mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 11:42:57 +01:00
f993659b8f
Apparently, the style needs to be agreed upon first. llvm-svn: 240390
565 lines
20 KiB
C++
565 lines
20 KiB
C++
//===-- AtomicExpandPass.cpp - Expand atomic instructions -------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains a pass (at IR level) to replace atomic instructions with
|
|
// either (intrinsic-based) load-linked/store-conditional loops or AtomicCmpXchg.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "atomic-expand"
|
|
|
|
namespace {
|
|
class AtomicExpand: public FunctionPass {
|
|
const TargetMachine *TM;
|
|
const TargetLowering *TLI;
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
explicit AtomicExpand(const TargetMachine *TM = nullptr)
|
|
: FunctionPass(ID), TM(TM), TLI(nullptr) {
|
|
initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
private:
|
|
bool bracketInstWithFences(Instruction *I, AtomicOrdering Order,
|
|
bool IsStore, bool IsLoad);
|
|
bool expandAtomicLoad(LoadInst *LI);
|
|
bool expandAtomicLoadToLL(LoadInst *LI);
|
|
bool expandAtomicLoadToCmpXchg(LoadInst *LI);
|
|
bool expandAtomicStore(StoreInst *SI);
|
|
bool tryExpandAtomicRMW(AtomicRMWInst *AI);
|
|
bool expandAtomicRMWToLLSC(AtomicRMWInst *AI);
|
|
bool expandAtomicRMWToCmpXchg(AtomicRMWInst *AI);
|
|
bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
|
|
bool isIdempotentRMW(AtomicRMWInst *AI);
|
|
bool simplifyIdempotentRMW(AtomicRMWInst *AI);
|
|
};
|
|
}
|
|
|
|
char AtomicExpand::ID = 0;
|
|
char &llvm::AtomicExpandID = AtomicExpand::ID;
|
|
INITIALIZE_TM_PASS(AtomicExpand, "atomic-expand",
|
|
"Expand Atomic calls in terms of either load-linked & store-conditional or cmpxchg",
|
|
false, false)
|
|
|
|
FunctionPass *llvm::createAtomicExpandPass(const TargetMachine *TM) {
|
|
return new AtomicExpand(TM);
|
|
}
|
|
|
|
bool AtomicExpand::runOnFunction(Function &F) {
|
|
if (!TM || !TM->getSubtargetImpl(F)->enableAtomicExpand())
|
|
return false;
|
|
TLI = TM->getSubtargetImpl(F)->getTargetLowering();
|
|
|
|
SmallVector<Instruction *, 1> AtomicInsts;
|
|
|
|
// Changing control-flow while iterating through it is a bad idea, so gather a
|
|
// list of all atomic instructions before we start.
|
|
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
|
|
if (I->isAtomic())
|
|
AtomicInsts.push_back(&*I);
|
|
}
|
|
|
|
bool MadeChange = false;
|
|
for (auto I : AtomicInsts) {
|
|
auto LI = dyn_cast<LoadInst>(I);
|
|
auto SI = dyn_cast<StoreInst>(I);
|
|
auto RMWI = dyn_cast<AtomicRMWInst>(I);
|
|
auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
|
|
assert((LI || SI || RMWI || CASI || isa<FenceInst>(I)) &&
|
|
"Unknown atomic instruction");
|
|
|
|
auto FenceOrdering = Monotonic;
|
|
bool IsStore, IsLoad;
|
|
if (TLI->getInsertFencesForAtomic()) {
|
|
if (LI && isAtLeastAcquire(LI->getOrdering())) {
|
|
FenceOrdering = LI->getOrdering();
|
|
LI->setOrdering(Monotonic);
|
|
IsStore = false;
|
|
IsLoad = true;
|
|
} else if (SI && isAtLeastRelease(SI->getOrdering())) {
|
|
FenceOrdering = SI->getOrdering();
|
|
SI->setOrdering(Monotonic);
|
|
IsStore = true;
|
|
IsLoad = false;
|
|
} else if (RMWI && (isAtLeastRelease(RMWI->getOrdering()) ||
|
|
isAtLeastAcquire(RMWI->getOrdering()))) {
|
|
FenceOrdering = RMWI->getOrdering();
|
|
RMWI->setOrdering(Monotonic);
|
|
IsStore = IsLoad = true;
|
|
} else if (CASI && !TLI->hasLoadLinkedStoreConditional() &&
|
|
(isAtLeastRelease(CASI->getSuccessOrdering()) ||
|
|
isAtLeastAcquire(CASI->getSuccessOrdering()))) {
|
|
// If a compare and swap is lowered to LL/SC, we can do smarter fence
|
|
// insertion, with a stronger one on the success path than on the
|
|
// failure path. As a result, fence insertion is directly done by
|
|
// expandAtomicCmpXchg in that case.
|
|
FenceOrdering = CASI->getSuccessOrdering();
|
|
CASI->setSuccessOrdering(Monotonic);
|
|
CASI->setFailureOrdering(Monotonic);
|
|
IsStore = IsLoad = true;
|
|
}
|
|
|
|
if (FenceOrdering != Monotonic) {
|
|
MadeChange |= bracketInstWithFences(I, FenceOrdering, IsStore, IsLoad);
|
|
}
|
|
}
|
|
|
|
if (LI && TLI->shouldExpandAtomicLoadInIR(LI)) {
|
|
MadeChange |= expandAtomicLoad(LI);
|
|
} else if (SI && TLI->shouldExpandAtomicStoreInIR(SI)) {
|
|
MadeChange |= expandAtomicStore(SI);
|
|
} else if (RMWI) {
|
|
// There are two different ways of expanding RMW instructions:
|
|
// - into a load if it is idempotent
|
|
// - into a Cmpxchg/LL-SC loop otherwise
|
|
// we try them in that order.
|
|
|
|
if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
|
|
MadeChange = true;
|
|
} else {
|
|
MadeChange |= tryExpandAtomicRMW(RMWI);
|
|
}
|
|
} else if (CASI && TLI->hasLoadLinkedStoreConditional()) {
|
|
MadeChange |= expandAtomicCmpXchg(CASI);
|
|
}
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order,
|
|
bool IsStore, bool IsLoad) {
|
|
IRBuilder<> Builder(I);
|
|
|
|
auto LeadingFence = TLI->emitLeadingFence(Builder, Order, IsStore, IsLoad);
|
|
|
|
auto TrailingFence = TLI->emitTrailingFence(Builder, Order, IsStore, IsLoad);
|
|
// The trailing fence is emitted before the instruction instead of after
|
|
// because there is no easy way of setting Builder insertion point after
|
|
// an instruction. So we must erase it from the BB, and insert it back
|
|
// in the right place.
|
|
// We have a guard here because not every atomic operation generates a
|
|
// trailing fence.
|
|
if (TrailingFence) {
|
|
TrailingFence->removeFromParent();
|
|
TrailingFence->insertAfter(I);
|
|
}
|
|
|
|
return (LeadingFence || TrailingFence);
|
|
}
|
|
|
|
bool AtomicExpand::expandAtomicLoad(LoadInst *LI) {
|
|
if (TLI->hasLoadLinkedStoreConditional())
|
|
return expandAtomicLoadToLL(LI);
|
|
else
|
|
return expandAtomicLoadToCmpXchg(LI);
|
|
}
|
|
|
|
bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
|
|
IRBuilder<> Builder(LI);
|
|
|
|
// On some architectures, load-linked instructions are atomic for larger
|
|
// sizes than normal loads. For example, the only 64-bit load guaranteed
|
|
// to be single-copy atomic by ARM is an ldrexd (A3.5.3).
|
|
Value *Val =
|
|
TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering());
|
|
|
|
LI->replaceAllUsesWith(Val);
|
|
LI->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
|
|
IRBuilder<> Builder(LI);
|
|
AtomicOrdering Order = LI->getOrdering();
|
|
Value *Addr = LI->getPointerOperand();
|
|
Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
|
|
Constant *DummyVal = Constant::getNullValue(Ty);
|
|
|
|
Value *Pair = Builder.CreateAtomicCmpXchg(
|
|
Addr, DummyVal, DummyVal, Order,
|
|
AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
|
|
Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
|
|
|
|
LI->replaceAllUsesWith(Loaded);
|
|
LI->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AtomicExpand::expandAtomicStore(StoreInst *SI) {
|
|
// This function is only called on atomic stores that are too large to be
|
|
// atomic if implemented as a native store. So we replace them by an
|
|
// atomic swap, that can be implemented for example as a ldrex/strex on ARM
|
|
// or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
|
|
// It is the responsibility of the target to only signal expansion via
|
|
// shouldExpandAtomicRMW in cases where this is required and possible.
|
|
IRBuilder<> Builder(SI);
|
|
AtomicRMWInst *AI =
|
|
Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
|
|
SI->getValueOperand(), SI->getOrdering());
|
|
SI->eraseFromParent();
|
|
|
|
// Now we have an appropriate swap instruction, lower it as usual.
|
|
return tryExpandAtomicRMW(AI);
|
|
}
|
|
|
|
bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
|
|
switch (TLI->shouldExpandAtomicRMWInIR(AI)) {
|
|
case TargetLoweringBase::AtomicRMWExpansionKind::None:
|
|
return false;
|
|
case TargetLoweringBase::AtomicRMWExpansionKind::LLSC: {
|
|
assert(TLI->hasLoadLinkedStoreConditional() &&
|
|
"TargetLowering requested we expand AtomicRMW instruction into "
|
|
"load-linked/store-conditional combos, but such instructions aren't "
|
|
"supported");
|
|
|
|
return expandAtomicRMWToLLSC(AI);
|
|
}
|
|
case TargetLoweringBase::AtomicRMWExpansionKind::CmpXChg: {
|
|
return expandAtomicRMWToCmpXchg(AI);
|
|
}
|
|
}
|
|
llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
|
|
}
|
|
|
|
/// Emit IR to implement the given atomicrmw operation on values in registers,
|
|
/// returning the new value.
|
|
static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder,
|
|
Value *Loaded, Value *Inc) {
|
|
Value *NewVal;
|
|
switch (Op) {
|
|
case AtomicRMWInst::Xchg:
|
|
return Inc;
|
|
case AtomicRMWInst::Add:
|
|
return Builder.CreateAdd(Loaded, Inc, "new");
|
|
case AtomicRMWInst::Sub:
|
|
return Builder.CreateSub(Loaded, Inc, "new");
|
|
case AtomicRMWInst::And:
|
|
return Builder.CreateAnd(Loaded, Inc, "new");
|
|
case AtomicRMWInst::Nand:
|
|
return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new");
|
|
case AtomicRMWInst::Or:
|
|
return Builder.CreateOr(Loaded, Inc, "new");
|
|
case AtomicRMWInst::Xor:
|
|
return Builder.CreateXor(Loaded, Inc, "new");
|
|
case AtomicRMWInst::Max:
|
|
NewVal = Builder.CreateICmpSGT(Loaded, Inc);
|
|
return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
|
|
case AtomicRMWInst::Min:
|
|
NewVal = Builder.CreateICmpSLE(Loaded, Inc);
|
|
return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
|
|
case AtomicRMWInst::UMax:
|
|
NewVal = Builder.CreateICmpUGT(Loaded, Inc);
|
|
return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
|
|
case AtomicRMWInst::UMin:
|
|
NewVal = Builder.CreateICmpULE(Loaded, Inc);
|
|
return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
|
|
default:
|
|
llvm_unreachable("Unknown atomic op");
|
|
}
|
|
}
|
|
|
|
bool AtomicExpand::expandAtomicRMWToLLSC(AtomicRMWInst *AI) {
|
|
AtomicOrdering MemOpOrder = AI->getOrdering();
|
|
Value *Addr = AI->getPointerOperand();
|
|
BasicBlock *BB = AI->getParent();
|
|
Function *F = BB->getParent();
|
|
LLVMContext &Ctx = F->getContext();
|
|
|
|
// Given: atomicrmw some_op iN* %addr, iN %incr ordering
|
|
//
|
|
// The standard expansion we produce is:
|
|
// [...]
|
|
// fence?
|
|
// atomicrmw.start:
|
|
// %loaded = @load.linked(%addr)
|
|
// %new = some_op iN %loaded, %incr
|
|
// %stored = @store_conditional(%new, %addr)
|
|
// %try_again = icmp i32 ne %stored, 0
|
|
// br i1 %try_again, label %loop, label %atomicrmw.end
|
|
// atomicrmw.end:
|
|
// fence?
|
|
// [...]
|
|
BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end");
|
|
BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
|
|
|
|
// This grabs the DebugLoc from AI.
|
|
IRBuilder<> Builder(AI);
|
|
|
|
// The split call above "helpfully" added a branch at the end of BB (to the
|
|
// wrong place), but we might want a fence too. It's easiest to just remove
|
|
// the branch entirely.
|
|
std::prev(BB->end())->eraseFromParent();
|
|
Builder.SetInsertPoint(BB);
|
|
Builder.CreateBr(LoopBB);
|
|
|
|
// Start the main loop block now that we've taken care of the preliminaries.
|
|
Builder.SetInsertPoint(LoopBB);
|
|
Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
|
|
|
|
Value *NewVal =
|
|
performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand());
|
|
|
|
Value *StoreSuccess =
|
|
TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
|
|
Value *TryAgain = Builder.CreateICmpNE(
|
|
StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
|
|
Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
|
|
|
|
Builder.SetInsertPoint(ExitBB, ExitBB->begin());
|
|
|
|
AI->replaceAllUsesWith(Loaded);
|
|
AI->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AtomicExpand::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI) {
|
|
AtomicOrdering MemOpOrder =
|
|
AI->getOrdering() == Unordered ? Monotonic : AI->getOrdering();
|
|
Value *Addr = AI->getPointerOperand();
|
|
BasicBlock *BB = AI->getParent();
|
|
Function *F = BB->getParent();
|
|
LLVMContext &Ctx = F->getContext();
|
|
|
|
// Given: atomicrmw some_op iN* %addr, iN %incr ordering
|
|
//
|
|
// The standard expansion we produce is:
|
|
// [...]
|
|
// %init_loaded = load atomic iN* %addr
|
|
// br label %loop
|
|
// loop:
|
|
// %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
|
|
// %new = some_op iN %loaded, %incr
|
|
// %pair = cmpxchg iN* %addr, iN %loaded, iN %new
|
|
// %new_loaded = extractvalue { iN, i1 } %pair, 0
|
|
// %success = extractvalue { iN, i1 } %pair, 1
|
|
// br i1 %success, label %atomicrmw.end, label %loop
|
|
// atomicrmw.end:
|
|
// [...]
|
|
BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end");
|
|
BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
|
|
|
|
// This grabs the DebugLoc from AI.
|
|
IRBuilder<> Builder(AI);
|
|
|
|
// The split call above "helpfully" added a branch at the end of BB (to the
|
|
// wrong place), but we want a load. It's easiest to just remove
|
|
// the branch entirely.
|
|
std::prev(BB->end())->eraseFromParent();
|
|
Builder.SetInsertPoint(BB);
|
|
LoadInst *InitLoaded = Builder.CreateLoad(Addr);
|
|
// Atomics require at least natural alignment.
|
|
InitLoaded->setAlignment(AI->getType()->getPrimitiveSizeInBits());
|
|
Builder.CreateBr(LoopBB);
|
|
|
|
// Start the main loop block now that we've taken care of the preliminaries.
|
|
Builder.SetInsertPoint(LoopBB);
|
|
PHINode *Loaded = Builder.CreatePHI(AI->getType(), 2, "loaded");
|
|
Loaded->addIncoming(InitLoaded, BB);
|
|
|
|
Value *NewVal =
|
|
performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand());
|
|
|
|
Value *Pair = Builder.CreateAtomicCmpXchg(
|
|
Addr, Loaded, NewVal, MemOpOrder,
|
|
AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
|
|
Value *NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
|
|
Loaded->addIncoming(NewLoaded, LoopBB);
|
|
|
|
Value *Success = Builder.CreateExtractValue(Pair, 1, "success");
|
|
Builder.CreateCondBr(Success, ExitBB, LoopBB);
|
|
|
|
Builder.SetInsertPoint(ExitBB, ExitBB->begin());
|
|
|
|
AI->replaceAllUsesWith(NewLoaded);
|
|
AI->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
|
|
AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
|
|
AtomicOrdering FailureOrder = CI->getFailureOrdering();
|
|
Value *Addr = CI->getPointerOperand();
|
|
BasicBlock *BB = CI->getParent();
|
|
Function *F = BB->getParent();
|
|
LLVMContext &Ctx = F->getContext();
|
|
// If getInsertFencesForAtomic() returns true, then the target does not want
|
|
// to deal with memory orders, and emitLeading/TrailingFence should take care
|
|
// of everything. Otherwise, emitLeading/TrailingFence are no-op and we
|
|
// should preserve the ordering.
|
|
AtomicOrdering MemOpOrder =
|
|
TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder;
|
|
|
|
// Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
|
|
//
|
|
// The full expansion we produce is:
|
|
// [...]
|
|
// fence?
|
|
// cmpxchg.start:
|
|
// %loaded = @load.linked(%addr)
|
|
// %should_store = icmp eq %loaded, %desired
|
|
// br i1 %should_store, label %cmpxchg.trystore,
|
|
// label %cmpxchg.failure
|
|
// cmpxchg.trystore:
|
|
// %stored = @store_conditional(%new, %addr)
|
|
// %success = icmp eq i32 %stored, 0
|
|
// br i1 %success, label %cmpxchg.success, label %loop/%cmpxchg.failure
|
|
// cmpxchg.success:
|
|
// fence?
|
|
// br label %cmpxchg.end
|
|
// cmpxchg.failure:
|
|
// fence?
|
|
// br label %cmpxchg.end
|
|
// cmpxchg.end:
|
|
// %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
|
|
// %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
|
|
// %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
|
|
// [...]
|
|
BasicBlock *ExitBB = BB->splitBasicBlock(CI, "cmpxchg.end");
|
|
auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
|
|
auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, FailureBB);
|
|
auto TryStoreBB = BasicBlock::Create(Ctx, "cmpxchg.trystore", F, SuccessBB);
|
|
auto LoopBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, TryStoreBB);
|
|
|
|
// This grabs the DebugLoc from CI
|
|
IRBuilder<> Builder(CI);
|
|
|
|
// The split call above "helpfully" added a branch at the end of BB (to the
|
|
// wrong place), but we might want a fence too. It's easiest to just remove
|
|
// the branch entirely.
|
|
std::prev(BB->end())->eraseFromParent();
|
|
Builder.SetInsertPoint(BB);
|
|
TLI->emitLeadingFence(Builder, SuccessOrder, /*IsStore=*/true,
|
|
/*IsLoad=*/true);
|
|
Builder.CreateBr(LoopBB);
|
|
|
|
// Start the main loop block now that we've taken care of the preliminaries.
|
|
Builder.SetInsertPoint(LoopBB);
|
|
Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
|
|
Value *ShouldStore =
|
|
Builder.CreateICmpEQ(Loaded, CI->getCompareOperand(), "should_store");
|
|
|
|
// If the cmpxchg doesn't actually need any ordering when it fails, we can
|
|
// jump straight past that fence instruction (if it exists).
|
|
Builder.CreateCondBr(ShouldStore, TryStoreBB, FailureBB);
|
|
|
|
Builder.SetInsertPoint(TryStoreBB);
|
|
Value *StoreSuccess = TLI->emitStoreConditional(
|
|
Builder, CI->getNewValOperand(), Addr, MemOpOrder);
|
|
StoreSuccess = Builder.CreateICmpEQ(
|
|
StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
|
|
Builder.CreateCondBr(StoreSuccess, SuccessBB,
|
|
CI->isWeak() ? FailureBB : LoopBB);
|
|
|
|
// Make sure later instructions don't get reordered with a fence if necessary.
|
|
Builder.SetInsertPoint(SuccessBB);
|
|
TLI->emitTrailingFence(Builder, SuccessOrder, /*IsStore=*/true,
|
|
/*IsLoad=*/true);
|
|
Builder.CreateBr(ExitBB);
|
|
|
|
Builder.SetInsertPoint(FailureBB);
|
|
TLI->emitTrailingFence(Builder, FailureOrder, /*IsStore=*/true,
|
|
/*IsLoad=*/true);
|
|
Builder.CreateBr(ExitBB);
|
|
|
|
// Finally, we have control-flow based knowledge of whether the cmpxchg
|
|
// succeeded or not. We expose this to later passes by converting any
|
|
// subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate PHI.
|
|
|
|
// Setup the builder so we can create any PHIs we need.
|
|
Builder.SetInsertPoint(ExitBB, ExitBB->begin());
|
|
PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2);
|
|
Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
|
|
Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
|
|
|
|
// Look for any users of the cmpxchg that are just comparing the loaded value
|
|
// against the desired one, and replace them with the CFG-derived version.
|
|
SmallVector<ExtractValueInst *, 2> PrunedInsts;
|
|
for (auto User : CI->users()) {
|
|
ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
|
|
if (!EV)
|
|
continue;
|
|
|
|
assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
|
|
"weird extraction from { iN, i1 }");
|
|
|
|
if (EV->getIndices()[0] == 0)
|
|
EV->replaceAllUsesWith(Loaded);
|
|
else
|
|
EV->replaceAllUsesWith(Success);
|
|
|
|
PrunedInsts.push_back(EV);
|
|
}
|
|
|
|
// We can remove the instructions now we're no longer iterating through them.
|
|
for (auto EV : PrunedInsts)
|
|
EV->eraseFromParent();
|
|
|
|
if (!CI->use_empty()) {
|
|
// Some use of the full struct return that we don't understand has happened,
|
|
// so we've got to reconstruct it properly.
|
|
Value *Res;
|
|
Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
|
|
Res = Builder.CreateInsertValue(Res, Success, 1);
|
|
|
|
CI->replaceAllUsesWith(Res);
|
|
}
|
|
|
|
CI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) {
|
|
auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
|
|
if(!C)
|
|
return false;
|
|
|
|
AtomicRMWInst::BinOp Op = RMWI->getOperation();
|
|
switch(Op) {
|
|
case AtomicRMWInst::Add:
|
|
case AtomicRMWInst::Sub:
|
|
case AtomicRMWInst::Or:
|
|
case AtomicRMWInst::Xor:
|
|
return C->isZero();
|
|
case AtomicRMWInst::And:
|
|
return C->isMinusOne();
|
|
// FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) {
|
|
if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
|
|
if (TLI->shouldExpandAtomicLoadInIR(ResultingLoad))
|
|
expandAtomicLoad(ResultingLoad);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|