1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-23 04:52:54 +02:00
llvm-mirror/lib/Target/AMDGPU/SIRegisterInfo.cpp
Matt Arsenault 9b6d8d16dd AMDGPU: Partially fix implicit.buffer.ptr intrinsic handling
This should not be treated as a different version of
private_segment_buffer. These are distinct things with
different uses and register classes, and requires the
function argument info to have more context about the
function's type and environment.

Also add missing test coverage for the intrinsic, and
emit an error for HSA. This also encovers that the intrinsic
is broken unless there happen to be stack objects.

llvm-svn: 306264
2017-06-26 03:01:31 +00:00

1577 lines
54 KiB
C++

//===-- SIRegisterInfo.cpp - SI Register Information ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief SI implementation of the TargetRegisterInfo class.
//
//===----------------------------------------------------------------------===//
#include "SIRegisterInfo.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
using namespace llvm;
static bool hasPressureSet(const int *PSets, unsigned PSetID) {
for (unsigned i = 0; PSets[i] != -1; ++i) {
if (PSets[i] == (int)PSetID)
return true;
}
return false;
}
void SIRegisterInfo::classifyPressureSet(unsigned PSetID, unsigned Reg,
BitVector &PressureSets) const {
for (MCRegUnitIterator U(Reg, this); U.isValid(); ++U) {
const int *PSets = getRegUnitPressureSets(*U);
if (hasPressureSet(PSets, PSetID)) {
PressureSets.set(PSetID);
break;
}
}
}
static cl::opt<bool> EnableSpillSGPRToSMEM(
"amdgpu-spill-sgpr-to-smem",
cl::desc("Use scalar stores to spill SGPRs if supported by subtarget"),
cl::init(false));
static cl::opt<bool> EnableSpillSGPRToVGPR(
"amdgpu-spill-sgpr-to-vgpr",
cl::desc("Enable spilling VGPRs to SGPRs"),
cl::ReallyHidden,
cl::init(true));
SIRegisterInfo::SIRegisterInfo(const SISubtarget &ST) :
AMDGPURegisterInfo(),
SGPRPressureSets(getNumRegPressureSets()),
VGPRPressureSets(getNumRegPressureSets()),
SpillSGPRToVGPR(false),
SpillSGPRToSMEM(false) {
if (EnableSpillSGPRToSMEM && ST.hasScalarStores())
SpillSGPRToSMEM = true;
else if (EnableSpillSGPRToVGPR)
SpillSGPRToVGPR = true;
unsigned NumRegPressureSets = getNumRegPressureSets();
SGPRSetID = NumRegPressureSets;
VGPRSetID = NumRegPressureSets;
for (unsigned i = 0; i < NumRegPressureSets; ++i) {
classifyPressureSet(i, AMDGPU::SGPR0, SGPRPressureSets);
classifyPressureSet(i, AMDGPU::VGPR0, VGPRPressureSets);
}
// Determine the number of reg units for each pressure set.
std::vector<unsigned> PressureSetRegUnits(NumRegPressureSets, 0);
for (unsigned i = 0, e = getNumRegUnits(); i != e; ++i) {
const int *PSets = getRegUnitPressureSets(i);
for (unsigned j = 0; PSets[j] != -1; ++j) {
++PressureSetRegUnits[PSets[j]];
}
}
unsigned VGPRMax = 0, SGPRMax = 0;
for (unsigned i = 0; i < NumRegPressureSets; ++i) {
if (isVGPRPressureSet(i) && PressureSetRegUnits[i] > VGPRMax) {
VGPRSetID = i;
VGPRMax = PressureSetRegUnits[i];
continue;
}
if (isSGPRPressureSet(i) && PressureSetRegUnits[i] > SGPRMax) {
SGPRSetID = i;
SGPRMax = PressureSetRegUnits[i];
}
}
assert(SGPRSetID < NumRegPressureSets &&
VGPRSetID < NumRegPressureSets);
}
void SIRegisterInfo::reserveRegisterTuples(BitVector &Reserved, unsigned Reg) const {
MCRegAliasIterator R(Reg, this, true);
for (; R.isValid(); ++R)
Reserved.set(*R);
}
unsigned SIRegisterInfo::reservedPrivateSegmentBufferReg(
const MachineFunction &MF) const {
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
unsigned BaseIdx = alignDown(ST.getMaxNumSGPRs(MF), 4) - 4;
unsigned BaseReg(AMDGPU::SGPR_32RegClass.getRegister(BaseIdx));
return getMatchingSuperReg(BaseReg, AMDGPU::sub0, &AMDGPU::SReg_128RegClass);
}
static unsigned findPrivateSegmentWaveByteOffsetRegIndex(unsigned RegCount) {
unsigned Reg;
// Try to place it in a hole after PrivateSegmentBufferReg.
if (RegCount & 3) {
// We cannot put the segment buffer in (Idx - 4) ... (Idx - 1) due to
// alignment constraints, so we have a hole where can put the wave offset.
Reg = RegCount - 1;
} else {
// We can put the segment buffer in (Idx - 4) ... (Idx - 1) and put the
// wave offset before it.
Reg = RegCount - 5;
}
return Reg;
}
unsigned SIRegisterInfo::reservedPrivateSegmentWaveByteOffsetReg(
const MachineFunction &MF) const {
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
unsigned Reg = findPrivateSegmentWaveByteOffsetRegIndex(ST.getMaxNumSGPRs(MF));
return AMDGPU::SGPR_32RegClass.getRegister(Reg);
}
unsigned SIRegisterInfo::reservedStackPtrOffsetReg(
const MachineFunction &MF) const {
return AMDGPU::SGPR32;
}
BitVector SIRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
BitVector Reserved(getNumRegs());
Reserved.set(AMDGPU::INDIRECT_BASE_ADDR);
// EXEC_LO and EXEC_HI could be allocated and used as regular register, but
// this seems likely to result in bugs, so I'm marking them as reserved.
reserveRegisterTuples(Reserved, AMDGPU::EXEC);
reserveRegisterTuples(Reserved, AMDGPU::FLAT_SCR);
// M0 has to be reserved so that llvm accepts it as a live-in into a block.
reserveRegisterTuples(Reserved, AMDGPU::M0);
// Reserve the memory aperture registers.
reserveRegisterTuples(Reserved, AMDGPU::SRC_SHARED_BASE);
reserveRegisterTuples(Reserved, AMDGPU::SRC_SHARED_LIMIT);
reserveRegisterTuples(Reserved, AMDGPU::SRC_PRIVATE_BASE);
reserveRegisterTuples(Reserved, AMDGPU::SRC_PRIVATE_LIMIT);
// Reserve Trap Handler registers - support is not implemented in Codegen.
reserveRegisterTuples(Reserved, AMDGPU::TBA);
reserveRegisterTuples(Reserved, AMDGPU::TMA);
reserveRegisterTuples(Reserved, AMDGPU::TTMP0_TTMP1);
reserveRegisterTuples(Reserved, AMDGPU::TTMP2_TTMP3);
reserveRegisterTuples(Reserved, AMDGPU::TTMP4_TTMP5);
reserveRegisterTuples(Reserved, AMDGPU::TTMP6_TTMP7);
reserveRegisterTuples(Reserved, AMDGPU::TTMP8_TTMP9);
reserveRegisterTuples(Reserved, AMDGPU::TTMP10_TTMP11);
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
unsigned MaxNumSGPRs = ST.getMaxNumSGPRs(MF);
unsigned TotalNumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
for (unsigned i = MaxNumSGPRs; i < TotalNumSGPRs; ++i) {
unsigned Reg = AMDGPU::SGPR_32RegClass.getRegister(i);
reserveRegisterTuples(Reserved, Reg);
}
unsigned MaxNumVGPRs = ST.getMaxNumVGPRs(MF);
unsigned TotalNumVGPRs = AMDGPU::VGPR_32RegClass.getNumRegs();
for (unsigned i = MaxNumVGPRs; i < TotalNumVGPRs; ++i) {
unsigned Reg = AMDGPU::VGPR_32RegClass.getRegister(i);
reserveRegisterTuples(Reserved, Reg);
}
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
unsigned ScratchWaveOffsetReg = MFI->getScratchWaveOffsetReg();
if (ScratchWaveOffsetReg != AMDGPU::NoRegister) {
// Reserve 1 SGPR for scratch wave offset in case we need to spill.
reserveRegisterTuples(Reserved, ScratchWaveOffsetReg);
}
unsigned ScratchRSrcReg = MFI->getScratchRSrcReg();
if (ScratchRSrcReg != AMDGPU::NoRegister) {
// Reserve 4 SGPRs for the scratch buffer resource descriptor in case we need
// to spill.
// TODO: May need to reserve a VGPR if doing LDS spilling.
reserveRegisterTuples(Reserved, ScratchRSrcReg);
assert(!isSubRegister(ScratchRSrcReg, ScratchWaveOffsetReg));
}
unsigned StackPtrReg = MFI->getStackPtrOffsetReg();
if (StackPtrReg != AMDGPU::NoRegister) {
reserveRegisterTuples(Reserved, StackPtrReg);
assert(!isSubRegister(ScratchRSrcReg, StackPtrReg));
}
unsigned FrameReg = MFI->getFrameOffsetReg();
if (FrameReg != AMDGPU::NoRegister) {
reserveRegisterTuples(Reserved, FrameReg);
assert(!isSubRegister(ScratchRSrcReg, FrameReg));
}
return Reserved;
}
bool SIRegisterInfo::requiresRegisterScavenging(const MachineFunction &Fn) const {
const SIMachineFunctionInfo *Info = Fn.getInfo<SIMachineFunctionInfo>();
if (Info->isEntryFunction()) {
const MachineFrameInfo &MFI = Fn.getFrameInfo();
return MFI.hasStackObjects() || MFI.hasCalls();
}
// May need scavenger for dealing with callee saved registers.
return true;
}
bool SIRegisterInfo::requiresFrameIndexScavenging(const MachineFunction &MF) const {
return MF.getFrameInfo().hasStackObjects();
}
bool SIRegisterInfo::requiresFrameIndexReplacementScavenging(
const MachineFunction &MF) const {
// m0 is needed for the scalar store offset. m0 is unallocatable, so we can't
// create a virtual register for it during frame index elimination, so the
// scavenger is directly needed.
return MF.getFrameInfo().hasStackObjects() &&
MF.getSubtarget<SISubtarget>().hasScalarStores() &&
MF.getInfo<SIMachineFunctionInfo>()->hasSpilledSGPRs();
}
bool SIRegisterInfo::requiresVirtualBaseRegisters(
const MachineFunction &) const {
// There are no special dedicated stack or frame pointers.
return true;
}
bool SIRegisterInfo::trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
// This helps catch bugs as verifier errors.
return true;
}
int64_t SIRegisterInfo::getMUBUFInstrOffset(const MachineInstr *MI) const {
assert(SIInstrInfo::isMUBUF(*MI));
int OffIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
AMDGPU::OpName::offset);
return MI->getOperand(OffIdx).getImm();
}
int64_t SIRegisterInfo::getFrameIndexInstrOffset(const MachineInstr *MI,
int Idx) const {
if (!SIInstrInfo::isMUBUF(*MI))
return 0;
assert(Idx == AMDGPU::getNamedOperandIdx(MI->getOpcode(),
AMDGPU::OpName::vaddr) &&
"Should never see frame index on non-address operand");
return getMUBUFInstrOffset(MI);
}
bool SIRegisterInfo::needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
if (!MI->mayLoadOrStore())
return false;
int64_t FullOffset = Offset + getMUBUFInstrOffset(MI);
return !isUInt<12>(FullOffset);
}
void SIRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
unsigned BaseReg,
int FrameIdx,
int64_t Offset) const {
MachineBasicBlock::iterator Ins = MBB->begin();
DebugLoc DL; // Defaults to "unknown"
if (Ins != MBB->end())
DL = Ins->getDebugLoc();
MachineFunction *MF = MBB->getParent();
const SISubtarget &Subtarget = MF->getSubtarget<SISubtarget>();
const SIInstrInfo *TII = Subtarget.getInstrInfo();
if (Offset == 0) {
BuildMI(*MBB, Ins, DL, TII->get(AMDGPU::V_MOV_B32_e32), BaseReg)
.addFrameIndex(FrameIdx);
return;
}
MachineRegisterInfo &MRI = MF->getRegInfo();
unsigned OffsetReg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
unsigned FIReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
BuildMI(*MBB, Ins, DL, TII->get(AMDGPU::S_MOV_B32), OffsetReg)
.addImm(Offset);
BuildMI(*MBB, Ins, DL, TII->get(AMDGPU::V_MOV_B32_e32), FIReg)
.addFrameIndex(FrameIdx);
TII->getAddNoCarry(*MBB, Ins, DL, BaseReg)
.addReg(OffsetReg, RegState::Kill)
.addReg(FIReg);
}
void SIRegisterInfo::resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
int64_t Offset) const {
MachineBasicBlock *MBB = MI.getParent();
MachineFunction *MF = MBB->getParent();
const SISubtarget &Subtarget = MF->getSubtarget<SISubtarget>();
const SIInstrInfo *TII = Subtarget.getInstrInfo();
#ifndef NDEBUG
// FIXME: Is it possible to be storing a frame index to itself?
bool SeenFI = false;
for (const MachineOperand &MO: MI.operands()) {
if (MO.isFI()) {
if (SeenFI)
llvm_unreachable("should not see multiple frame indices");
SeenFI = true;
}
}
#endif
MachineOperand *FIOp = TII->getNamedOperand(MI, AMDGPU::OpName::vaddr);
assert(FIOp && FIOp->isFI() && "frame index must be address operand");
assert(TII->isMUBUF(MI));
assert(TII->getNamedOperand(MI, AMDGPU::OpName::soffset)->getReg() ==
MF->getInfo<SIMachineFunctionInfo>()->getFrameOffsetReg() &&
"should only be seeing frame offset relative FrameIndex");
MachineOperand *OffsetOp = TII->getNamedOperand(MI, AMDGPU::OpName::offset);
int64_t NewOffset = OffsetOp->getImm() + Offset;
assert(isUInt<12>(NewOffset) && "offset should be legal");
FIOp->ChangeToRegister(BaseReg, false);
OffsetOp->setImm(NewOffset);
}
bool SIRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
unsigned BaseReg,
int64_t Offset) const {
if (!SIInstrInfo::isMUBUF(*MI))
return false;
int64_t NewOffset = Offset + getMUBUFInstrOffset(MI);
return isUInt<12>(NewOffset);
}
const TargetRegisterClass *SIRegisterInfo::getPointerRegClass(
const MachineFunction &MF, unsigned Kind) const {
// This is inaccurate. It depends on the instruction and address space. The
// only place where we should hit this is for dealing with frame indexes /
// private accesses, so this is correct in that case.
return &AMDGPU::VGPR_32RegClass;
}
static unsigned getNumSubRegsForSpillOp(unsigned Op) {
switch (Op) {
case AMDGPU::SI_SPILL_S512_SAVE:
case AMDGPU::SI_SPILL_S512_RESTORE:
case AMDGPU::SI_SPILL_V512_SAVE:
case AMDGPU::SI_SPILL_V512_RESTORE:
return 16;
case AMDGPU::SI_SPILL_S256_SAVE:
case AMDGPU::SI_SPILL_S256_RESTORE:
case AMDGPU::SI_SPILL_V256_SAVE:
case AMDGPU::SI_SPILL_V256_RESTORE:
return 8;
case AMDGPU::SI_SPILL_S128_SAVE:
case AMDGPU::SI_SPILL_S128_RESTORE:
case AMDGPU::SI_SPILL_V128_SAVE:
case AMDGPU::SI_SPILL_V128_RESTORE:
return 4;
case AMDGPU::SI_SPILL_V96_SAVE:
case AMDGPU::SI_SPILL_V96_RESTORE:
return 3;
case AMDGPU::SI_SPILL_S64_SAVE:
case AMDGPU::SI_SPILL_S64_RESTORE:
case AMDGPU::SI_SPILL_V64_SAVE:
case AMDGPU::SI_SPILL_V64_RESTORE:
return 2;
case AMDGPU::SI_SPILL_S32_SAVE:
case AMDGPU::SI_SPILL_S32_RESTORE:
case AMDGPU::SI_SPILL_V32_SAVE:
case AMDGPU::SI_SPILL_V32_RESTORE:
return 1;
default: llvm_unreachable("Invalid spill opcode");
}
}
static int getOffsetMUBUFStore(unsigned Opc) {
switch (Opc) {
case AMDGPU::BUFFER_STORE_DWORD_OFFEN:
return AMDGPU::BUFFER_STORE_DWORD_OFFSET;
case AMDGPU::BUFFER_STORE_BYTE_OFFEN:
return AMDGPU::BUFFER_STORE_BYTE_OFFSET;
case AMDGPU::BUFFER_STORE_SHORT_OFFEN:
return AMDGPU::BUFFER_STORE_SHORT_OFFSET;
case AMDGPU::BUFFER_STORE_DWORDX2_OFFEN:
return AMDGPU::BUFFER_STORE_DWORDX2_OFFSET;
case AMDGPU::BUFFER_STORE_DWORDX4_OFFEN:
return AMDGPU::BUFFER_STORE_DWORDX4_OFFSET;
default:
return -1;
}
}
static int getOffsetMUBUFLoad(unsigned Opc) {
switch (Opc) {
case AMDGPU::BUFFER_LOAD_DWORD_OFFEN:
return AMDGPU::BUFFER_LOAD_DWORD_OFFSET;
case AMDGPU::BUFFER_LOAD_UBYTE_OFFEN:
return AMDGPU::BUFFER_LOAD_UBYTE_OFFSET;
case AMDGPU::BUFFER_LOAD_SBYTE_OFFEN:
return AMDGPU::BUFFER_LOAD_SBYTE_OFFSET;
case AMDGPU::BUFFER_LOAD_USHORT_OFFEN:
return AMDGPU::BUFFER_LOAD_USHORT_OFFSET;
case AMDGPU::BUFFER_LOAD_SSHORT_OFFEN:
return AMDGPU::BUFFER_LOAD_SSHORT_OFFSET;
case AMDGPU::BUFFER_LOAD_DWORDX2_OFFEN:
return AMDGPU::BUFFER_LOAD_DWORDX2_OFFSET;
case AMDGPU::BUFFER_LOAD_DWORDX4_OFFEN:
return AMDGPU::BUFFER_LOAD_DWORDX4_OFFSET;
default:
return -1;
}
}
// This differs from buildSpillLoadStore by only scavenging a VGPR. It does not
// need to handle the case where an SGPR may need to be spilled while spilling.
static bool buildMUBUFOffsetLoadStore(const SIInstrInfo *TII,
MachineFrameInfo &MFI,
MachineBasicBlock::iterator MI,
int Index,
int64_t Offset) {
MachineBasicBlock *MBB = MI->getParent();
const DebugLoc &DL = MI->getDebugLoc();
bool IsStore = MI->mayStore();
unsigned Opc = MI->getOpcode();
int LoadStoreOp = IsStore ?
getOffsetMUBUFStore(Opc) : getOffsetMUBUFLoad(Opc);
if (LoadStoreOp == -1)
return false;
unsigned Reg = TII->getNamedOperand(*MI, AMDGPU::OpName::vdata)->getReg();
BuildMI(*MBB, MI, DL, TII->get(LoadStoreOp))
.addReg(Reg, getDefRegState(!IsStore))
.add(*TII->getNamedOperand(*MI, AMDGPU::OpName::srsrc))
.add(*TII->getNamedOperand(*MI, AMDGPU::OpName::soffset))
.addImm(Offset)
.addImm(0) // glc
.addImm(0) // slc
.addImm(0) // tfe
.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
return true;
}
void SIRegisterInfo::buildSpillLoadStore(MachineBasicBlock::iterator MI,
unsigned LoadStoreOp,
int Index,
unsigned ValueReg,
bool IsKill,
unsigned ScratchRsrcReg,
unsigned ScratchOffsetReg,
int64_t InstOffset,
MachineMemOperand *MMO,
RegScavenger *RS) const {
MachineBasicBlock *MBB = MI->getParent();
MachineFunction *MF = MI->getParent()->getParent();
const SISubtarget &ST = MF->getSubtarget<SISubtarget>();
const SIInstrInfo *TII = ST.getInstrInfo();
const MachineFrameInfo &MFI = MF->getFrameInfo();
const MCInstrDesc &Desc = TII->get(LoadStoreOp);
const DebugLoc &DL = MI->getDebugLoc();
bool IsStore = Desc.mayStore();
bool RanOutOfSGPRs = false;
bool Scavenged = false;
unsigned SOffset = ScratchOffsetReg;
const TargetRegisterClass *RC = getRegClassForReg(MF->getRegInfo(), ValueReg);
unsigned NumSubRegs = AMDGPU::getRegBitWidth(RC->getID()) / 32;
unsigned Size = NumSubRegs * 4;
int64_t Offset = InstOffset + MFI.getObjectOffset(Index);
const int64_t OriginalImmOffset = Offset;
unsigned Align = MFI.getObjectAlignment(Index);
const MachinePointerInfo &BasePtrInfo = MMO->getPointerInfo();
if (!isUInt<12>(Offset + Size)) {
SOffset = AMDGPU::NoRegister;
// We don't have access to the register scavenger if this function is called
// during PEI::scavengeFrameVirtualRegs().
if (RS)
SOffset = RS->FindUnusedReg(&AMDGPU::SGPR_32RegClass);
if (SOffset == AMDGPU::NoRegister) {
// There are no free SGPRs, and since we are in the process of spilling
// VGPRs too. Since we need a VGPR in order to spill SGPRs (this is true
// on SI/CI and on VI it is true until we implement spilling using scalar
// stores), we have no way to free up an SGPR. Our solution here is to
// add the offset directly to the ScratchOffset register, and then
// subtract the offset after the spill to return ScratchOffset to it's
// original value.
RanOutOfSGPRs = true;
SOffset = ScratchOffsetReg;
} else {
Scavenged = true;
}
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_ADD_U32), SOffset)
.addReg(ScratchOffsetReg)
.addImm(Offset);
Offset = 0;
}
const unsigned EltSize = 4;
for (unsigned i = 0, e = NumSubRegs; i != e; ++i, Offset += EltSize) {
unsigned SubReg = NumSubRegs == 1 ?
ValueReg : getSubReg(ValueReg, getSubRegFromChannel(i));
unsigned SOffsetRegState = 0;
unsigned SrcDstRegState = getDefRegState(!IsStore);
if (i + 1 == e) {
SOffsetRegState |= getKillRegState(Scavenged);
// The last implicit use carries the "Kill" flag.
SrcDstRegState |= getKillRegState(IsKill);
}
MachinePointerInfo PInfo = BasePtrInfo.getWithOffset(EltSize * i);
MachineMemOperand *NewMMO
= MF->getMachineMemOperand(PInfo, MMO->getFlags(),
EltSize, MinAlign(Align, EltSize * i));
auto MIB = BuildMI(*MBB, MI, DL, Desc)
.addReg(SubReg, getDefRegState(!IsStore) | getKillRegState(IsKill))
.addReg(ScratchRsrcReg)
.addReg(SOffset, SOffsetRegState)
.addImm(Offset)
.addImm(0) // glc
.addImm(0) // slc
.addImm(0) // tfe
.addMemOperand(NewMMO);
if (NumSubRegs > 1)
MIB.addReg(ValueReg, RegState::Implicit | SrcDstRegState);
}
if (RanOutOfSGPRs) {
// Subtract the offset we added to the ScratchOffset register.
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_SUB_U32), ScratchOffsetReg)
.addReg(ScratchOffsetReg)
.addImm(OriginalImmOffset);
}
}
static std::pair<unsigned, unsigned> getSpillEltSize(unsigned SuperRegSize,
bool Store) {
if (SuperRegSize % 16 == 0) {
return { 16, Store ? AMDGPU::S_BUFFER_STORE_DWORDX4_SGPR :
AMDGPU::S_BUFFER_LOAD_DWORDX4_SGPR };
}
if (SuperRegSize % 8 == 0) {
return { 8, Store ? AMDGPU::S_BUFFER_STORE_DWORDX2_SGPR :
AMDGPU::S_BUFFER_LOAD_DWORDX2_SGPR };
}
return { 4, Store ? AMDGPU::S_BUFFER_STORE_DWORD_SGPR :
AMDGPU::S_BUFFER_LOAD_DWORD_SGPR};
}
bool SIRegisterInfo::spillSGPR(MachineBasicBlock::iterator MI,
int Index,
RegScavenger *RS,
bool OnlyToVGPR) const {
MachineBasicBlock *MBB = MI->getParent();
MachineFunction *MF = MBB->getParent();
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
ArrayRef<SIMachineFunctionInfo::SpilledReg> VGPRSpills
= MFI->getSGPRToVGPRSpills(Index);
bool SpillToVGPR = !VGPRSpills.empty();
if (OnlyToVGPR && !SpillToVGPR)
return false;
MachineRegisterInfo &MRI = MF->getRegInfo();
const SISubtarget &ST = MF->getSubtarget<SISubtarget>();
const SIInstrInfo *TII = ST.getInstrInfo();
unsigned SuperReg = MI->getOperand(0).getReg();
bool IsKill = MI->getOperand(0).isKill();
const DebugLoc &DL = MI->getDebugLoc();
MachineFrameInfo &FrameInfo = MF->getFrameInfo();
bool SpillToSMEM = spillSGPRToSMEM();
if (SpillToSMEM && OnlyToVGPR)
return false;
assert(SuperReg != AMDGPU::M0 && "m0 should never spill");
unsigned OffsetReg = AMDGPU::M0;
unsigned M0CopyReg = AMDGPU::NoRegister;
if (SpillToSMEM) {
if (RS->isRegUsed(AMDGPU::M0)) {
M0CopyReg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::COPY), M0CopyReg)
.addReg(AMDGPU::M0);
}
}
unsigned ScalarStoreOp;
unsigned EltSize = 4;
const TargetRegisterClass *RC = getPhysRegClass(SuperReg);
if (SpillToSMEM && isSGPRClass(RC)) {
// XXX - if private_element_size is larger than 4 it might be useful to be
// able to spill wider vmem spills.
std::tie(EltSize, ScalarStoreOp) =
getSpillEltSize(getRegSizeInBits(*RC) / 8, true);
}
ArrayRef<int16_t> SplitParts = getRegSplitParts(RC, EltSize);
unsigned NumSubRegs = SplitParts.empty() ? 1 : SplitParts.size();
// SubReg carries the "Kill" flag when SubReg == SuperReg.
unsigned SubKillState = getKillRegState((NumSubRegs == 1) && IsKill);
for (unsigned i = 0, e = NumSubRegs; i < e; ++i) {
unsigned SubReg = NumSubRegs == 1 ?
SuperReg : getSubReg(SuperReg, SplitParts[i]);
if (SpillToSMEM) {
int64_t FrOffset = FrameInfo.getObjectOffset(Index);
// The allocated memory size is really the wavefront size * the frame
// index size. The widest register class is 64 bytes, so a 4-byte scratch
// allocation is enough to spill this in a single stack object.
//
// FIXME: Frame size/offsets are computed earlier than this, so the extra
// space is still unnecessarily allocated.
unsigned Align = FrameInfo.getObjectAlignment(Index);
MachinePointerInfo PtrInfo
= MachinePointerInfo::getFixedStack(*MF, Index, EltSize * i);
MachineMemOperand *MMO
= MF->getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
EltSize, MinAlign(Align, EltSize * i));
// SMEM instructions only support a single offset, so increment the wave
// offset.
int64_t Offset = (ST.getWavefrontSize() * FrOffset) + (EltSize * i);
if (Offset != 0) {
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_ADD_U32), OffsetReg)
.addReg(MFI->getFrameOffsetReg())
.addImm(Offset);
} else {
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_MOV_B32), OffsetReg)
.addReg(MFI->getFrameOffsetReg());
}
BuildMI(*MBB, MI, DL, TII->get(ScalarStoreOp))
.addReg(SubReg, getKillRegState(IsKill)) // sdata
.addReg(MFI->getScratchRSrcReg()) // sbase
.addReg(OffsetReg, RegState::Kill) // soff
.addImm(0) // glc
.addMemOperand(MMO);
continue;
}
if (SpillToVGPR) {
SIMachineFunctionInfo::SpilledReg Spill = VGPRSpills[i];
BuildMI(*MBB, MI, DL,
TII->getMCOpcodeFromPseudo(AMDGPU::V_WRITELANE_B32),
Spill.VGPR)
.addReg(SubReg, getKillRegState(IsKill))
.addImm(Spill.Lane);
// FIXME: Since this spills to another register instead of an actual
// frame index, we should delete the frame index when all references to
// it are fixed.
} else {
// XXX - Can to VGPR spill fail for some subregisters but not others?
if (OnlyToVGPR)
return false;
// Spill SGPR to a frame index.
// TODO: Should VI try to spill to VGPR and then spill to SMEM?
unsigned TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
// TODO: Should VI try to spill to VGPR and then spill to SMEM?
MachineInstrBuilder Mov
= BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), TmpReg)
.addReg(SubReg, SubKillState);
// There could be undef components of a spilled super register.
// TODO: Can we detect this and skip the spill?
if (NumSubRegs > 1) {
// The last implicit use of the SuperReg carries the "Kill" flag.
unsigned SuperKillState = 0;
if (i + 1 == e)
SuperKillState |= getKillRegState(IsKill);
Mov.addReg(SuperReg, RegState::Implicit | SuperKillState);
}
unsigned Align = FrameInfo.getObjectAlignment(Index);
MachinePointerInfo PtrInfo
= MachinePointerInfo::getFixedStack(*MF, Index, EltSize * i);
MachineMemOperand *MMO
= MF->getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
EltSize, MinAlign(Align, EltSize * i));
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::SI_SPILL_V32_SAVE))
.addReg(TmpReg, RegState::Kill) // src
.addFrameIndex(Index) // vaddr
.addReg(MFI->getScratchRSrcReg()) // srrsrc
.addReg(MFI->getFrameOffsetReg()) // soffset
.addImm(i * 4) // offset
.addMemOperand(MMO);
}
}
if (M0CopyReg != AMDGPU::NoRegister) {
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::COPY), AMDGPU::M0)
.addReg(M0CopyReg, RegState::Kill);
}
MI->eraseFromParent();
MFI->addToSpilledSGPRs(NumSubRegs);
return true;
}
bool SIRegisterInfo::restoreSGPR(MachineBasicBlock::iterator MI,
int Index,
RegScavenger *RS,
bool OnlyToVGPR) const {
MachineFunction *MF = MI->getParent()->getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
MachineBasicBlock *MBB = MI->getParent();
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
ArrayRef<SIMachineFunctionInfo::SpilledReg> VGPRSpills
= MFI->getSGPRToVGPRSpills(Index);
bool SpillToVGPR = !VGPRSpills.empty();
if (OnlyToVGPR && !SpillToVGPR)
return false;
MachineFrameInfo &FrameInfo = MF->getFrameInfo();
const SISubtarget &ST = MF->getSubtarget<SISubtarget>();
const SIInstrInfo *TII = ST.getInstrInfo();
const DebugLoc &DL = MI->getDebugLoc();
unsigned SuperReg = MI->getOperand(0).getReg();
bool SpillToSMEM = spillSGPRToSMEM();
if (SpillToSMEM && OnlyToVGPR)
return false;
assert(SuperReg != AMDGPU::M0 && "m0 should never spill");
unsigned OffsetReg = AMDGPU::M0;
unsigned M0CopyReg = AMDGPU::NoRegister;
if (SpillToSMEM) {
if (RS->isRegUsed(AMDGPU::M0)) {
M0CopyReg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::COPY), M0CopyReg)
.addReg(AMDGPU::M0);
}
}
unsigned EltSize = 4;
unsigned ScalarLoadOp;
const TargetRegisterClass *RC = getPhysRegClass(SuperReg);
if (SpillToSMEM && isSGPRClass(RC)) {
// XXX - if private_element_size is larger than 4 it might be useful to be
// able to spill wider vmem spills.
std::tie(EltSize, ScalarLoadOp) =
getSpillEltSize(getRegSizeInBits(*RC) / 8, false);
}
ArrayRef<int16_t> SplitParts = getRegSplitParts(RC, EltSize);
unsigned NumSubRegs = SplitParts.empty() ? 1 : SplitParts.size();
// SubReg carries the "Kill" flag when SubReg == SuperReg.
int64_t FrOffset = FrameInfo.getObjectOffset(Index);
for (unsigned i = 0, e = NumSubRegs; i < e; ++i) {
unsigned SubReg = NumSubRegs == 1 ?
SuperReg : getSubReg(SuperReg, SplitParts[i]);
if (SpillToSMEM) {
// FIXME: Size may be > 4 but extra bytes wasted.
unsigned Align = FrameInfo.getObjectAlignment(Index);
MachinePointerInfo PtrInfo
= MachinePointerInfo::getFixedStack(*MF, Index, EltSize * i);
MachineMemOperand *MMO
= MF->getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
EltSize, MinAlign(Align, EltSize * i));
// Add i * 4 offset
int64_t Offset = (ST.getWavefrontSize() * FrOffset) + (EltSize * i);
if (Offset != 0) {
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_ADD_U32), OffsetReg)
.addReg(MFI->getFrameOffsetReg())
.addImm(Offset);
} else {
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_MOV_B32), OffsetReg)
.addReg(MFI->getFrameOffsetReg());
}
auto MIB =
BuildMI(*MBB, MI, DL, TII->get(ScalarLoadOp), SubReg)
.addReg(MFI->getScratchRSrcReg()) // sbase
.addReg(OffsetReg, RegState::Kill) // soff
.addImm(0) // glc
.addMemOperand(MMO);
if (NumSubRegs > 1)
MIB.addReg(SuperReg, RegState::ImplicitDefine);
continue;
}
if (SpillToVGPR) {
SIMachineFunctionInfo::SpilledReg Spill = VGPRSpills[i];
auto MIB =
BuildMI(*MBB, MI, DL, TII->getMCOpcodeFromPseudo(AMDGPU::V_READLANE_B32),
SubReg)
.addReg(Spill.VGPR)
.addImm(Spill.Lane);
if (NumSubRegs > 1)
MIB.addReg(SuperReg, RegState::ImplicitDefine);
} else {
if (OnlyToVGPR)
return false;
// Restore SGPR from a stack slot.
// FIXME: We should use S_LOAD_DWORD here for VI.
unsigned TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
unsigned Align = FrameInfo.getObjectAlignment(Index);
MachinePointerInfo PtrInfo
= MachinePointerInfo::getFixedStack(*MF, Index, EltSize * i);
MachineMemOperand *MMO = MF->getMachineMemOperand(PtrInfo,
MachineMemOperand::MOLoad, EltSize,
MinAlign(Align, EltSize * i));
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::SI_SPILL_V32_RESTORE), TmpReg)
.addFrameIndex(Index) // vaddr
.addReg(MFI->getScratchRSrcReg()) // srsrc
.addReg(MFI->getFrameOffsetReg()) // soffset
.addImm(i * 4) // offset
.addMemOperand(MMO);
auto MIB =
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), SubReg)
.addReg(TmpReg, RegState::Kill);
if (NumSubRegs > 1)
MIB.addReg(MI->getOperand(0).getReg(), RegState::ImplicitDefine);
}
}
if (M0CopyReg != AMDGPU::NoRegister) {
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::COPY), AMDGPU::M0)
.addReg(M0CopyReg, RegState::Kill);
}
MI->eraseFromParent();
return true;
}
/// Special case of eliminateFrameIndex. Returns true if the SGPR was spilled to
/// a VGPR and the stack slot can be safely eliminated when all other users are
/// handled.
bool SIRegisterInfo::eliminateSGPRToVGPRSpillFrameIndex(
MachineBasicBlock::iterator MI,
int FI,
RegScavenger *RS) const {
switch (MI->getOpcode()) {
case AMDGPU::SI_SPILL_S512_SAVE:
case AMDGPU::SI_SPILL_S256_SAVE:
case AMDGPU::SI_SPILL_S128_SAVE:
case AMDGPU::SI_SPILL_S64_SAVE:
case AMDGPU::SI_SPILL_S32_SAVE:
return spillSGPR(MI, FI, RS, true);
case AMDGPU::SI_SPILL_S512_RESTORE:
case AMDGPU::SI_SPILL_S256_RESTORE:
case AMDGPU::SI_SPILL_S128_RESTORE:
case AMDGPU::SI_SPILL_S64_RESTORE:
case AMDGPU::SI_SPILL_S32_RESTORE:
return restoreSGPR(MI, FI, RS, true);
default:
llvm_unreachable("not an SGPR spill instruction");
}
}
void SIRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator MI,
int SPAdj, unsigned FIOperandNum,
RegScavenger *RS) const {
MachineFunction *MF = MI->getParent()->getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
MachineBasicBlock *MBB = MI->getParent();
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
MachineFrameInfo &FrameInfo = MF->getFrameInfo();
const SISubtarget &ST = MF->getSubtarget<SISubtarget>();
const SIInstrInfo *TII = ST.getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
MachineOperand &FIOp = MI->getOperand(FIOperandNum);
int Index = MI->getOperand(FIOperandNum).getIndex();
switch (MI->getOpcode()) {
// SGPR register spill
case AMDGPU::SI_SPILL_S512_SAVE:
case AMDGPU::SI_SPILL_S256_SAVE:
case AMDGPU::SI_SPILL_S128_SAVE:
case AMDGPU::SI_SPILL_S64_SAVE:
case AMDGPU::SI_SPILL_S32_SAVE: {
spillSGPR(MI, Index, RS);
break;
}
// SGPR register restore
case AMDGPU::SI_SPILL_S512_RESTORE:
case AMDGPU::SI_SPILL_S256_RESTORE:
case AMDGPU::SI_SPILL_S128_RESTORE:
case AMDGPU::SI_SPILL_S64_RESTORE:
case AMDGPU::SI_SPILL_S32_RESTORE: {
restoreSGPR(MI, Index, RS);
break;
}
// VGPR register spill
case AMDGPU::SI_SPILL_V512_SAVE:
case AMDGPU::SI_SPILL_V256_SAVE:
case AMDGPU::SI_SPILL_V128_SAVE:
case AMDGPU::SI_SPILL_V96_SAVE:
case AMDGPU::SI_SPILL_V64_SAVE:
case AMDGPU::SI_SPILL_V32_SAVE: {
const MachineOperand *VData = TII->getNamedOperand(*MI,
AMDGPU::OpName::vdata);
buildSpillLoadStore(MI, AMDGPU::BUFFER_STORE_DWORD_OFFSET,
Index,
VData->getReg(), VData->isKill(),
TII->getNamedOperand(*MI, AMDGPU::OpName::srsrc)->getReg(),
TII->getNamedOperand(*MI, AMDGPU::OpName::soffset)->getReg(),
TII->getNamedOperand(*MI, AMDGPU::OpName::offset)->getImm(),
*MI->memoperands_begin(),
RS);
MFI->addToSpilledVGPRs(getNumSubRegsForSpillOp(MI->getOpcode()));
MI->eraseFromParent();
break;
}
case AMDGPU::SI_SPILL_V32_RESTORE:
case AMDGPU::SI_SPILL_V64_RESTORE:
case AMDGPU::SI_SPILL_V96_RESTORE:
case AMDGPU::SI_SPILL_V128_RESTORE:
case AMDGPU::SI_SPILL_V256_RESTORE:
case AMDGPU::SI_SPILL_V512_RESTORE: {
const MachineOperand *VData = TII->getNamedOperand(*MI,
AMDGPU::OpName::vdata);
buildSpillLoadStore(MI, AMDGPU::BUFFER_LOAD_DWORD_OFFSET,
Index,
VData->getReg(), VData->isKill(),
TII->getNamedOperand(*MI, AMDGPU::OpName::srsrc)->getReg(),
TII->getNamedOperand(*MI, AMDGPU::OpName::soffset)->getReg(),
TII->getNamedOperand(*MI, AMDGPU::OpName::offset)->getImm(),
*MI->memoperands_begin(),
RS);
MI->eraseFromParent();
break;
}
default: {
const DebugLoc &DL = MI->getDebugLoc();
bool IsMUBUF = TII->isMUBUF(*MI);
if (!IsMUBUF &&
MFI->getFrameOffsetReg() != MFI->getScratchWaveOffsetReg()) {
// Convert to an absolute stack address by finding the offset from the
// scratch wave base and scaling by the wave size.
//
// In an entry function/kernel the stack address is already the absolute
// address relative to the the scratch wave offset.
unsigned DiffReg
= MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
bool IsCopy = MI->getOpcode() == AMDGPU::V_MOV_B32_e32;
unsigned ResultReg = IsCopy ?
MI->getOperand(0).getReg() :
MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_SUB_U32), DiffReg)
.addReg(MFI->getFrameOffsetReg())
.addReg(MFI->getScratchWaveOffsetReg());
int64_t Offset = FrameInfo.getObjectOffset(Index);
if (Offset == 0) {
// XXX - This never happens because of emergency scavenging slot at 0?
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_LSHRREV_B32_e64), ResultReg)
.addImm(Log2_32(ST.getWavefrontSize()))
.addReg(DiffReg);
} else {
unsigned CarryOut
= MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass);
unsigned ScaledReg
= MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_LSHRREV_B32_e64), ScaledReg)
.addImm(Log2_32(ST.getWavefrontSize()))
.addReg(DiffReg, RegState::Kill);
// TODO: Fold if use instruction is another add of a constant.
if (AMDGPU::isInlinableLiteral32(Offset, ST.hasInv2PiInlineImm())) {
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_ADD_I32_e64), ResultReg)
.addReg(CarryOut, RegState::Define | RegState::Dead)
.addImm(Offset)
.addReg(ScaledReg, RegState::Kill);
} else {
unsigned ConstOffsetReg
= MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_MOV_B32), ConstOffsetReg)
.addImm(Offset);
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_ADD_I32_e64), ResultReg)
.addReg(CarryOut, RegState::Define | RegState::Dead)
.addReg(ConstOffsetReg, RegState::Kill)
.addReg(ScaledReg, RegState::Kill);
}
MRI.setRegAllocationHint(CarryOut, 0, AMDGPU::VCC);
}
// Don't introduce an extra copy if we're just materializing in a mov.
if (IsCopy)
MI->eraseFromParent();
else
FIOp.ChangeToRegister(ResultReg, false, false, true);
return;
}
if (IsMUBUF) {
// Disable offen so we don't need a 0 vgpr base.
assert(static_cast<int>(FIOperandNum) ==
AMDGPU::getNamedOperandIdx(MI->getOpcode(),
AMDGPU::OpName::vaddr));
assert(TII->getNamedOperand(*MI, AMDGPU::OpName::soffset)->getReg()
== MFI->getFrameOffsetReg());
int64_t Offset = FrameInfo.getObjectOffset(Index);
int64_t OldImm
= TII->getNamedOperand(*MI, AMDGPU::OpName::offset)->getImm();
int64_t NewOffset = OldImm + Offset;
if (isUInt<12>(NewOffset) &&
buildMUBUFOffsetLoadStore(TII, FrameInfo, MI, Index, NewOffset)) {
MI->eraseFromParent();
return;
}
}
// If the offset is simply too big, don't convert to a scratch wave offset
// relative index.
int64_t Offset = FrameInfo.getObjectOffset(Index);
FIOp.ChangeToImmediate(Offset);
if (!TII->isImmOperandLegal(*MI, FIOperandNum, FIOp)) {
unsigned TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), TmpReg)
.addImm(Offset);
FIOp.ChangeToRegister(TmpReg, false, false, true);
}
}
}
}
StringRef SIRegisterInfo::getRegAsmName(unsigned Reg) const {
#define AMDGPU_REG_ASM_NAMES
#include "AMDGPURegAsmNames.inc.cpp"
#define REG_RANGE(BeginReg, EndReg, RegTable) \
if (Reg >= BeginReg && Reg <= EndReg) { \
unsigned Index = Reg - BeginReg; \
assert(Index < array_lengthof(RegTable)); \
return RegTable[Index]; \
}
REG_RANGE(AMDGPU::VGPR0, AMDGPU::VGPR255, VGPR32RegNames);
REG_RANGE(AMDGPU::SGPR0, AMDGPU::SGPR103, SGPR32RegNames);
REG_RANGE(AMDGPU::VGPR0_VGPR1, AMDGPU::VGPR254_VGPR255, VGPR64RegNames);
REG_RANGE(AMDGPU::SGPR0_SGPR1, AMDGPU::SGPR102_SGPR103, SGPR64RegNames);
REG_RANGE(AMDGPU::VGPR0_VGPR1_VGPR2, AMDGPU::VGPR253_VGPR254_VGPR255,
VGPR96RegNames);
REG_RANGE(AMDGPU::VGPR0_VGPR1_VGPR2_VGPR3,
AMDGPU::VGPR252_VGPR253_VGPR254_VGPR255,
VGPR128RegNames);
REG_RANGE(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3,
AMDGPU::SGPR100_SGPR101_SGPR102_SGPR103,
SGPR128RegNames);
REG_RANGE(AMDGPU::VGPR0_VGPR1_VGPR2_VGPR3_VGPR4_VGPR5_VGPR6_VGPR7,
AMDGPU::VGPR248_VGPR249_VGPR250_VGPR251_VGPR252_VGPR253_VGPR254_VGPR255,
VGPR256RegNames);
REG_RANGE(
AMDGPU::VGPR0_VGPR1_VGPR2_VGPR3_VGPR4_VGPR5_VGPR6_VGPR7_VGPR8_VGPR9_VGPR10_VGPR11_VGPR12_VGPR13_VGPR14_VGPR15,
AMDGPU::VGPR240_VGPR241_VGPR242_VGPR243_VGPR244_VGPR245_VGPR246_VGPR247_VGPR248_VGPR249_VGPR250_VGPR251_VGPR252_VGPR253_VGPR254_VGPR255,
VGPR512RegNames);
REG_RANGE(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3_SGPR4_SGPR5_SGPR6_SGPR7,
AMDGPU::SGPR96_SGPR97_SGPR98_SGPR99_SGPR100_SGPR101_SGPR102_SGPR103,
SGPR256RegNames);
REG_RANGE(
AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3_SGPR4_SGPR5_SGPR6_SGPR7_SGPR8_SGPR9_SGPR10_SGPR11_SGPR12_SGPR13_SGPR14_SGPR15,
AMDGPU::SGPR88_SGPR89_SGPR90_SGPR91_SGPR92_SGPR93_SGPR94_SGPR95_SGPR96_SGPR97_SGPR98_SGPR99_SGPR100_SGPR101_SGPR102_SGPR103,
SGPR512RegNames
);
#undef REG_RANGE
// FIXME: Rename flat_scr so we don't need to special case this.
switch (Reg) {
case AMDGPU::FLAT_SCR:
return "flat_scratch";
case AMDGPU::FLAT_SCR_LO:
return "flat_scratch_lo";
case AMDGPU::FLAT_SCR_HI:
return "flat_scratch_hi";
default:
// For the special named registers the default is fine.
return TargetRegisterInfo::getRegAsmName(Reg);
}
}
// FIXME: This is very slow. It might be worth creating a map from physreg to
// register class.
const TargetRegisterClass *SIRegisterInfo::getPhysRegClass(unsigned Reg) const {
assert(!TargetRegisterInfo::isVirtualRegister(Reg));
static const TargetRegisterClass *const BaseClasses[] = {
&AMDGPU::VGPR_32RegClass,
&AMDGPU::SReg_32RegClass,
&AMDGPU::VReg_64RegClass,
&AMDGPU::SReg_64RegClass,
&AMDGPU::VReg_96RegClass,
&AMDGPU::VReg_128RegClass,
&AMDGPU::SReg_128RegClass,
&AMDGPU::VReg_256RegClass,
&AMDGPU::SReg_256RegClass,
&AMDGPU::VReg_512RegClass,
&AMDGPU::SReg_512RegClass,
&AMDGPU::SCC_CLASSRegClass,
};
for (const TargetRegisterClass *BaseClass : BaseClasses) {
if (BaseClass->contains(Reg)) {
return BaseClass;
}
}
return nullptr;
}
// TODO: It might be helpful to have some target specific flags in
// TargetRegisterClass to mark which classes are VGPRs to make this trivial.
bool SIRegisterInfo::hasVGPRs(const TargetRegisterClass *RC) const {
unsigned Size = getRegSizeInBits(*RC);
if (Size < 32)
return false;
switch (Size) {
case 32:
return getCommonSubClass(&AMDGPU::VGPR_32RegClass, RC) != nullptr;
case 64:
return getCommonSubClass(&AMDGPU::VReg_64RegClass, RC) != nullptr;
case 96:
return getCommonSubClass(&AMDGPU::VReg_96RegClass, RC) != nullptr;
case 128:
return getCommonSubClass(&AMDGPU::VReg_128RegClass, RC) != nullptr;
case 256:
return getCommonSubClass(&AMDGPU::VReg_256RegClass, RC) != nullptr;
case 512:
return getCommonSubClass(&AMDGPU::VReg_512RegClass, RC) != nullptr;
default:
llvm_unreachable("Invalid register class size");
}
}
const TargetRegisterClass *SIRegisterInfo::getEquivalentVGPRClass(
const TargetRegisterClass *SRC) const {
switch (getRegSizeInBits(*SRC)) {
case 32:
return &AMDGPU::VGPR_32RegClass;
case 64:
return &AMDGPU::VReg_64RegClass;
case 96:
return &AMDGPU::VReg_96RegClass;
case 128:
return &AMDGPU::VReg_128RegClass;
case 256:
return &AMDGPU::VReg_256RegClass;
case 512:
return &AMDGPU::VReg_512RegClass;
default:
llvm_unreachable("Invalid register class size");
}
}
const TargetRegisterClass *SIRegisterInfo::getEquivalentSGPRClass(
const TargetRegisterClass *VRC) const {
switch (getRegSizeInBits(*VRC)) {
case 32:
return &AMDGPU::SGPR_32RegClass;
case 64:
return &AMDGPU::SReg_64RegClass;
case 128:
return &AMDGPU::SReg_128RegClass;
case 256:
return &AMDGPU::SReg_256RegClass;
case 512:
return &AMDGPU::SReg_512RegClass;
default:
llvm_unreachable("Invalid register class size");
}
}
const TargetRegisterClass *SIRegisterInfo::getSubRegClass(
const TargetRegisterClass *RC, unsigned SubIdx) const {
if (SubIdx == AMDGPU::NoSubRegister)
return RC;
// We can assume that each lane corresponds to one 32-bit register.
LaneBitmask::Type Mask = getSubRegIndexLaneMask(SubIdx).getAsInteger();
unsigned Count = countPopulation(Mask);
if (isSGPRClass(RC)) {
switch (Count) {
case 1:
return &AMDGPU::SGPR_32RegClass;
case 2:
return &AMDGPU::SReg_64RegClass;
case 4:
return &AMDGPU::SReg_128RegClass;
case 8:
return &AMDGPU::SReg_256RegClass;
case 16: /* fall-through */
default:
llvm_unreachable("Invalid sub-register class size");
}
} else {
switch (Count) {
case 1:
return &AMDGPU::VGPR_32RegClass;
case 2:
return &AMDGPU::VReg_64RegClass;
case 3:
return &AMDGPU::VReg_96RegClass;
case 4:
return &AMDGPU::VReg_128RegClass;
case 8:
return &AMDGPU::VReg_256RegClass;
case 16: /* fall-through */
default:
llvm_unreachable("Invalid sub-register class size");
}
}
}
bool SIRegisterInfo::shouldRewriteCopySrc(
const TargetRegisterClass *DefRC,
unsigned DefSubReg,
const TargetRegisterClass *SrcRC,
unsigned SrcSubReg) const {
// We want to prefer the smallest register class possible, so we don't want to
// stop and rewrite on anything that looks like a subregister
// extract. Operations mostly don't care about the super register class, so we
// only want to stop on the most basic of copies between the same register
// class.
//
// e.g. if we have something like
// vreg0 = ...
// vreg1 = ...
// vreg2 = REG_SEQUENCE vreg0, sub0, vreg1, sub1, vreg2, sub2
// vreg3 = COPY vreg2, sub0
//
// We want to look through the COPY to find:
// => vreg3 = COPY vreg0
// Plain copy.
return getCommonSubClass(DefRC, SrcRC) != nullptr;
}
// FIXME: Most of these are flexible with HSA and we don't need to reserve them
// as input registers if unused. Whether the dispatch ptr is necessary should be
// easy to detect from used intrinsics. Scratch setup is harder to know.
unsigned SIRegisterInfo::getPreloadedValue(const MachineFunction &MF,
enum PreloadedValue Value) const {
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
(void)ST;
switch (Value) {
case SIRegisterInfo::WORKGROUP_ID_X:
assert(MFI->hasWorkGroupIDX());
return MFI->WorkGroupIDXSystemSGPR;
case SIRegisterInfo::WORKGROUP_ID_Y:
assert(MFI->hasWorkGroupIDY());
return MFI->WorkGroupIDYSystemSGPR;
case SIRegisterInfo::WORKGROUP_ID_Z:
assert(MFI->hasWorkGroupIDZ());
return MFI->WorkGroupIDZSystemSGPR;
case SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET:
return MFI->PrivateSegmentWaveByteOffsetSystemSGPR;
case SIRegisterInfo::PRIVATE_SEGMENT_BUFFER:
assert(MFI->hasPrivateSegmentBuffer());
return MFI->PrivateSegmentBufferUserSGPR;
case SIRegisterInfo::IMPLICIT_BUFFER_PTR:
assert(MFI->hasImplicitBufferPtr());
return MFI->ImplicitBufferPtrUserSGPR;
case SIRegisterInfo::KERNARG_SEGMENT_PTR:
assert(MFI->hasKernargSegmentPtr());
return MFI->KernargSegmentPtrUserSGPR;
case SIRegisterInfo::DISPATCH_ID:
assert(MFI->hasDispatchID());
return MFI->DispatchIDUserSGPR;
case SIRegisterInfo::FLAT_SCRATCH_INIT:
assert(MFI->hasFlatScratchInit());
return MFI->FlatScratchInitUserSGPR;
case SIRegisterInfo::DISPATCH_PTR:
assert(MFI->hasDispatchPtr());
return MFI->DispatchPtrUserSGPR;
case SIRegisterInfo::QUEUE_PTR:
assert(MFI->hasQueuePtr());
return MFI->QueuePtrUserSGPR;
case SIRegisterInfo::WORKITEM_ID_X:
assert(MFI->hasWorkItemIDX());
return AMDGPU::VGPR0;
case SIRegisterInfo::WORKITEM_ID_Y:
assert(MFI->hasWorkItemIDY());
return AMDGPU::VGPR1;
case SIRegisterInfo::WORKITEM_ID_Z:
assert(MFI->hasWorkItemIDZ());
return AMDGPU::VGPR2;
}
llvm_unreachable("unexpected preloaded value type");
}
/// \brief Returns a register that is not used at any point in the function.
/// If all registers are used, then this function will return
// AMDGPU::NoRegister.
unsigned
SIRegisterInfo::findUnusedRegister(const MachineRegisterInfo &MRI,
const TargetRegisterClass *RC,
const MachineFunction &MF) const {
for (unsigned Reg : *RC)
if (MRI.isAllocatable(Reg) && !MRI.isPhysRegUsed(Reg))
return Reg;
return AMDGPU::NoRegister;
}
ArrayRef<int16_t> SIRegisterInfo::getRegSplitParts(const TargetRegisterClass *RC,
unsigned EltSize) const {
if (EltSize == 4) {
static const int16_t Sub0_15[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11,
AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15,
};
static const int16_t Sub0_7[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
};
static const int16_t Sub0_3[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
};
static const int16_t Sub0_2[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2,
};
static const int16_t Sub0_1[] = {
AMDGPU::sub0, AMDGPU::sub1,
};
switch (AMDGPU::getRegBitWidth(*RC->MC)) {
case 32:
return {};
case 64:
return makeArrayRef(Sub0_1);
case 96:
return makeArrayRef(Sub0_2);
case 128:
return makeArrayRef(Sub0_3);
case 256:
return makeArrayRef(Sub0_7);
case 512:
return makeArrayRef(Sub0_15);
default:
llvm_unreachable("unhandled register size");
}
}
if (EltSize == 8) {
static const int16_t Sub0_15_64[] = {
AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
AMDGPU::sub4_sub5, AMDGPU::sub6_sub7,
AMDGPU::sub8_sub9, AMDGPU::sub10_sub11,
AMDGPU::sub12_sub13, AMDGPU::sub14_sub15
};
static const int16_t Sub0_7_64[] = {
AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
AMDGPU::sub4_sub5, AMDGPU::sub6_sub7
};
static const int16_t Sub0_3_64[] = {
AMDGPU::sub0_sub1, AMDGPU::sub2_sub3
};
switch (AMDGPU::getRegBitWidth(*RC->MC)) {
case 64:
return {};
case 128:
return makeArrayRef(Sub0_3_64);
case 256:
return makeArrayRef(Sub0_7_64);
case 512:
return makeArrayRef(Sub0_15_64);
default:
llvm_unreachable("unhandled register size");
}
}
assert(EltSize == 16 && "unhandled register spill split size");
static const int16_t Sub0_15_128[] = {
AMDGPU::sub0_sub1_sub2_sub3,
AMDGPU::sub4_sub5_sub6_sub7,
AMDGPU::sub8_sub9_sub10_sub11,
AMDGPU::sub12_sub13_sub14_sub15
};
static const int16_t Sub0_7_128[] = {
AMDGPU::sub0_sub1_sub2_sub3,
AMDGPU::sub4_sub5_sub6_sub7
};
switch (AMDGPU::getRegBitWidth(*RC->MC)) {
case 128:
return {};
case 256:
return makeArrayRef(Sub0_7_128);
case 512:
return makeArrayRef(Sub0_15_128);
default:
llvm_unreachable("unhandled register size");
}
}
const TargetRegisterClass*
SIRegisterInfo::getRegClassForReg(const MachineRegisterInfo &MRI,
unsigned Reg) const {
if (TargetRegisterInfo::isVirtualRegister(Reg))
return MRI.getRegClass(Reg);
return getPhysRegClass(Reg);
}
bool SIRegisterInfo::isVGPR(const MachineRegisterInfo &MRI,
unsigned Reg) const {
return hasVGPRs(getRegClassForReg(MRI, Reg));
}
bool SIRegisterInfo::shouldCoalesce(MachineInstr *MI,
const TargetRegisterClass *SrcRC,
unsigned SubReg,
const TargetRegisterClass *DstRC,
unsigned DstSubReg,
const TargetRegisterClass *NewRC) const {
unsigned SrcSize = getRegSizeInBits(*SrcRC);
unsigned DstSize = getRegSizeInBits(*DstRC);
unsigned NewSize = getRegSizeInBits(*NewRC);
// Do not increase size of registers beyond dword, we would need to allocate
// adjacent registers and constraint regalloc more than needed.
// Always allow dword coalescing.
if (SrcSize <= 32 || DstSize <= 32)
return true;
return NewSize <= DstSize || NewSize <= SrcSize;
}
unsigned SIRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
MachineFunction &MF) const {
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
unsigned Occupancy = ST.getOccupancyWithLocalMemSize(MFI->getLDSSize(),
*MF.getFunction());
switch (RC->getID()) {
default:
return AMDGPURegisterInfo::getRegPressureLimit(RC, MF);
case AMDGPU::VGPR_32RegClassID:
return std::min(ST.getMaxNumVGPRs(Occupancy), ST.getMaxNumVGPRs(MF));
case AMDGPU::SGPR_32RegClassID:
return std::min(ST.getMaxNumSGPRs(Occupancy, true), ST.getMaxNumSGPRs(MF));
}
}
unsigned SIRegisterInfo::getRegPressureSetLimit(const MachineFunction &MF,
unsigned Idx) const {
if (Idx == getVGPRPressureSet())
return getRegPressureLimit(&AMDGPU::VGPR_32RegClass,
const_cast<MachineFunction &>(MF));
if (Idx == getSGPRPressureSet())
return getRegPressureLimit(&AMDGPU::SGPR_32RegClass,
const_cast<MachineFunction &>(MF));
return AMDGPURegisterInfo::getRegPressureSetLimit(MF, Idx);
}
const int *SIRegisterInfo::getRegUnitPressureSets(unsigned RegUnit) const {
static const int Empty[] = { -1 };
if (hasRegUnit(AMDGPU::M0, RegUnit))
return Empty;
return AMDGPURegisterInfo::getRegUnitPressureSets(RegUnit);
}