxMap[PPC::LHA] = PPC::LHAX;
ImmToIdxMap[PPC::LWZ] = PPC::LWZX; ImmToIdxMap[PPC::LWA] = PPC::LWAX;
ImmToIdxMap[PPC::LFS] = PPC::LFSX; ImmToIdxMap[PPC::LFD] = PPC::LFDX;
ImmToIdxMap[PPC::STH] = PPC::STHX; ImmToIdxMap[PPC::STW] = PPC::STWX;
ImmToIdxMap[PPC::STFS] = PPC::STFSX; ImmToIdxMap[PPC::STFD] = PPC::STFDX;
ImmToIdxMap[PPC::ADDI] = PPC::ADD4;
ImmToIdxMap[PPC::LWA_32] = PPC::LWAX_32;
// 64-bit
ImmToIdxMap[PPC::LHA8] = PPC::LHAX8; ImmToIdxMap[PPC::LBZ8] = PPC::LBZX8;
ImmToIdxMap[PPC::LHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::LWZ8] = PPC::LWZX8;
ImmToIdxMap[PPC::STB8] = PPC::STBX8; ImmToIdxMap[PPC::STH8] = PPC::STHX8;
ImmToIdxMap[PPC::STW8] = PPC::STWX8; ImmToIdxMap[PPC::STDU] = PPC::STDUX;
ImmToIdxMap[PPC::ADDI8] = PPC::ADD8;
// VSX
ImmToIdxMap[PPC::DFLOADf32] = PPC::LXSSPX;
ImmToIdxMap[PPC::DFLOADf64] = PPC::LXSDX;
ImmToIdxMap[PPC::SPILLTOVSR_LD] = PPC::SPILLTOVSR_LDX;
ImmToIdxMap[PPC::SPILLTOVSR_ST] = PPC::SPILLTOVSR_STX;
ImmToIdxMap[PPC::DFSTOREf32] = PPC::STXSSPX;
ImmToIdxMap[PPC::DFSTOREf64] = PPC::STXSDX;
ImmToIdxMap[PPC::LXV] = PPC::LXVX;
ImmToIdxMap[PPC::LXSD] = PPC::LXSDX;
ImmToIdxMap[PPC::LXSSP] = PPC::LXSSPX;
ImmToIdxMap[PPC::STXV] = PPC::STXVX;
ImmToIdxMap[PPC::STXSD] = PPC::STXSDX;
ImmToIdxMap[PPC::STXSSP] = PPC::STXSSPX;
// SPE
ImmToIdxMap[PPC::EVLDD] = PPC::EVLDDX;
ImmToIdxMap[PPC::EVSTDD] = PPC::EVSTDDX;
ImmToIdxMap[PPC::SPESTW] = PPC::SPESTWX;
ImmToIdxMap[PPC::SPELWZ] = PPC::SPELWZX;
}
/// getPointerRegClass - Return the register class to use to hold pointers.
/// This is used for addressing modes.
const TargetRegisterClass *
PPCRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind)
const {
// Note that PPCInstrInfo::FoldImmediate also directly uses this Kind value
// when it checks for ZERO folding.
if (Kind == 1) {
if (TM.isPPC64())
return &PPC::G8RC_NOX0RegClass;
return &PPC::GPRC_NOR0RegClass;
}
if (TM.isPPC64())
return &PPC::G8RCRegClass;
return &PPC::GPRCRegClass;
}
const MCPhysReg*
PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>();
if (Subtarget.isAIXABI() &&
(Subtarget.hasAltivec() && !TM.getAIXExtendedAltivecABI()))
report_fatal_error("the default AIX Altivec ABI is not yet "
"supported.");
if (MF->getFunction().getCallingConv() == CallingConv::AnyReg) {
if (!TM.isPPC64() && Subtarget.isAIXABI())
report_fatal_error("AnyReg unimplemented on 32-bit AIX.");
if (Subtarget.hasVSX())
return CSR_64_AllRegs_VSX_SaveList;
if (Subtarget.hasAltivec())
return CSR_64_AllRegs_Altivec_SaveList;
return CSR_64_AllRegs_SaveList;
}
// On PPC64, we might need to save r2 (but only if it is not reserved).
// We do not need to treat R2 as callee-saved when using PC-Relative calls
// because any direct uses of R2 will cause it to be reserved. If the function
// is a leaf or the only uses of R2 are implicit uses for calls, the calls
// will use the @notoc relocation which will cause this function to set the
// st_other bit to 1, thereby communicating to its caller that it arbitrarily
// clobbers the TOC.
bool SaveR2 = MF->getRegInfo().isAllocatable(PPC::X2) &&
!Subtarget.isUsingPCRelativeCalls();
// Cold calling convention CSRs.
if (MF->getFunction().getCallingConv() == CallingConv::Cold) {
if (Subtarget.isAIXABI())
report_fatal_error("Cold calling unimplemented on AIX.");
if (TM.isPPC64()) {
if (Subtarget.hasAltivec())
return SaveR2 ? CSR_SVR64_ColdCC_R2_Altivec_SaveList
: CSR_SVR64_ColdCC_Altivec_SaveList;
return SaveR2 ? CSR_SVR64_ColdCC_R2_SaveList
: CSR_SVR64_ColdCC_SaveList;
}
// 32-bit targets.
if (Subtarget.hasAltivec())
return CSR_SVR32_ColdCC_Altivec_SaveList;
else if (Subtarget.hasSPE())
return CSR_SVR32_ColdCC_SPE_SaveList;
return CSR_SVR32_ColdCC_SaveList;
}
// Standard calling convention CSRs.
if (TM.isPPC64()) {
if (Subtarget.hasAltivec())
return SaveR2 ? CSR_PPC64_R2_Altivec_SaveList
: CSR_PPC64_Altivec_SaveList;
return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList;
}
// 32-bit targets.
if (Subtarget.isAIXABI()) {
if (Subtarget.hasAltivec())
return CSR_AIX32_Altivec_SaveList;
return CSR_AIX32_SaveList;
}
if (Subtarget.hasAltivec())
return CSR_SVR432_Altivec_SaveList;
else if (Subtarget.hasSPE())
return CSR_SVR432_SPE_SaveList;
return CSR_SVR432_SaveList;
}
const uint32_t *
PPCRegisterInfo::getCallPreservedMask(const MachineFunction &MF,
CallingConv::ID CC) const {
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
if (CC == CallingConv::AnyReg) {
if (Subtarget.hasVSX())
return CSR_64_AllRegs_VSX_RegMask;
if (Subtarget.hasAltivec())
return CSR_64_AllRegs_Altivec_RegMask;
return CSR_64_AllRegs_RegMask;
}
if (Subtarget.isAIXABI()) {
return TM.isPPC64() ? (Subtarget.hasAltivec() ? CSR_PPC64_Altivec_RegMask
: CSR_PPC64_RegMask)
: (Subtarget.hasAltivec() ? CSR_AIX32_Altivec_RegMask
: CSR_AIX32_RegMask);
}
if (CC == CallingConv::Cold) {
return TM.isPPC64() ? (Subtarget.hasAltivec() ? CSR_SVR64_ColdCC_Altivec_RegMask
: CSR_SVR64_ColdCC_RegMask)
: (Subtarget.hasAltivec() ? CSR_SVR32_ColdCC_Altivec_RegMask
: (Subtarget.hasSPE()
? CSR_SVR32_ColdCC_SPE_RegMask
: CSR_SVR32_ColdCC_RegMask));
}
return TM.isPPC64() ? (Subtarget.hasAltivec() ? CSR_PPC64_Altivec_RegMask
: CSR_PPC64_RegMask)
: (Subtarget.hasAltivec()
? CSR_SVR432_Altivec_RegMask
: (Subtarget.hasSPE() ? CSR_SVR432_SPE_RegMask
: CSR_SVR432_RegMask));
}
const uint32_t*
PPCRegisterInfo::getNoPreservedMask() const {
return CSR_NoRegs_RegMask;
}
void PPCRegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const {
for (unsigned PseudoReg : {PPC::ZERO, PPC::ZERO8, PPC::RM})
Mask[PseudoReg / 32] &= ~(1u << (PseudoReg % 32));
}
BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
BitVector Reserved(getNumRegs());
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const PPCFrameLowering *TFI = getFrameLowering(MF);
// The ZERO register is not really a register, but the representation of r0
// when used in instructions that treat r0 as the constant 0.
markSuperRegs(Reserved, PPC::ZERO);
// The FP register is also not really a register, but is the representation
// of the frame pointer register used by ISD::FRAMEADDR.
markSuperRegs(Reserved, PPC::FP);
// The BP register is also not really a register, but is the representation
// of the base pointer register used by setjmp.
markSuperRegs(Reserved, PPC::BP);
// The counter registers must be reserved so that counter-based loops can
// be correctly formed (and the mtctr instructions are not DCE'd).
markSuperRegs(Reserved, PPC::CTR);
markSuperRegs(Reserved, PPC::CTR8);
markSuperRegs(Reserved, PPC::R1);
markSuperRegs(Reserved, PPC::LR);
markSuperRegs(Reserved, PPC::LR8);
markSuperRegs(Reserved, PPC::RM);
markSuperRegs(Reserved, PPC::VRSAVE);
// The SVR4 ABI reserves r2 and r13
if (Subtarget.isSVR4ABI()) {
// We only reserve r2 if we need to use the TOC pointer. If we have no
// explicit uses of the TOC pointer (meaning we're a leaf function with
// no constant-pool loads, etc.) and we have no potential uses inside an
// inline asm block, then we can treat r2 has an ordinary callee-saved
// register.
const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
if (!TM.isPPC64() || FuncInfo->usesTOCBasePtr() || MF.hasInlineAsm())
markSuperRegs(Reserved, PPC::R2); // System-reserved register
markSuperRegs(Reserved, PPC::R13); // Small Data Area pointer register
}
// Always reserve r2 on AIX for now.
// TODO: Make r2 allocatable on AIX/XCOFF for some leaf functions.
if (Subtarget.isAIXABI())
markSuperRegs(Reserved, PPC::R2); // System-reserved register
// On PPC64, r13 is the thread pointer. Never allocate this register.
if (TM.isPPC64())
markSuperRegs(Reserved, PPC::R13);
if (TFI->needsFP(MF))
markSuperRegs(Reserved, PPC::R31);
bool IsPositionIndependent = TM.isPositionIndependent();
if (hasBasePointer(MF)) {
if (Subtarget.is32BitELFABI() && IsPositionIndependent)
markSuperRegs(Reserved, PPC::R29);
else
markSuperRegs(Reserved, PPC::R30);
}
if (Subtarget.is32BitELFABI() && IsPositionIndependent)
markSuperRegs(Reserved, PPC::R30);
// Reserve Altivec registers when Altivec is unavailable.
if (!Subtarget.hasAltivec())
for (TargetRegisterClass::iterator I = PPC::VRRCRegClass.begin(),
IE = PPC::VRRCRegClass.end(); I != IE; ++I)
markSuperRegs(Reserved, *I);
assert(checkAllSuperRegsMarked(Reserved));
return Reserved;
}
bool PPCRegisterInfo::requiresFrameIndexScavenging(const MachineFunction &MF) const {
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const PPCInstrInfo *InstrInfo = Subtarget.getInstrInfo();
const MachineFrameInfo &MFI = MF.getFrameInfo();
const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo();
// If the callee saved info is invalid we have to default to true for safety.
if (!MFI.isCalleeSavedInfoValid())
return true;
// We will require the use of X-Forms because the frame is larger than what
// can be represented in signed 16 bits that fit in the immediate of a D-Form.
// If we need an X-Form then we need a register to store the address offset.
unsigned FrameSize = MFI.getStackSize();
// Signed 16 bits means that the FrameSize cannot be more than 15 bits.
if (FrameSize & ~0x7FFF)
return true;
// The callee saved info is valid so it can be traversed.
// Checking for registers that need saving that do not have load or store
// forms where the address offset is an immediate.
for (unsigned i = 0; i < Info.size(); i++) {
int FrIdx = Info[i].getFrameIdx();
unsigned Reg = Info[i].getReg();
const TargetRegisterClass *RC = getMinimalPhysRegClass(Reg);
unsigned Opcode = InstrInfo->getStoreOpcodeForSpill(RC);
if (!MFI.isFixedObjectIndex(FrIdx)) {
// This is not a fixed object. If it requires alignment then we may still
// need to use the XForm.
if (offsetMinAlignForOpcode(Opcode) > 1)
return true;
}
// This is eiher:
// 1) A fixed frame index object which we know are aligned so
// as long as we have a valid DForm/DSForm/DQForm (non XForm) we don't
// need to consider the alignment here.
// 2) A not fixed object but in that case we now know that the min required
// alignment is no more than 1 based on the previous check.
if (InstrInfo->isXFormMemOp(Opcode))
return true;
}
return false;
}
bool PPCRegisterInfo::isCallerPreservedPhysReg(MCRegister PhysReg,
const MachineFunction &MF) const {
assert(Register::isPhysicalRegister(PhysReg));
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const MachineFrameInfo &MFI = MF.getFrameInfo();
if (!TM.isPPC64())
return false;
if (!Subtarget.isSVR4ABI())
return false;
if (PhysReg == PPC::X2)
// X2 is guaranteed to be preserved within a function if it is reserved.
// The reason it's reserved is that it's the TOC pointer (and the function
// uses the TOC). In functions where it isn't reserved (i.e. leaf functions
// with no TOC access), we can't claim that it is preserved.
return (getReservedRegs(MF).test(PPC::X2));
if (StackPtrConst && (PhysReg == PPC::X1) && !MFI.hasVarSizedObjects()
&& !MFI.hasOpaqueSPAdjustment())
// The value of the stack pointer does not change within a function after
// the prologue and before the epilogue if there are no dynamic allocations
// and no inline asm which clobbers X1.
return true;
return false;
}
unsigned PPCRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
MachineFunction &MF) const {
const PPCFrameLowering *TFI = getFrameLowering(MF);
const unsigned DefaultSafety = 1;
switch (RC->getID()) {
default:
return 0;
case PPC::G8RC_NOX0RegClassID:
case PPC::GPRC_NOR0RegClassID:
case PPC::SPERCRegClassID:
case PPC::G8RCRegClassID:
case PPC::GPRCRegClassID: {
unsigned FP = TFI->hasFP(MF) ? 1 : 0;
return 32 - FP - DefaultSafety;
}
case PPC::F8RCRegClassID:
case PPC::F4RCRegClassID:
case PPC::VRRCRegClassID:
case PPC::VFRCRegClassID:
case PPC::VSLRCRegClassID:
return 32 - DefaultSafety;
case PPC::VSRCRegClassID:
case PPC::VSFRCRegClassID:
case PPC::VSSRCRegClassID:
return 64 - DefaultSafety;
case PPC::CRRCRegClassID:
return 8 - DefaultSafety;
}
}
const TargetRegisterClass *
PPCRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
const MachineFunction &MF) const {
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
if (Subtarget.hasVSX()) {
// With VSX, we can inflate various sub-register classes to the full VSX
// register set.
// For Power9 we allow the user to enable GPR to vector spills.
// FIXME: Currently limited to spilling GP8RC. A follow on patch will add
// support to spill GPRC.
if (TM.isELFv2ABI()) {
if (Subtarget.hasP9Vector() && EnableGPRToVecSpills &&
RC == &PPC::G8RCRegClass) {
InflateGP8RC++;
return &PPC::SPILLTOVSRRCRegClass;
}
if (RC == &PPC::GPRCRegClass && EnableGPRToVecSpills)
InflateGPRC++;
}
if (RC == &PPC::F8RCRegClass)
return &PPC::VSFRCRegClass;
else if (RC == &PPC::VRRCRegClass)
return &PPC::VSRCRegClass;
else if (RC == &PPC::F4RCRegClass && Subtarget.hasP8Vector())
return &PPC::VSSRCRegClass;
}
return TargetRegisterInfo::getLargestLegalSuperClass(RC, MF);
}
//===----------------------------------------------------------------------===//
// Stack Frame Processing methods
//===----------------------------------------------------------------------===//
/// lowerDynamicAlloc - Generate the code for allocating an object in the
/// current frame. The sequence of code will be in the general form
///
/// addi R0, SP, \#frameSize ; get the address of the previous frame
/// stwxu R0, SP, Rnegsize ; add and update the SP with the negated size
/// addi Rnew, SP, \#maxCalFrameSize ; get the top of the allocation
///
void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II) const {
// Get the instruction.
MachineInstr &MI = *II;
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
// Get the basic block's function.
MachineFunction &MF = *MBB.getParent();
// Get the frame info.
MachineFrameInfo &MFI = MF.getFrameInfo();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
// Get the instruction info.
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
// Determine whether 64-bit pointers are used.
bool LP64 = TM.isPPC64();
DebugLoc dl = MI.getDebugLoc();
// Get the maximum call stack size.
unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
Align MaxAlign = MFI.getMaxAlign();
assert(isAligned(MaxAlign, maxCallFrameSize) &&
"Maximum call-frame size not sufficiently aligned");
(void)MaxAlign;
const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
bool KillNegSizeReg = MI.getOperand(1).isKill();
Register NegSizeReg = MI.getOperand(1).getReg();
prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, Reg);
// Grow the stack and update the stack pointer link, then determine the
// address of new allocated space.
if (LP64) {
BuildMI(MBB, II, dl, TII.get(PPC::STDUX), PPC::X1)
.addReg(Reg, RegState::Kill)
.addReg(PPC::X1)
.addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg())
.addReg(PPC::X1)
.addImm(maxCallFrameSize);
} else {
BuildMI(MBB, II, dl, TII.get(PPC::STWUX), PPC::R1)
.addReg(Reg, RegState::Kill)
.addReg(PPC::R1)
.addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg())
.addReg(PPC::R1)
.addImm(maxCallFrameSize);
}
// Discard the DYNALLOC instruction.
MBB.erase(II);
}
/// To accomplish dynamic stack allocation, we have to calculate exact size
/// subtracted from the stack pointer according alignment information and get
/// previous frame pointer.
void PPCRegisterInfo::prepareDynamicAlloca(MachineBasicBlock::iterator II,
Register &NegSizeReg,
bool &KillNegSizeReg,
Register &FramePointer) const {
// Get the instruction.
MachineInstr &MI = *II;
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
// Get the basic block's function.
MachineFunction &MF = *MBB.getParent();
// Get the frame info.
MachineFrameInfo &MFI = MF.getFrameInfo();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
// Get the instruction info.
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
// Determine whether 64-bit pointers are used.
bool LP64 = TM.isPPC64();
DebugLoc dl = MI.getDebugLoc();
// Get the total frame size.
unsigned FrameSize = MFI.getStackSize();
// Get stack alignments.
const PPCFrameLowering *TFI = getFrameLowering(MF);
Align TargetAlign = TFI->getStackAlign();
Align MaxAlign = MFI.getMaxAlign();
// Determine the previous frame's address. If FrameSize can't be
// represented as 16 bits or we need special alignment, then we load the
// previous frame's address from 0(SP). Why not do an addis of the hi?
// Because R0 is our only safe tmp register and addi/addis treat R0 as zero.
// Constructing the constant and adding would take 3 instructions.
// Fortunately, a frame greater than 32K is rare.
const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
if (MaxAlign < TargetAlign && isInt<16>(FrameSize)) {
if (LP64)
BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), FramePointer)
.addReg(PPC::X31)
.addImm(FrameSize);
else
BuildMI(MBB, II, dl, TII.get(PPC::ADDI), FramePointer)
.addReg(PPC::R31)
.addImm(FrameSize);
} else if (LP64) {
BuildMI(MBB, II, dl, TII.get(PPC::LD), FramePointer)
.addImm(0)
.addReg(PPC::X1);
} else {
BuildMI(MBB, II, dl, TII.get(PPC::LWZ), FramePointer)
.addImm(0)
.addReg(PPC::R1);
}
// Determine the actual NegSizeReg according to alignment info.
if (LP64) {
if (MaxAlign > TargetAlign) {
unsigned UnalNegSizeReg = NegSizeReg;
NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
// Unfortunately, there is no andi, only andi., and we can't insert that
// here because we might clobber cr0 while it is live.
BuildMI(MBB, II, dl, TII.get(PPC::LI8), NegSizeReg)
.addImm(~(MaxAlign.value() - 1));
unsigned NegSizeReg1 = NegSizeReg;
NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
BuildMI(MBB, II, dl, TII.get(PPC::AND8), NegSizeReg)
.addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
.addReg(NegSizeReg1, RegState::Kill);
KillNegSizeReg = true;
}
} else {
if (MaxAlign > TargetAlign) {
unsigned UnalNegSizeReg = NegSizeReg;
NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
// Unfortunately, there is no andi, only andi., and we can't insert that
// here because we might clobber cr0 while it is live.
BuildMI(MBB, II, dl, TII.get(PPC::LI), NegSizeReg)
.addImm(~(MaxAlign.value() - 1));
unsigned NegSizeReg1 = NegSizeReg;
NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
BuildMI(MBB, II, dl, TII.get(PPC::AND), NegSizeReg)
.addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
.addReg(NegSizeReg1, RegState::Kill);
KillNegSizeReg = true;
}
}
}
void PPCRegisterInfo::lowerPrepareProbedAlloca(
MachineBasicBlock::iterator II) const {
MachineInstr &MI = *II;
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
// Get the basic block's function.
MachineFunction &MF = *MBB.getParent();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
// Get the instruction info.
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
// Determine whether 64-bit pointers are used.
bool LP64 = TM.isPPC64();
DebugLoc dl = MI.getDebugLoc();
Register FramePointer = MI.getOperand(0).getReg();
const Register ActualNegSizeReg = MI.getOperand(1).getReg();
bool KillNegSizeReg = MI.getOperand(2).isKill();
Register NegSizeReg = MI.getOperand(2).getReg();
const MCInstrDesc &CopyInst = TII.get(LP64 ? PPC::OR8 : PPC::OR);
// RegAllocator might allocate FramePointer and NegSizeReg in the same phyreg.
if (FramePointer == NegSizeReg) {
assert(KillNegSizeReg && "FramePointer is a def and NegSizeReg is an use, "
"NegSizeReg should be killed");
// FramePointer is clobbered earlier than the use of NegSizeReg in
// prepareDynamicAlloca, save NegSizeReg in ActualNegSizeReg to avoid
// misuse.
BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
.addReg(NegSizeReg)
.addReg(NegSizeReg);
NegSizeReg = ActualNegSizeReg;
KillNegSizeReg = false;
}
prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, FramePointer);
// NegSizeReg might be updated in prepareDynamicAlloca if MaxAlign >
// TargetAlign.
if (NegSizeReg != ActualNegSizeReg)
BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
.addReg(NegSizeReg)
.addReg(NegSizeReg);
MBB.erase(II);
}
void PPCRegisterInfo::lowerDynamicAreaOffset(
MachineBasicBlock::iterator II) const {
// Get the instruction.
MachineInstr &MI = *II;
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
// Get the basic block's function.
MachineFunction &MF = *MBB.getParent();
// Get the frame info.
MachineFrameInfo &MFI = MF.getFrameInfo();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
// Get the instruction info.
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
bool is64Bit = TM.isPPC64();
DebugLoc dl = MI.getDebugLoc();
BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI),
MI.getOperand(0).getReg())
.addImm(maxCallFrameSize);
MBB.erase(II);
}
/// lowerCRSpilling - Generate the code for spilling a CR register. Instead of
/// reserving a whole register (R0), we scrounge for one here. This generates
/// code like this:
///
/// mfcr rA ; Move the conditional register into GPR rA.
/// rlwinm rA, rA, SB, 0, 31 ; Shift the bits left so they are in CR0's slot.
/// stw rA, FI ; Store rA to the frame.
///
void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II,
unsigned FrameIndex) const {
// Get the instruction.
MachineInstr &MI = *II; // ; SPILL_CR <SrcReg>, <offset>
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
bool LP64 = TM.isPPC64();
const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
Register SrcReg = MI.getOperand(0).getReg();
// We need to store the CR in the low 4-bits of the saved value. First, issue
// an MFOCRF to save all of the CRBits and, if needed, kill the SrcReg.
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
.addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill()));
// If the saved register wasn't CR0, shift the bits left so that they are in
// CR0's slot.
if (SrcReg != PPC::CR0) {
Register Reg1 = Reg;
Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
// rlwinm rA, rA, ShiftBits, 0, 31.
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
.addReg(Reg1, RegState::Kill)
.addImm(getEncodingValue(SrcReg) * 4)
.addImm(0)
.addImm(31);
}
addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
.addReg(Reg, RegState::Kill),
FrameIndex);
// Discard the pseudo instruction.
MBB.erase(II);
}
void PPCRegisterInfo::lowerCRRestore(MachineBasicBlock::iterator II,
unsigned FrameIndex) const {
// Get the instruction.
MachineInstr &MI = *II; // ; <DestReg> = RESTORE_CR <offset>
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
bool LP64 = TM.isPPC64();
const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
Register DestReg = MI.getOperand(0).getReg();
assert(MI.definesRegister(DestReg) &&
"RESTORE_CR does not define its destination");
addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
Reg), FrameIndex);
// If the reloaded register isn't CR0, shift the bits right so that they are
// in the right CR's slot.
if (DestReg != PPC::CR0) {
Register Reg1 = Reg;
Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
unsigned ShiftBits = getEncodingValue(DestReg)*4;
// rlwinm r11, r11, 32-ShiftBits, 0, 31.
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
.addReg(Reg1, RegState::Kill).addImm(32-ShiftBits).addImm(0)
.addImm(31);
}
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), DestReg)
.addReg(Reg, RegState::Kill);
// Discard the pseudo instruction.
MBB.erase(II);
}
void PPCRegisterInfo::lowerCRBitSpilling(MachineBasicBlock::iterator II,
unsigned FrameIndex) const {
// Get the instruction.
MachineInstr &MI = *II; // ; SPILL_CRBIT <SrcReg>, <offset>
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
const TargetRegisterInfo* TRI = Subtarget.getRegisterInfo();
DebugLoc dl = MI.getDebugLoc();
bool LP64 = TM.isPPC64();
const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
Register SrcReg = MI.getOperand(0).getReg();
// Search up the BB to find the definition of the CR bit.
MachineBasicBlock::reverse_iterator Ins = MI;
MachineBasicBlock::reverse_iterator Rend = MBB.rend();
++Ins;
unsigned CRBitSpillDistance = 0;
bool SeenUse = false;
for (; Ins != Rend; ++Ins) {
// Definition found.
if (Ins->modifiesRegister(SrcReg, TRI))
break;
// Use found.
if (Ins->readsRegister(SrcReg, TRI))
SeenUse = true;
// Unable to find CR bit definition within maximum search distance.
if (CRBitSpillDistance == MaxCRBitSpillDist) {
Ins = MI;
break;
}
// Skip debug instructions when counting CR bit spill distance.
if (!Ins->isDebugInstr())
CRBitSpillDistance++;
}
// Unable to find the definition of the CR bit in the MBB.
if (Ins == MBB.rend())
Ins = MI;
bool SpillsKnownBit = false;
// There is no need to extract the CR bit if its value is already known.
switch (Ins->getOpcode()) {
case PPC::CRUNSET:
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LI8 : PPC::LI), Reg)
.addImm(0);
SpillsKnownBit = true;
break;
case PPC::CRSET:
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LIS8 : PPC::LIS), Reg)
.addImm(-32768);
SpillsKnownBit = true;
break;
default:
// On Power10, we can use SETNBC to spill all CR bits. SETNBC will set all
// bits (specifically, it produces a -1 if the CR bit is set). Ultimately,
// the bit that is of importance to us is bit 32 (bit 0 of a 32-bit
// register), and SETNBC will set this.
if (Subtarget.isISA3_1()) {
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETNBC8 : PPC::SETNBC), Reg)
.addReg(SrcReg, RegState::Undef);
break;
}
// On Power9, we can use SETB to extract the LT bit. This only works for
// the LT bit since SETB produces -1/1/0 for LT/GT/<neither>. So the value
// of the bit we care about (32-bit sign bit) will be set to the value of
// the LT bit (regardless of the other bits in the CR field).
if (Subtarget.isISA3_0()) {
if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR1LT ||
SrcReg == PPC::CR2LT || SrcReg == PPC::CR3LT ||
SrcReg == PPC::CR4LT || SrcReg == PPC::CR5LT ||
SrcReg == PPC::CR6LT || SrcReg == PPC::CR7LT) {
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETB8 : PPC::SETB), Reg)
.addReg(getCRFromCRBit(SrcReg), RegState::Undef);
break;
}
}
// We need to move the CR field that contains the CR bit we are spilling.
// The super register may not be explicitly defined (i.e. it can be defined
// by a CR-logical that only defines the subreg) so we state that the CR
// field is undef. Also, in order to preserve the kill flag on the CR bit,
// we add it as an implicit use.
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
.addReg(getCRFromCRBit(SrcReg), RegState::Undef)
.addReg(SrcReg,
RegState::Implicit | getKillRegState(MI.getOperand(0).isKill()));
// If the saved register wasn't CR0LT, shift the bits left so that the bit
// to store is the first one. Mask all but that bit.
Register Reg1 = Reg;
Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
// rlwinm rA, rA, ShiftBits, 0, 0.
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
.addReg(Reg1, RegState::Kill)
.addImm(getEncodingValue(SrcReg))
.addImm(0).addImm(0);
}
addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
.addReg(Reg, RegState::Kill),
FrameIndex);
bool KillsCRBit = MI.killsRegister(SrcReg, TRI);
// Discard the pseudo instruction.
MBB.erase(II);
if (SpillsKnownBit && KillsCRBit && !SeenUse) {
Ins->setDesc(TII.get(PPC::UNENCODED_NOP));
Ins->RemoveOperand(0);
}
}
void PPCRegisterInfo::lowerCRBitRestore(MachineBasicBlock::iterator II,
unsigned FrameIndex) const {
// Get the instruction.
MachineInstr &MI = *II; // ; <DestReg> = RESTORE_CRBIT <offset>
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
bool LP64 = TM.isPPC64();
const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
Register DestReg = MI.getOperand(0).getReg();
assert(MI.definesRegister(DestReg) &&
"RESTORE_CRBIT does not define its destination");
addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
Reg), FrameIndex);
BuildMI(MBB, II, dl, TII.get(TargetOpcode::IMPLICIT_DEF), DestReg);
Register RegO = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), RegO)
.addReg(getCRFromCRBit(DestReg));
unsigned ShiftBits = getEncodingValue(DestReg);
// rlwimi r11, r10, 32-ShiftBits, ..., ...
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWIMI8 : PPC::RLWIMI), RegO)
.addReg(RegO, RegState::Kill)
.addReg(Reg, RegState::Kill)
.addImm(ShiftBits ? 32 - ShiftBits : 0)
.addImm(ShiftBits)
.addImm(ShiftBits);
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF),
getCRFromCRBit(DestReg))
.addReg(RegO, RegState::Kill)
// Make sure we have a use dependency all the way through this
// sequence of instructions. We can't have the other bits in the CR
// modified in between the mfocrf and the mtocrf.
.addReg(getCRFromCRBit(DestReg), RegState::Implicit);
// Discard the pseudo instruction.
MBB.erase(II);
}
void PPCRegisterInfo::emitAccCopyInfo(MachineBasicBlock &MBB,
MCRegister DestReg, MCRegister SrcReg) {
#ifdef NDEBUG
return;
#else
if (ReportAccMoves) {
std::string Dest = PPC::ACCRCRegClass.contains(DestReg) ? "acc" : "uacc";
std::string Src = PPC::ACCRCRegClass.contains(SrcReg) ? "acc" : "uacc";
dbgs() << "Emitting copy from " << Src << " to " << Dest << ":\n";
MBB.dump();
}
#endif
}
static void emitAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsPrimed,
bool IsRestore) {
#ifdef NDEBUG
return;
#else
if (ReportAccMoves) {
dbgs() << "Emitting " << (IsPrimed ? "acc" : "uacc") << " register "
<< (IsRestore ? "restore" : "spill") << ":\n";
MBB.dump();
}
#endif
}
/// lowerACCSpilling - Generate the code for spilling the accumulator register.
/// Similarly to other spills/reloads that use pseudo-ops, we do not actually
/// eliminate the FrameIndex here nor compute the stack offset. We simply
/// create a real instruction with an FI and rely on eliminateFrameIndex to
/// handle the FI elimination.
void PPCRegisterInfo::lowerACCSpilling(MachineBasicBlock::iterator II,
unsigned FrameIndex) const {
MachineInstr &MI = *II; // SPILL_ACC <SrcReg>, <offset>
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
Register SrcReg = MI.getOperand(0).getReg();
bool IsKilled = MI.getOperand(0).isKill();
bool IsPrimed = PPC::ACCRCRegClass.contains(SrcReg);
Register Reg =
PPC::VSRp0 + (SrcReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
bool IsLittleEndian = Subtarget.isLittleEndian();
emitAccSpillRestoreInfo(MBB, IsPrimed, false);
// De-prime the register being spilled, create two stores for the pair
// subregisters accounting for endianness and then re-prime the register if
// it isn't killed. This uses the Offset parameter to addFrameReference() to
// adjust the offset of the store that is within the 64-byte stack slot.
if (IsPrimed)
BuildMI(MBB, II, DL, TII.get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
.addReg(Reg, getKillRegState(IsKilled)),
FrameIndex, IsLittleEndian ? 32 : 0);
addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
.addReg(Reg + 1, getKillRegState(IsKilled)),
FrameIndex, IsLittleEndian ? 0 : 32);
if (IsPrimed && !IsKilled)
BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), SrcReg).addReg(SrcReg);
// Discard the pseudo instruction.
MBB.erase(II);
}
/// lowerACCRestore - Generate the code to restore the accumulator register.
void PPCRegisterInfo::lowerACCRestore(MachineBasicBlock::iterator II,
unsigned FrameIndex) const {
MachineInstr &MI = *II; // <DestReg> = RESTORE_ACC <offset>
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
Register DestReg = MI.getOperand(0).getReg();
assert(MI.definesRegister(DestReg) &&
"RESTORE_ACC does not define its destination");
bool IsPrimed = PPC::ACCRCRegClass.contains(DestReg);
Register Reg =
PPC::VSRp0 + (DestReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
bool IsLittleEndian = Subtarget.isLittleEndian();
emitAccSpillRestoreInfo(MBB, IsPrimed, true);
// Create two loads for the pair subregisters accounting for endianness and
// then prime the accumulator register being restored.
addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg),
FrameIndex, IsLittleEndian ? 32 : 0);
addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg + 1),
FrameIndex, IsLittleEndian ? 0 : 32);
if (IsPrimed)
BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), DestReg).addReg(DestReg);
// Discard the pseudo instruction.
MBB.erase(II);
}
bool PPCRegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
Register Reg, int &FrameIdx) const {
// For the nonvolatile condition registers (CR2, CR3, CR4) return true to
// prevent allocating an additional frame slot.
// For 64-bit ELF and AIX, the CR save area is in the linkage area at SP+8,
// for 32-bit AIX the CR save area is in the linkage area at SP+4.
// We have created a FrameIndex to that spill slot to keep the CalleSaveInfos
// valid.
// For 32-bit ELF, we have previously created the stack slot if needed, so
// return its FrameIdx.
if (PPC::CR2 <= Reg && Reg <= PPC::CR4) {
FrameIdx = MF.getInfo<PPCFunctionInfo>()->getCRSpillFrameIndex();
return true;
}
return false;
}
// If the offset must be a multiple of some value, return what that value is.
static unsigned offsetMinAlignForOpcode(unsigned OpC) {
switch (OpC) {
default:
return 1;
case PPC::LWA:
case PPC::LWA_32:
case PPC::LD:
case PPC::LDU:
case PPC::STD:
case PPC::STDU:
case PPC::DFLOADf32:
case PPC::DFLOADf64:
case PPC::DFSTOREf32:
case PPC::DFSTOREf64:
case PPC::LXSD:
case PPC::LXSSP:
case PPC::STXSD:
case PPC::STXSSP:
return 4;
case PPC::EVLDD:
case PPC::EVSTDD:
return 8;
case PPC::LXV:
case PPC::STXV:
return 16;
}
}
// If the offset must be a multiple of some value, return what that value is.
static unsigned offsetMinAlign(const MachineInstr &MI) {
unsigned OpC = MI.getOpcode();
return offsetMinAlignForOpcode(OpC);
}
// Return the OffsetOperandNo given the FIOperandNum (and the instruction).
static unsigned getOffsetONFromFION(const MachineInstr &MI,
unsigned FIOperandNum) {
// Take into account whether it's an add or mem instruction
unsigned OffsetOperandNo = (FIOperandNum == 2) ? 1 : 2;
if (MI.isInlineAsm())
OffsetOperandNo = FIOperandNum - 1;
else if (MI.getOpcode() == TargetOpcode::STACKMAP ||
MI.getOpcode() == TargetOpcode::PATCHPOINT)
OffsetOperandNo = FIOperandNum + 1;
return OffsetOperandNo;
}
void
PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
int SPAdj, unsigned FIOperandNum,
RegScavenger *RS) const {
assert(SPAdj == 0 && "Unexpected");
// Get the instruction.
MachineInstr &MI = *II;
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
// Get the basic block's function.
MachineFunction &MF = *MBB.getParent();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
// Get the instruction info.
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
// Get the frame info.
MachineFrameInfo &MFI = MF.getFrameInfo();
DebugLoc dl = MI.getDebugLoc();
unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
// Get the frame index.
int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
// Get the frame pointer save index. Users of this index are primarily
// DYNALLOC instructions.
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
int FPSI = FI->getFramePointerSaveIndex();
// Get the instruction opcode.
unsigned OpC = MI.getOpcode();
if ((OpC == PPC::DYNAREAOFFSET || OpC == PPC::DYNAREAOFFSET8)) {
lowerDynamicAreaOffset(II);
return;
}
// Special case for dynamic alloca.
if (FPSI && FrameIndex == FPSI &&
(OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) {
lowerDynamicAlloc(II);
return;
}
if (FPSI && FrameIndex == FPSI &&
(OpC == PPC::PREPARE_PROBED_ALLOCA_64 ||
OpC == PPC::PREPARE_PROBED_ALLOCA_32 ||
OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 ||
OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32)) {
lowerPrepareProbedAlloca(II);
return;
}
// Special case for pseudo-ops SPILL_CR and RESTORE_CR, etc.
if (OpC == PPC::SPILL_CR) {
lowerCRSpilling(II, FrameIndex);
return;
} else if (OpC == PPC::RESTORE_CR) {
lowerCRRestore(II, FrameIndex);
return;
} else if (OpC == PPC::SPILL_CRBIT) {
lowerCRBitSpilling(II, FrameIndex);
return;
} else if (OpC == PPC::RESTORE_CRBIT) {
lowerCRBitRestore(II, FrameIndex);
return;
} else if (OpC == PPC::SPILL_ACC || OpC == PPC::SPILL_UACC) {
lowerACCSpilling(II, FrameIndex);
return;
} else if (OpC == PPC::RESTORE_ACC || OpC == PPC::RESTORE_UACC) {
lowerACCRestore(II, FrameIndex);
return;
}
// Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP).
MI.getOperand(FIOperandNum).ChangeToRegister(
FrameIndex < 0 ? getBaseRegister(MF) : getFrameRegister(MF), false);
// If the instruction is not present in ImmToIdxMap, then it has no immediate
// form (and must be r+r).
bool noImmForm = !MI.isInlineAsm() && OpC != TargetOpcode::STACKMAP &&
OpC != TargetOpcode::PATCHPOINT && !ImmToIdxMap.count(OpC);
// Now add the frame object offset to the offset from r1.
int Offset = MFI.getObjectOffset(FrameIndex);
Offset += MI.getOperand(OffsetOperandNo).getImm();
// If we're not using a Frame Pointer that has been set to the value of the
// SP before having the stack size subtracted from it, then add the stack size
// to Offset to get the correct offset.
// Naked functions have stack size 0, although getStackSize may not reflect
// that because we didn't call all the pieces that compute it for naked
// functions.
if (!MF.getFunction().hasFnAttribute(Attribute::Naked)) {
if (!(hasBasePointer(MF) && FrameIndex < 0))
Offset += MFI.getStackSize();
}
// If we can, encode the offset directly into the instruction. If this is a
// normal PPC "ri" instruction, any 16-bit value can be safely encoded. If
// this is a PPC64 "ix" instruction, only a 16-bit value with the low two bits
// clear can be encoded. This is extremely uncommon, because normally you
// only "std" to a stack slot that is at least 4-byte aligned, but it can
// happen in invalid code.
assert(OpC != PPC::DBG_VALUE &&
"This should be handled in a target-independent way");
bool OffsetFitsMnemonic = (OpC == PPC::EVSTDD || OpC == PPC::EVLDD) ?
isUInt<8>(Offset) :
isInt<16>(Offset);
if (!noImmForm && ((OffsetFitsMnemonic &&
((Offset % offsetMinAlign(MI)) == 0)) ||
OpC == TargetOpcode::STACKMAP ||
OpC == TargetOpcode::PATCHPOINT)) {
MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
return;
}
// The offset doesn't fit into a single register, scavenge one to build the
// offset in.
bool is64Bit = TM.isPPC64();
const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
const TargetRegisterClass *RC = is64Bit ? G8RC : GPRC;
Register SRegHi = MF.getRegInfo().createVirtualRegister(RC),
SReg = MF.getRegInfo().createVirtualRegister(RC);
// Insert a set of rA with the full offset value before the ld, st, or add
if (isInt<16>(Offset))
BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), SReg)
.addImm(Offset);
else {
BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LIS8 : PPC::LIS), SRegHi)
.addImm(Offset >> 16);
BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::ORI8 : PPC::ORI), SReg)
.addReg(SRegHi, RegState::Kill)
.addImm(Offset);
}
// Convert into indexed form of the instruction:
//
// sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0
// addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0
unsigned OperandBase;
if (noImmForm)
OperandBase = 1;
else if (OpC != TargetOpcode::INLINEASM &&
OpC != TargetOpcode::INLINEASM_BR) {
assert(ImmToIdxMap.count(OpC) &&
"No indexed form of load or store available!");
unsigned NewOpcode = ImmToIdxMap.find(OpC)->second;
MI.setDesc(TII.get(NewOpcode));
OperandBase = 1;
} else {
OperandBase = OffsetOperandNo;
}
Register StackReg = MI.getOperand(FIOperandNum).getReg();
MI.getOperand(OperandBase).ChangeToRegister(StackReg, false);
MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false, false, true);
}
Register PPCRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
const PPCFrameLowering *TFI = getFrameLowering(MF);
if (!TM.isPPC64())
return TFI->hasFP(MF) ? PPC::R31 : PPC::R1;
else
return TFI->hasFP(MF) ? PPC::X31 : PPC::X1;
}
Register PPCRegisterInfo::getBaseRegister(const MachineFunction &MF) const {
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
if (!hasBasePointer(MF))
return getFrameRegister(MF);
if (TM.isPPC64())
return PPC::X30;
if (Subtarget.isSVR4ABI() && TM.isPositionIndependent())
return PPC::R29;
return PPC::R30;
}
bool PPCRegisterInfo::hasBasePointer(const MachineFunction &MF) const {
if (!EnableBasePointer)
return false;
if (AlwaysBasePointer)
return true;
// If we need to realign the stack, then the stack pointer can no longer
// serve as an offset into the caller's stack space. As a result, we need a
// base pointer.
return needsStackRealignment(MF);
}
/// Returns true if the instruction's frame index
/// reference would be better served by a base register other than FP
/// or SP. Used by LocalStackFrameAllocation to determine which frame index
/// references it should create new base registers for.
bool PPCRegisterInfo::
needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
assert(Offset < 0 && "Local offset must be negative");
// It's the load/store FI references that cause issues, as it can be difficult
// to materialize the offset if it won't fit in the literal field. Estimate
// based on the size of the local frame and some conservative assumptions
// about the rest of the stack frame (note, this is pre-regalloc, so
// we don't know everything for certain yet) whether this offset is likely
// to be out of range of the immediate. Return true if so.
// We only generate virtual base registers for loads and stores that have
// an r+i form. Return false for everything else.
unsigned OpC = MI->getOpcode();
if (!ImmToIdxMap.count(OpC))
return false;
// Don't generate a new virtual base register just to add zero to it.
if ((OpC == PPC::ADDI || OpC == PPC::ADDI8) &&
MI->getOperand(2).getImm() == 0)
return false;
MachineBasicBlock &MBB = *MI->getParent();
MachineFunction &MF = *MBB.getParent();
const PPCFrameLowering *TFI = getFrameLowering(MF);
unsigned StackEst = TFI->determineFrameLayout(MF, true);
// If we likely don't need a stack frame, then we probably don't need a
// virtual base register either.
if (!StackEst)
return false;
// Estimate an offset from the stack pointer.
// The incoming offset is relating to the SP at the start of the function,
// but when we access the local it'll be relative to the SP after local
// allocation, so adjust our SP-relative offset by that allocation size.
Offset += StackEst;
// The frame pointer will point to the end of the stack, so estimate the
// offset as the difference between the object offset and the FP location.
return !isFrameOffsetLegal(MI, getBaseRegister(MF), Offset);
}
/// Insert defining instruction(s) for BaseReg to
/// be a pointer to FrameIdx at the beginning of the basic block.
Register PPCRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
int FrameIdx,
int64_t Offset) const {
unsigned ADDriOpc = TM.isPPC64() ? PPC::ADDI8 : PPC::ADDI;
MachineBasicBlock::iterator Ins = MBB->begin();
DebugLoc DL; // Defaults to "unknown"
if (Ins != MBB->end())
DL = Ins->getDebugLoc();
const MachineFunction &MF = *MBB->getParent();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
const MCInstrDesc &MCID = TII.get(ADDriOpc);
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
const TargetRegisterClass *RC = getPointerRegClass(MF);
Register BaseReg = MRI.createVirtualRegister(RC);
MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF));
BuildMI(*MBB, Ins, DL, MCID, BaseReg)
.addFrameIndex(FrameIdx).addImm(Offset);
return BaseReg;
}
void PPCRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg,
int64_t Offset) const {
unsigned FIOperandNum = 0;
while (!MI.getOperand(FIOperandNum).isFI()) {
++FIOperandNum;
assert(FIOperandNum < MI.getNumOperands() &&
"Instr doesn't have FrameIndex operand!");
}
MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false);
unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
Offset += MI.getOperand(OffsetOperandNo).getImm();
MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
const MCInstrDesc &MCID = MI.getDesc();
MachineRegisterInfo &MRI = MF.getRegInfo();
MRI.constrainRegClass(BaseReg,
TII.getRegClass(MCID, FIOperandNum, this, MF));
}
bool PPCRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
Register BaseReg,
int64_t Offset) const {
unsigned FIOperandNum = 0;
while (!MI->getOperand(FIOperandNum).isFI()) {
++FIOperandNum;
assert(FIOperandNum < MI->getNumOperands() &&
"Instr doesn't have FrameIndex operand!");
}
unsigned OffsetOperandNo = getOffsetONFromFION(*MI, FIOperandNum);
Offset += MI->getOperand(OffsetOperandNo).getImm();
return MI->getOpcode() == PPC::DBG_VALUE || // DBG_VALUE is always Reg+Imm
MI->getOpcode() == TargetOpcode::STACKMAP ||
MI->getOpcode() == TargetOpcode::PATCHPOINT ||
(isInt<16>(Offset) && (Offset % offsetMinAlign(*MI)) == 0);
}