mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 03:02:36 +01:00
990453063b
Summary: It is traditionally potentially very inefficient to not preallocate the memory, but rely on reallocation every time you push something into vector. For example, looking at unity build of RawSpeed (`-O3 -g0 -emit-llvm -Xclang -disable-llvm-optzns`), the memory story is as follows: ``` total runtime: 11.34s. calls to allocation functions: 2694053 (237612/s) temporary memory allocations: 645188 (56904/s) peak heap memory consumption: 231.36MB peak RSS (including heaptrack overhead): 397.39MB ``` Looking at details, `FoldingSetNodeID::AddString()` is noteworthy, frequently called and is allocation-heavy. But it is quite obvious how many times we will push into `Bits` - we will push `String.size()` itself, and then we will push once per every 4 bytes of `String` (padding last block). And if we preallocate, we get: ``` total runtime: 11.20s. calls to allocation functions: 2594704 (231669/s) temporary memory allocations: 560004 (50000/s) peak heap memory consumption: 231.36MB peak RSS (including heaptrack overhead): 398.06MB ``` Which is a measurable win: ``` total runtime: -0.14s. # -1.23 % calls to allocation functions: -99349 (719920/s) # -3.69 % temporary memory allocations: -85184 (617275/s) # -13.2 % (!) peak heap memory consumption: 0B peak RSS (including heaptrack overhead): 0B total memory leaked: 0B ``` Reviewers: efriedma, nikic, bkramer Reviewed By: bkramer Subscribers: hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D81342
473 lines
16 KiB
C++
473 lines
16 KiB
C++
//===-- Support/FoldingSet.cpp - Uniquing Hash Set --------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a hash set that can be used to remove duplication of
|
|
// nodes in a graph.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/Hashing.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/Host.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <cassert>
|
|
#include <cstring>
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FoldingSetNodeIDRef Implementation
|
|
|
|
/// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
|
|
/// used to lookup the node in the FoldingSetBase.
|
|
unsigned FoldingSetNodeIDRef::ComputeHash() const {
|
|
return static_cast<unsigned>(hash_combine_range(Data, Data+Size));
|
|
}
|
|
|
|
bool FoldingSetNodeIDRef::operator==(FoldingSetNodeIDRef RHS) const {
|
|
if (Size != RHS.Size) return false;
|
|
return memcmp(Data, RHS.Data, Size*sizeof(*Data)) == 0;
|
|
}
|
|
|
|
/// Used to compare the "ordering" of two nodes as defined by the
|
|
/// profiled bits and their ordering defined by memcmp().
|
|
bool FoldingSetNodeIDRef::operator<(FoldingSetNodeIDRef RHS) const {
|
|
if (Size != RHS.Size)
|
|
return Size < RHS.Size;
|
|
return memcmp(Data, RHS.Data, Size*sizeof(*Data)) < 0;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FoldingSetNodeID Implementation
|
|
|
|
/// Add* - Add various data types to Bit data.
|
|
///
|
|
void FoldingSetNodeID::AddPointer(const void *Ptr) {
|
|
// Note: this adds pointers to the hash using sizes and endianness that
|
|
// depend on the host. It doesn't matter, however, because hashing on
|
|
// pointer values is inherently unstable. Nothing should depend on the
|
|
// ordering of nodes in the folding set.
|
|
static_assert(sizeof(uintptr_t) <= sizeof(unsigned long long),
|
|
"unexpected pointer size");
|
|
AddInteger(reinterpret_cast<uintptr_t>(Ptr));
|
|
}
|
|
void FoldingSetNodeID::AddInteger(signed I) {
|
|
Bits.push_back(I);
|
|
}
|
|
void FoldingSetNodeID::AddInteger(unsigned I) {
|
|
Bits.push_back(I);
|
|
}
|
|
void FoldingSetNodeID::AddInteger(long I) {
|
|
AddInteger((unsigned long)I);
|
|
}
|
|
void FoldingSetNodeID::AddInteger(unsigned long I) {
|
|
if (sizeof(long) == sizeof(int))
|
|
AddInteger(unsigned(I));
|
|
else if (sizeof(long) == sizeof(long long)) {
|
|
AddInteger((unsigned long long)I);
|
|
} else {
|
|
llvm_unreachable("unexpected sizeof(long)");
|
|
}
|
|
}
|
|
void FoldingSetNodeID::AddInteger(long long I) {
|
|
AddInteger((unsigned long long)I);
|
|
}
|
|
void FoldingSetNodeID::AddInteger(unsigned long long I) {
|
|
AddInteger(unsigned(I));
|
|
AddInteger(unsigned(I >> 32));
|
|
}
|
|
|
|
void FoldingSetNodeID::AddString(StringRef String) {
|
|
unsigned Size = String.size();
|
|
|
|
unsigned NumInserts = 1 + divideCeil(Size, 4);
|
|
Bits.reserve(Bits.size() + NumInserts);
|
|
|
|
Bits.push_back(Size);
|
|
if (!Size) return;
|
|
|
|
unsigned Units = Size / 4;
|
|
unsigned Pos = 0;
|
|
const unsigned *Base = (const unsigned*) String.data();
|
|
|
|
// If the string is aligned do a bulk transfer.
|
|
if (!((intptr_t)Base & 3)) {
|
|
Bits.append(Base, Base + Units);
|
|
Pos = (Units + 1) * 4;
|
|
} else {
|
|
// Otherwise do it the hard way.
|
|
// To be compatible with above bulk transfer, we need to take endianness
|
|
// into account.
|
|
static_assert(sys::IsBigEndianHost || sys::IsLittleEndianHost,
|
|
"Unexpected host endianness");
|
|
if (sys::IsBigEndianHost) {
|
|
for (Pos += 4; Pos <= Size; Pos += 4) {
|
|
unsigned V = ((unsigned char)String[Pos - 4] << 24) |
|
|
((unsigned char)String[Pos - 3] << 16) |
|
|
((unsigned char)String[Pos - 2] << 8) |
|
|
(unsigned char)String[Pos - 1];
|
|
Bits.push_back(V);
|
|
}
|
|
} else { // Little-endian host
|
|
for (Pos += 4; Pos <= Size; Pos += 4) {
|
|
unsigned V = ((unsigned char)String[Pos - 1] << 24) |
|
|
((unsigned char)String[Pos - 2] << 16) |
|
|
((unsigned char)String[Pos - 3] << 8) |
|
|
(unsigned char)String[Pos - 4];
|
|
Bits.push_back(V);
|
|
}
|
|
}
|
|
}
|
|
|
|
// With the leftover bits.
|
|
unsigned V = 0;
|
|
// Pos will have overshot size by 4 - #bytes left over.
|
|
// No need to take endianness into account here - this is always executed.
|
|
switch (Pos - Size) {
|
|
case 1: V = (V << 8) | (unsigned char)String[Size - 3]; LLVM_FALLTHROUGH;
|
|
case 2: V = (V << 8) | (unsigned char)String[Size - 2]; LLVM_FALLTHROUGH;
|
|
case 3: V = (V << 8) | (unsigned char)String[Size - 1]; break;
|
|
default: return; // Nothing left.
|
|
}
|
|
|
|
Bits.push_back(V);
|
|
}
|
|
|
|
// AddNodeID - Adds the Bit data of another ID to *this.
|
|
void FoldingSetNodeID::AddNodeID(const FoldingSetNodeID &ID) {
|
|
Bits.append(ID.Bits.begin(), ID.Bits.end());
|
|
}
|
|
|
|
/// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used to
|
|
/// lookup the node in the FoldingSetBase.
|
|
unsigned FoldingSetNodeID::ComputeHash() const {
|
|
return FoldingSetNodeIDRef(Bits.data(), Bits.size()).ComputeHash();
|
|
}
|
|
|
|
/// operator== - Used to compare two nodes to each other.
|
|
///
|
|
bool FoldingSetNodeID::operator==(const FoldingSetNodeID &RHS) const {
|
|
return *this == FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size());
|
|
}
|
|
|
|
/// operator== - Used to compare two nodes to each other.
|
|
///
|
|
bool FoldingSetNodeID::operator==(FoldingSetNodeIDRef RHS) const {
|
|
return FoldingSetNodeIDRef(Bits.data(), Bits.size()) == RHS;
|
|
}
|
|
|
|
/// Used to compare the "ordering" of two nodes as defined by the
|
|
/// profiled bits and their ordering defined by memcmp().
|
|
bool FoldingSetNodeID::operator<(const FoldingSetNodeID &RHS) const {
|
|
return *this < FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size());
|
|
}
|
|
|
|
bool FoldingSetNodeID::operator<(FoldingSetNodeIDRef RHS) const {
|
|
return FoldingSetNodeIDRef(Bits.data(), Bits.size()) < RHS;
|
|
}
|
|
|
|
/// Intern - Copy this node's data to a memory region allocated from the
|
|
/// given allocator and return a FoldingSetNodeIDRef describing the
|
|
/// interned data.
|
|
FoldingSetNodeIDRef
|
|
FoldingSetNodeID::Intern(BumpPtrAllocator &Allocator) const {
|
|
unsigned *New = Allocator.Allocate<unsigned>(Bits.size());
|
|
std::uninitialized_copy(Bits.begin(), Bits.end(), New);
|
|
return FoldingSetNodeIDRef(New, Bits.size());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// Helper functions for FoldingSetBase.
|
|
|
|
/// GetNextPtr - In order to save space, each bucket is a
|
|
/// singly-linked-list. In order to make deletion more efficient, we make
|
|
/// the list circular, so we can delete a node without computing its hash.
|
|
/// The problem with this is that the start of the hash buckets are not
|
|
/// Nodes. If NextInBucketPtr is a bucket pointer, this method returns null:
|
|
/// use GetBucketPtr when this happens.
|
|
static FoldingSetBase::Node *GetNextPtr(void *NextInBucketPtr) {
|
|
// The low bit is set if this is the pointer back to the bucket.
|
|
if (reinterpret_cast<intptr_t>(NextInBucketPtr) & 1)
|
|
return nullptr;
|
|
|
|
return static_cast<FoldingSetBase::Node*>(NextInBucketPtr);
|
|
}
|
|
|
|
|
|
/// testing.
|
|
static void **GetBucketPtr(void *NextInBucketPtr) {
|
|
intptr_t Ptr = reinterpret_cast<intptr_t>(NextInBucketPtr);
|
|
assert((Ptr & 1) && "Not a bucket pointer");
|
|
return reinterpret_cast<void**>(Ptr & ~intptr_t(1));
|
|
}
|
|
|
|
/// GetBucketFor - Hash the specified node ID and return the hash bucket for
|
|
/// the specified ID.
|
|
static void **GetBucketFor(unsigned Hash, void **Buckets, unsigned NumBuckets) {
|
|
// NumBuckets is always a power of 2.
|
|
unsigned BucketNum = Hash & (NumBuckets-1);
|
|
return Buckets + BucketNum;
|
|
}
|
|
|
|
/// AllocateBuckets - Allocated initialized bucket memory.
|
|
static void **AllocateBuckets(unsigned NumBuckets) {
|
|
void **Buckets = static_cast<void**>(safe_calloc(NumBuckets + 1,
|
|
sizeof(void*)));
|
|
// Set the very last bucket to be a non-null "pointer".
|
|
Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
|
|
return Buckets;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FoldingSetBase Implementation
|
|
|
|
FoldingSetBase::FoldingSetBase(unsigned Log2InitSize) {
|
|
assert(5 < Log2InitSize && Log2InitSize < 32 &&
|
|
"Initial hash table size out of range");
|
|
NumBuckets = 1 << Log2InitSize;
|
|
Buckets = AllocateBuckets(NumBuckets);
|
|
NumNodes = 0;
|
|
}
|
|
|
|
FoldingSetBase::FoldingSetBase(FoldingSetBase &&Arg)
|
|
: Buckets(Arg.Buckets), NumBuckets(Arg.NumBuckets), NumNodes(Arg.NumNodes) {
|
|
Arg.Buckets = nullptr;
|
|
Arg.NumBuckets = 0;
|
|
Arg.NumNodes = 0;
|
|
}
|
|
|
|
FoldingSetBase &FoldingSetBase::operator=(FoldingSetBase &&RHS) {
|
|
free(Buckets); // This may be null if the set is in a moved-from state.
|
|
Buckets = RHS.Buckets;
|
|
NumBuckets = RHS.NumBuckets;
|
|
NumNodes = RHS.NumNodes;
|
|
RHS.Buckets = nullptr;
|
|
RHS.NumBuckets = 0;
|
|
RHS.NumNodes = 0;
|
|
return *this;
|
|
}
|
|
|
|
FoldingSetBase::~FoldingSetBase() {
|
|
free(Buckets);
|
|
}
|
|
|
|
void FoldingSetBase::clear() {
|
|
// Set all but the last bucket to null pointers.
|
|
memset(Buckets, 0, NumBuckets*sizeof(void*));
|
|
|
|
// Set the very last bucket to be a non-null "pointer".
|
|
Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
|
|
|
|
// Reset the node count to zero.
|
|
NumNodes = 0;
|
|
}
|
|
|
|
void FoldingSetBase::GrowBucketCount(unsigned NewBucketCount,
|
|
const FoldingSetInfo &Info) {
|
|
assert((NewBucketCount > NumBuckets) &&
|
|
"Can't shrink a folding set with GrowBucketCount");
|
|
assert(isPowerOf2_32(NewBucketCount) && "Bad bucket count!");
|
|
void **OldBuckets = Buckets;
|
|
unsigned OldNumBuckets = NumBuckets;
|
|
|
|
// Clear out new buckets.
|
|
Buckets = AllocateBuckets(NewBucketCount);
|
|
// Set NumBuckets only if allocation of new buckets was successful.
|
|
NumBuckets = NewBucketCount;
|
|
NumNodes = 0;
|
|
|
|
// Walk the old buckets, rehashing nodes into their new place.
|
|
FoldingSetNodeID TempID;
|
|
for (unsigned i = 0; i != OldNumBuckets; ++i) {
|
|
void *Probe = OldBuckets[i];
|
|
if (!Probe) continue;
|
|
while (Node *NodeInBucket = GetNextPtr(Probe)) {
|
|
// Figure out the next link, remove NodeInBucket from the old link.
|
|
Probe = NodeInBucket->getNextInBucket();
|
|
NodeInBucket->SetNextInBucket(nullptr);
|
|
|
|
// Insert the node into the new bucket, after recomputing the hash.
|
|
InsertNode(NodeInBucket,
|
|
GetBucketFor(Info.ComputeNodeHash(this, NodeInBucket, TempID),
|
|
Buckets, NumBuckets),
|
|
Info);
|
|
TempID.clear();
|
|
}
|
|
}
|
|
|
|
free(OldBuckets);
|
|
}
|
|
|
|
/// GrowHashTable - Double the size of the hash table and rehash everything.
|
|
///
|
|
void FoldingSetBase::GrowHashTable(const FoldingSetInfo &Info) {
|
|
GrowBucketCount(NumBuckets * 2, Info);
|
|
}
|
|
|
|
void FoldingSetBase::reserve(unsigned EltCount, const FoldingSetInfo &Info) {
|
|
// This will give us somewhere between EltCount / 2 and
|
|
// EltCount buckets. This puts us in the load factor
|
|
// range of 1.0 - 2.0.
|
|
if(EltCount < capacity())
|
|
return;
|
|
GrowBucketCount(PowerOf2Floor(EltCount), Info);
|
|
}
|
|
|
|
/// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
|
|
/// return it. If not, return the insertion token that will make insertion
|
|
/// faster.
|
|
FoldingSetBase::Node *FoldingSetBase::FindNodeOrInsertPos(
|
|
const FoldingSetNodeID &ID, void *&InsertPos, const FoldingSetInfo &Info) {
|
|
unsigned IDHash = ID.ComputeHash();
|
|
void **Bucket = GetBucketFor(IDHash, Buckets, NumBuckets);
|
|
void *Probe = *Bucket;
|
|
|
|
InsertPos = nullptr;
|
|
|
|
FoldingSetNodeID TempID;
|
|
while (Node *NodeInBucket = GetNextPtr(Probe)) {
|
|
if (Info.NodeEquals(this, NodeInBucket, ID, IDHash, TempID))
|
|
return NodeInBucket;
|
|
TempID.clear();
|
|
|
|
Probe = NodeInBucket->getNextInBucket();
|
|
}
|
|
|
|
// Didn't find the node, return null with the bucket as the InsertPos.
|
|
InsertPos = Bucket;
|
|
return nullptr;
|
|
}
|
|
|
|
/// InsertNode - Insert the specified node into the folding set, knowing that it
|
|
/// is not already in the map. InsertPos must be obtained from
|
|
/// FindNodeOrInsertPos.
|
|
void FoldingSetBase::InsertNode(Node *N, void *InsertPos,
|
|
const FoldingSetInfo &Info) {
|
|
assert(!N->getNextInBucket());
|
|
// Do we need to grow the hashtable?
|
|
if (NumNodes+1 > capacity()) {
|
|
GrowHashTable(Info);
|
|
FoldingSetNodeID TempID;
|
|
InsertPos = GetBucketFor(Info.ComputeNodeHash(this, N, TempID), Buckets,
|
|
NumBuckets);
|
|
}
|
|
|
|
++NumNodes;
|
|
|
|
/// The insert position is actually a bucket pointer.
|
|
void **Bucket = static_cast<void**>(InsertPos);
|
|
|
|
void *Next = *Bucket;
|
|
|
|
// If this is the first insertion into this bucket, its next pointer will be
|
|
// null. Pretend as if it pointed to itself, setting the low bit to indicate
|
|
// that it is a pointer to the bucket.
|
|
if (!Next)
|
|
Next = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(Bucket)|1);
|
|
|
|
// Set the node's next pointer, and make the bucket point to the node.
|
|
N->SetNextInBucket(Next);
|
|
*Bucket = N;
|
|
}
|
|
|
|
/// RemoveNode - Remove a node from the folding set, returning true if one was
|
|
/// removed or false if the node was not in the folding set.
|
|
bool FoldingSetBase::RemoveNode(Node *N) {
|
|
// Because each bucket is a circular list, we don't need to compute N's hash
|
|
// to remove it.
|
|
void *Ptr = N->getNextInBucket();
|
|
if (!Ptr) return false; // Not in folding set.
|
|
|
|
--NumNodes;
|
|
N->SetNextInBucket(nullptr);
|
|
|
|
// Remember what N originally pointed to, either a bucket or another node.
|
|
void *NodeNextPtr = Ptr;
|
|
|
|
// Chase around the list until we find the node (or bucket) which points to N.
|
|
while (true) {
|
|
if (Node *NodeInBucket = GetNextPtr(Ptr)) {
|
|
// Advance pointer.
|
|
Ptr = NodeInBucket->getNextInBucket();
|
|
|
|
// We found a node that points to N, change it to point to N's next node,
|
|
// removing N from the list.
|
|
if (Ptr == N) {
|
|
NodeInBucket->SetNextInBucket(NodeNextPtr);
|
|
return true;
|
|
}
|
|
} else {
|
|
void **Bucket = GetBucketPtr(Ptr);
|
|
Ptr = *Bucket;
|
|
|
|
// If we found that the bucket points to N, update the bucket to point to
|
|
// whatever is next.
|
|
if (Ptr == N) {
|
|
*Bucket = NodeNextPtr;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// GetOrInsertNode - If there is an existing simple Node exactly
|
|
/// equal to the specified node, return it. Otherwise, insert 'N' and it
|
|
/// instead.
|
|
FoldingSetBase::Node *
|
|
FoldingSetBase::GetOrInsertNode(FoldingSetBase::Node *N,
|
|
const FoldingSetInfo &Info) {
|
|
FoldingSetNodeID ID;
|
|
Info.GetNodeProfile(this, N, ID);
|
|
void *IP;
|
|
if (Node *E = FindNodeOrInsertPos(ID, IP, Info))
|
|
return E;
|
|
InsertNode(N, IP, Info);
|
|
return N;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FoldingSetIteratorImpl Implementation
|
|
|
|
FoldingSetIteratorImpl::FoldingSetIteratorImpl(void **Bucket) {
|
|
// Skip to the first non-null non-self-cycle bucket.
|
|
while (*Bucket != reinterpret_cast<void*>(-1) &&
|
|
(!*Bucket || !GetNextPtr(*Bucket)))
|
|
++Bucket;
|
|
|
|
NodePtr = static_cast<FoldingSetNode*>(*Bucket);
|
|
}
|
|
|
|
void FoldingSetIteratorImpl::advance() {
|
|
// If there is another link within this bucket, go to it.
|
|
void *Probe = NodePtr->getNextInBucket();
|
|
|
|
if (FoldingSetNode *NextNodeInBucket = GetNextPtr(Probe))
|
|
NodePtr = NextNodeInBucket;
|
|
else {
|
|
// Otherwise, this is the last link in this bucket.
|
|
void **Bucket = GetBucketPtr(Probe);
|
|
|
|
// Skip to the next non-null non-self-cycle bucket.
|
|
do {
|
|
++Bucket;
|
|
} while (*Bucket != reinterpret_cast<void*>(-1) &&
|
|
(!*Bucket || !GetNextPtr(*Bucket)));
|
|
|
|
NodePtr = static_cast<FoldingSetNode*>(*Bucket);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FoldingSetBucketIteratorImpl Implementation
|
|
|
|
FoldingSetBucketIteratorImpl::FoldingSetBucketIteratorImpl(void **Bucket) {
|
|
Ptr = (!*Bucket || !GetNextPtr(*Bucket)) ? (void*) Bucket : *Bucket;
|
|
}
|