1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 03:02:36 +01:00
llvm-mirror/lib/Support/SuffixTree.cpp
Andrew Litteken 84c169c23a [SuffixTree][MachOpt] Factoring out Suffix Tree and adding Unit Tests
This moves the SuffixTree test used in the Machine Outliner and moves it into Support for use in other outliners elsewhere in the compilation pipeline.

Differential Revision: https://reviews.llvm.org/D80586
2020-06-08 12:44:18 -07:00

211 lines
7.2 KiB
C++

//===- llvm/Support/SuffixTree.cpp - Implement Suffix Tree ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Suffix Tree class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/SuffixTree.h"
#include "llvm/Support/Allocator.h"
#include <vector>
using namespace llvm;
SuffixTree::SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
Active.Node = Root;
// Keep track of the number of suffixes we have to add of the current
// prefix.
unsigned SuffixesToAdd = 0;
// Construct the suffix tree iteratively on each prefix of the string.
// PfxEndIdx is the end index of the current prefix.
// End is one past the last element in the string.
for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) {
SuffixesToAdd++;
LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
}
// Set the suffix indices of each leaf.
assert(Root && "Root node can't be nullptr!");
setSuffixIndices();
}
SuffixTreeNode *SuffixTree::insertLeaf(SuffixTreeNode &Parent,
unsigned StartIdx, unsigned Edge) {
assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
SuffixTreeNode *N = new (NodeAllocator.Allocate())
SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr);
Parent.Children[Edge] = N;
return N;
}
SuffixTreeNode *SuffixTree::insertInternalNode(SuffixTreeNode *Parent,
unsigned StartIdx,
unsigned EndIdx, unsigned Edge) {
assert(StartIdx <= EndIdx && "String can't start after it ends!");
assert(!(!Parent && StartIdx != EmptyIdx) &&
"Non-root internal nodes must have parents!");
unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx);
SuffixTreeNode *N =
new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx, E, Root);
if (Parent)
Parent->Children[Edge] = N;
return N;
}
void SuffixTree::setSuffixIndices() {
// List of nodes we need to visit along with the current length of the
// string.
std::vector<std::pair<SuffixTreeNode *, unsigned>> ToVisit;
// Current node being visited.
SuffixTreeNode *CurrNode = Root;
// Sum of the lengths of the nodes down the path to the current one.
unsigned CurrNodeLen = 0;
ToVisit.push_back({CurrNode, CurrNodeLen});
while (!ToVisit.empty()) {
std::tie(CurrNode, CurrNodeLen) = ToVisit.back();
ToVisit.pop_back();
CurrNode->ConcatLen = CurrNodeLen;
for (auto &ChildPair : CurrNode->Children) {
assert(ChildPair.second && "Node had a null child!");
ToVisit.push_back(
{ChildPair.second, CurrNodeLen + ChildPair.second->size()});
}
// No children, so we are at the end of the string.
if (CurrNode->Children.size() == 0 && !CurrNode->isRoot())
CurrNode->SuffixIdx = Str.size() - CurrNodeLen;
}
}
unsigned SuffixTree::extend(unsigned EndIdx, unsigned SuffixesToAdd) {
SuffixTreeNode *NeedsLink = nullptr;
while (SuffixesToAdd > 0) {
// Are we waiting to add anything other than just the last character?
if (Active.Len == 0) {
// If not, then say the active index is the end index.
Active.Idx = EndIdx;
}
assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
// The first character in the current substring we're looking at.
unsigned FirstChar = Str[Active.Idx];
// Have we inserted anything starting with FirstChar at the current node?
if (Active.Node->Children.count(FirstChar) == 0) {
// If not, then we can just insert a leaf and move to the next step.
insertLeaf(*Active.Node, EndIdx, FirstChar);
// The active node is an internal node, and we visited it, so it must
// need a link if it doesn't have one.
if (NeedsLink) {
NeedsLink->Link = Active.Node;
NeedsLink = nullptr;
}
} else {
// There's a match with FirstChar, so look for the point in the tree to
// insert a new node.
SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
unsigned SubstringLen = NextNode->size();
// Is the current suffix we're trying to insert longer than the size of
// the child we want to move to?
if (Active.Len >= SubstringLen) {
// If yes, then consume the characters we've seen and move to the next
// node.
Active.Idx += SubstringLen;
Active.Len -= SubstringLen;
Active.Node = NextNode;
continue;
}
// Otherwise, the suffix we're trying to insert must be contained in the
// next node we want to move to.
unsigned LastChar = Str[EndIdx];
// Is the string we're trying to insert a substring of the next node?
if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
// If yes, then we're done for this step. Remember our insertion point
// and move to the next end index. At this point, we have an implicit
// suffix tree.
if (NeedsLink && !Active.Node->isRoot()) {
NeedsLink->Link = Active.Node;
NeedsLink = nullptr;
}
Active.Len++;
break;
}
// The string we're trying to insert isn't a substring of the next node,
// but matches up to a point. Split the node.
//
// For example, say we ended our search at a node n and we're trying to
// insert ABD. Then we'll create a new node s for AB, reduce n to just
// representing C, and insert a new leaf node l to represent d. This
// allows us to ensure that if n was a leaf, it remains a leaf.
//
// | ABC ---split---> | AB
// n s
// C / \ D
// n l
// The node s from the diagram
SuffixTreeNode *SplitNode =
insertInternalNode(Active.Node, NextNode->StartIdx,
NextNode->StartIdx + Active.Len - 1, FirstChar);
// Insert the new node representing the new substring into the tree as
// a child of the split node. This is the node l from the diagram.
insertLeaf(*SplitNode, EndIdx, LastChar);
// Make the old node a child of the split node and update its start
// index. This is the node n from the diagram.
NextNode->StartIdx += Active.Len;
SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
// SplitNode is an internal node, update the suffix link.
if (NeedsLink)
NeedsLink->Link = SplitNode;
NeedsLink = SplitNode;
}
// We've added something new to the tree, so there's one less suffix to
// add.
SuffixesToAdd--;
if (Active.Node->isRoot()) {
if (Active.Len > 0) {
Active.Len--;
Active.Idx = EndIdx - SuffixesToAdd + 1;
}
} else {
// Start the next phase at the next smallest suffix.
Active.Node = Active.Node->Link;
}
}
return SuffixesToAdd;
}