1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/lib/Target/ARM/ARM.h
Evan Cheng fc78767730 Making use of VFP / NEON floating point multiply-accumulate / subtraction is
difficult on current ARM implementations for a few reasons.
1. Even though a single vmla has latency that is one cycle shorter than a pair
   of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause
   additional pipeline stall. So it's frequently better to single codegen
   vmul + vadd.
2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to
   stall for 4 cycles. We need to schedule them apart.
3. A vmla followed vmla is a special case. Obvious issuing back to back RAW
   vmla + vmla is very bad. But this isn't ideal either:
     vmul
     vadd
     vmla
   Instead, we want to expand the second vmla:
     vmla
     vmul
     vadd
   Even with the 4 cycle vmul stall, the second sequence is still 2 cycles
   faster.

Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough
but it isn't the optimial solution. This patch attempts to make it possible to
use vmla / vmls in cases where it is profitable.

A. Add missing isel predicates which cause vmla to be codegen'ed.
B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to
   compute a fmul and a fmla.
C. Add additional isel checks for vmla, avoid cases where vmla is feeding into
   fp instructions (except for the #3 exceptional case).
D. Add ARM hazard recognizer to model the vmla / vmls hazards.
E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the
   vmla / vmls will trigger one of the special hazards.

Work in progress, only A+B are enabled.

llvm-svn: 120960
2010-12-05 22:04:16 +00:00

64 lines
2.0 KiB
C++

//===-- ARM.h - Top-level interface for ARM representation---- --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the entry points for global functions defined in the LLVM
// ARM back-end.
//
//===----------------------------------------------------------------------===//
#ifndef TARGET_ARM_H
#define TARGET_ARM_H
#include "ARMBaseInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
namespace llvm {
class ARMBaseTargetMachine;
class FunctionPass;
class JITCodeEmitter;
class formatted_raw_ostream;
class MCCodeEmitter;
class TargetAsmBackend;
class MachineInstr;
class ARMAsmPrinter;
class MCInst;
MCCodeEmitter *createARMMCCodeEmitter(const Target &,
TargetMachine &TM,
MCContext &Ctx);
TargetAsmBackend *createARMAsmBackend(const Target &, const std::string &);
FunctionPass *createARMISelDag(ARMBaseTargetMachine &TM,
CodeGenOpt::Level OptLevel);
FunctionPass *createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
JITCodeEmitter &JCE);
FunctionPass *createARMLoadStoreOptimizationPass(bool PreAlloc = false);
FunctionPass *createARMExpandPseudoPass();
FunctionPass *createARMGlobalMergePass(const TargetLowering* tli);
FunctionPass *createARMConstantIslandPass();
FunctionPass *createNEONMoveFixPass();
FunctionPass *createMLxExpansionPass();
FunctionPass *createThumb2ITBlockPass();
FunctionPass *createThumb2SizeReductionPass();
extern Target TheARMTarget, TheThumbTarget;
void LowerARMMachineInstrToMCInst(const MachineInstr *MI, MCInst &OutMI,
ARMAsmPrinter &AP);
} // end namespace llvm;
#endif