1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00
llvm-mirror/include/llvm/IR/Metadata.h
Charles Saternos 1c69728da1 [ThinLTO] Fix ThinLTO crash while destroying context
Fix for PR32763

An assert that checks if a Ref was untracked fails during ThinLTO context cleanup. The issue is because lazy loading temporary nodes didn't properly track ValueAsMetadata nodes. This patch ensures that the temporary nodes are properly tracked when they're replaced with the value.

llvm-svn: 310967
2017-08-15 22:23:44 +00:00

1426 lines
45 KiB
C++

//===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// @file
/// This file contains the declarations for metadata subclasses.
/// They represent the different flavors of metadata that live in LLVM.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_METADATA_H
#define LLVM_IR_METADATA_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/CBindingWrapping.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <memory>
#include <string>
#include <type_traits>
#include <utility>
namespace llvm {
class Module;
class ModuleSlotTracker;
class raw_ostream;
class Type;
enum LLVMConstants : uint32_t {
DEBUG_METADATA_VERSION = 3 // Current debug info version number.
};
/// \brief Root of the metadata hierarchy.
///
/// This is a root class for typeless data in the IR.
class Metadata {
friend class ReplaceableMetadataImpl;
/// \brief RTTI.
const unsigned char SubclassID;
protected:
/// \brief Active type of storage.
enum StorageType { Uniqued, Distinct, Temporary };
/// \brief Storage flag for non-uniqued, otherwise unowned, metadata.
unsigned char Storage;
// TODO: expose remaining bits to subclasses.
unsigned short SubclassData16 = 0;
unsigned SubclassData32 = 0;
public:
enum MetadataKind {
#define HANDLE_METADATA_LEAF(CLASS) CLASS##Kind,
#include "llvm/IR/Metadata.def"
};
protected:
Metadata(unsigned ID, StorageType Storage)
: SubclassID(ID), Storage(Storage) {
static_assert(sizeof(*this) == 8, "Metadata fields poorly packed");
}
~Metadata() = default;
/// \brief Default handling of a changed operand, which asserts.
///
/// If subclasses pass themselves in as owners to a tracking node reference,
/// they must provide an implementation of this method.
void handleChangedOperand(void *, Metadata *) {
llvm_unreachable("Unimplemented in Metadata subclass");
}
public:
unsigned getMetadataID() const { return SubclassID; }
/// \brief User-friendly dump.
///
/// If \c M is provided, metadata nodes will be numbered canonically;
/// otherwise, pointer addresses are substituted.
///
/// Note: this uses an explicit overload instead of default arguments so that
/// the nullptr version is easy to call from a debugger.
///
/// @{
void dump() const;
void dump(const Module *M) const;
/// @}
/// \brief Print.
///
/// Prints definition of \c this.
///
/// If \c M is provided, metadata nodes will be numbered canonically;
/// otherwise, pointer addresses are substituted.
/// @{
void print(raw_ostream &OS, const Module *M = nullptr,
bool IsForDebug = false) const;
void print(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M = nullptr,
bool IsForDebug = false) const;
/// @}
/// \brief Print as operand.
///
/// Prints reference of \c this.
///
/// If \c M is provided, metadata nodes will be numbered canonically;
/// otherwise, pointer addresses are substituted.
/// @{
void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
void printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
const Module *M = nullptr) const;
/// @}
};
// Create wrappers for C Binding types (see CBindingWrapping.h).
DEFINE_ISA_CONVERSION_FUNCTIONS(Metadata, LLVMMetadataRef)
// Specialized opaque metadata conversions.
inline Metadata **unwrap(LLVMMetadataRef *MDs) {
return reinterpret_cast<Metadata**>(MDs);
}
#define HANDLE_METADATA(CLASS) class CLASS;
#include "llvm/IR/Metadata.def"
// Provide specializations of isa so that we don't need definitions of
// subclasses to see if the metadata is a subclass.
#define HANDLE_METADATA_LEAF(CLASS) \
template <> struct isa_impl<CLASS, Metadata> { \
static inline bool doit(const Metadata &MD) { \
return MD.getMetadataID() == Metadata::CLASS##Kind; \
} \
};
#include "llvm/IR/Metadata.def"
inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
MD.print(OS);
return OS;
}
/// \brief Metadata wrapper in the Value hierarchy.
///
/// A member of the \a Value hierarchy to represent a reference to metadata.
/// This allows, e.g., instrinsics to have metadata as operands.
///
/// Notably, this is the only thing in either hierarchy that is allowed to
/// reference \a LocalAsMetadata.
class MetadataAsValue : public Value {
friend class ReplaceableMetadataImpl;
friend class LLVMContextImpl;
Metadata *MD;
MetadataAsValue(Type *Ty, Metadata *MD);
/// \brief Drop use of metadata (during teardown).
void dropUse() { MD = nullptr; }
public:
~MetadataAsValue();
static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
Metadata *getMetadata() const { return MD; }
static bool classof(const Value *V) {
return V->getValueID() == MetadataAsValueVal;
}
private:
void handleChangedMetadata(Metadata *MD);
void track();
void untrack();
};
/// \brief API for tracking metadata references through RAUW and deletion.
///
/// Shared API for updating \a Metadata pointers in subclasses that support
/// RAUW.
///
/// This API is not meant to be used directly. See \a TrackingMDRef for a
/// user-friendly tracking reference.
class MetadataTracking {
public:
/// \brief Track the reference to metadata.
///
/// Register \c MD with \c *MD, if the subclass supports tracking. If \c *MD
/// gets RAUW'ed, \c MD will be updated to the new address. If \c *MD gets
/// deleted, \c MD will be set to \c nullptr.
///
/// If tracking isn't supported, \c *MD will not change.
///
/// \return true iff tracking is supported by \c MD.
static bool track(Metadata *&MD) {
return track(&MD, *MD, static_cast<Metadata *>(nullptr));
}
/// \brief Track the reference to metadata for \a Metadata.
///
/// As \a track(Metadata*&), but with support for calling back to \c Owner to
/// tell it that its operand changed. This could trigger \c Owner being
/// re-uniqued.
static bool track(void *Ref, Metadata &MD, Metadata &Owner) {
return track(Ref, MD, &Owner);
}
/// \brief Track the reference to metadata for \a MetadataAsValue.
///
/// As \a track(Metadata*&), but with support for calling back to \c Owner to
/// tell it that its operand changed. This could trigger \c Owner being
/// re-uniqued.
static bool track(void *Ref, Metadata &MD, MetadataAsValue &Owner) {
return track(Ref, MD, &Owner);
}
/// \brief Stop tracking a reference to metadata.
///
/// Stops \c *MD from tracking \c MD.
static void untrack(Metadata *&MD) { untrack(&MD, *MD); }
static void untrack(void *Ref, Metadata &MD);
/// \brief Move tracking from one reference to another.
///
/// Semantically equivalent to \c untrack(MD) followed by \c track(New),
/// except that ownership callbacks are maintained.
///
/// Note: it is an error if \c *MD does not equal \c New.
///
/// \return true iff tracking is supported by \c MD.
static bool retrack(Metadata *&MD, Metadata *&New) {
return retrack(&MD, *MD, &New);
}
static bool retrack(void *Ref, Metadata &MD, void *New);
/// \brief Check whether metadata is replaceable.
static bool isReplaceable(const Metadata &MD);
using OwnerTy = PointerUnion<MetadataAsValue *, Metadata *>;
private:
/// \brief Track a reference to metadata for an owner.
///
/// Generalized version of tracking.
static bool track(void *Ref, Metadata &MD, OwnerTy Owner);
};
/// \brief Shared implementation of use-lists for replaceable metadata.
///
/// Most metadata cannot be RAUW'ed. This is a shared implementation of
/// use-lists and associated API for the two that support it (\a ValueAsMetadata
/// and \a TempMDNode).
class ReplaceableMetadataImpl {
friend class MetadataTracking;
public:
using OwnerTy = MetadataTracking::OwnerTy;
private:
LLVMContext &Context;
uint64_t NextIndex = 0;
SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;
public:
ReplaceableMetadataImpl(LLVMContext &Context) : Context(Context) {}
~ReplaceableMetadataImpl() {
assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
}
LLVMContext &getContext() const { return Context; }
/// \brief Replace all uses of this with MD.
///
/// Replace all uses of this with \c MD, which is allowed to be null.
void replaceAllUsesWith(Metadata *MD);
/// \brief Resolve all uses of this.
///
/// Resolve all uses of this, turning off RAUW permanently. If \c
/// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
/// is resolved.
void resolveAllUses(bool ResolveUsers = true);
private:
void addRef(void *Ref, OwnerTy Owner);
void dropRef(void *Ref);
void moveRef(void *Ref, void *New, const Metadata &MD);
/// Lazily construct RAUW support on MD.
///
/// If this is an unresolved MDNode, RAUW support will be created on-demand.
/// ValueAsMetadata always has RAUW support.
static ReplaceableMetadataImpl *getOrCreate(Metadata &MD);
/// Get RAUW support on MD, if it exists.
static ReplaceableMetadataImpl *getIfExists(Metadata &MD);
/// Check whether this node will support RAUW.
///
/// Returns \c true unless getOrCreate() would return null.
static bool isReplaceable(const Metadata &MD);
};
/// \brief Value wrapper in the Metadata hierarchy.
///
/// This is a custom value handle that allows other metadata to refer to
/// classes in the Value hierarchy.
///
/// Because of full uniquing support, each value is only wrapped by a single \a
/// ValueAsMetadata object, so the lookup maps are far more efficient than
/// those using ValueHandleBase.
class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
friend class ReplaceableMetadataImpl;
friend class LLVMContextImpl;
Value *V;
/// \brief Drop users without RAUW (during teardown).
void dropUsers() {
ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
}
protected:
ValueAsMetadata(unsigned ID, Value *V)
: Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
assert(V && "Expected valid value");
}
~ValueAsMetadata() = default;
public:
static ValueAsMetadata *get(Value *V);
static ConstantAsMetadata *getConstant(Value *C) {
return cast<ConstantAsMetadata>(get(C));
}
static LocalAsMetadata *getLocal(Value *Local) {
return cast<LocalAsMetadata>(get(Local));
}
static ValueAsMetadata *getIfExists(Value *V);
static ConstantAsMetadata *getConstantIfExists(Value *C) {
return cast_or_null<ConstantAsMetadata>(getIfExists(C));
}
static LocalAsMetadata *getLocalIfExists(Value *Local) {
return cast_or_null<LocalAsMetadata>(getIfExists(Local));
}
Value *getValue() const { return V; }
Type *getType() const { return V->getType(); }
LLVMContext &getContext() const { return V->getContext(); }
static void handleDeletion(Value *V);
static void handleRAUW(Value *From, Value *To);
protected:
/// \brief Handle collisions after \a Value::replaceAllUsesWith().
///
/// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
/// \a Value gets RAUW'ed and the target already exists, this is used to
/// merge the two metadata nodes.
void replaceAllUsesWith(Metadata *MD) {
ReplaceableMetadataImpl::replaceAllUsesWith(MD);
}
public:
static bool classof(const Metadata *MD) {
return MD->getMetadataID() == LocalAsMetadataKind ||
MD->getMetadataID() == ConstantAsMetadataKind;
}
};
class ConstantAsMetadata : public ValueAsMetadata {
friend class ValueAsMetadata;
ConstantAsMetadata(Constant *C)
: ValueAsMetadata(ConstantAsMetadataKind, C) {}
public:
static ConstantAsMetadata *get(Constant *C) {
return ValueAsMetadata::getConstant(C);
}
static ConstantAsMetadata *getIfExists(Constant *C) {
return ValueAsMetadata::getConstantIfExists(C);
}
Constant *getValue() const {
return cast<Constant>(ValueAsMetadata::getValue());
}
static bool classof(const Metadata *MD) {
return MD->getMetadataID() == ConstantAsMetadataKind;
}
};
class LocalAsMetadata : public ValueAsMetadata {
friend class ValueAsMetadata;
LocalAsMetadata(Value *Local)
: ValueAsMetadata(LocalAsMetadataKind, Local) {
assert(!isa<Constant>(Local) && "Expected local value");
}
public:
static LocalAsMetadata *get(Value *Local) {
return ValueAsMetadata::getLocal(Local);
}
static LocalAsMetadata *getIfExists(Value *Local) {
return ValueAsMetadata::getLocalIfExists(Local);
}
static bool classof(const Metadata *MD) {
return MD->getMetadataID() == LocalAsMetadataKind;
}
};
/// \brief Transitional API for extracting constants from Metadata.
///
/// This namespace contains transitional functions for metadata that points to
/// \a Constants.
///
/// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
/// operands could refer to any \a Value. There's was a lot of code like this:
///
/// \code
/// MDNode *N = ...;
/// auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
/// \endcode
///
/// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
/// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
/// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
/// cast in the \a Value hierarchy. Besides creating boiler-plate, this
/// requires subtle control flow changes.
///
/// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
/// so that metadata can refer to numbers without traversing a bridge to the \a
/// Value hierarchy. In this final state, the code above would look like this:
///
/// \code
/// MDNode *N = ...;
/// auto *MI = dyn_cast<MDInt>(N->getOperand(2));
/// \endcode
///
/// The API in this namespace supports the transition. \a MDInt doesn't exist
/// yet, and even once it does, changing each metadata schema to use it is its
/// own mini-project. In the meantime this API prevents us from introducing
/// complex and bug-prone control flow that will disappear in the end. In
/// particular, the above code looks like this:
///
/// \code
/// MDNode *N = ...;
/// auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
/// \endcode
///
/// The full set of provided functions includes:
///
/// mdconst::hasa <=> isa
/// mdconst::extract <=> cast
/// mdconst::extract_or_null <=> cast_or_null
/// mdconst::dyn_extract <=> dyn_cast
/// mdconst::dyn_extract_or_null <=> dyn_cast_or_null
///
/// The target of the cast must be a subclass of \a Constant.
namespace mdconst {
namespace detail {
template <class T> T &make();
template <class T, class Result> struct HasDereference {
using Yes = char[1];
using No = char[2];
template <size_t N> struct SFINAE {};
template <class U, class V>
static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
template <class U, class V> static No &hasDereference(...);
static const bool value =
sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
};
template <class V, class M> struct IsValidPointer {
static const bool value = std::is_base_of<Constant, V>::value &&
HasDereference<M, const Metadata &>::value;
};
template <class V, class M> struct IsValidReference {
static const bool value = std::is_base_of<Constant, V>::value &&
std::is_convertible<M, const Metadata &>::value;
};
} // end namespace detail
/// \brief Check whether Metadata has a Value.
///
/// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
/// type \c X.
template <class X, class Y>
inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, bool>::type
hasa(Y &&MD) {
assert(MD && "Null pointer sent into hasa");
if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
return isa<X>(V->getValue());
return false;
}
template <class X, class Y>
inline
typename std::enable_if<detail::IsValidReference<X, Y &>::value, bool>::type
hasa(Y &MD) {
return hasa(&MD);
}
/// \brief Extract a Value from Metadata.
///
/// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
template <class X, class Y>
inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
extract(Y &&MD) {
return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
}
template <class X, class Y>
inline
typename std::enable_if<detail::IsValidReference<X, Y &>::value, X *>::type
extract(Y &MD) {
return extract(&MD);
}
/// \brief Extract a Value from Metadata, allowing null.
///
/// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
/// from \c MD, allowing \c MD to be null.
template <class X, class Y>
inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
extract_or_null(Y &&MD) {
if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
return cast<X>(V->getValue());
return nullptr;
}
/// \brief Extract a Value from Metadata, if any.
///
/// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
/// Value it does contain is of the wrong subclass.
template <class X, class Y>
inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
dyn_extract(Y &&MD) {
if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
return dyn_cast<X>(V->getValue());
return nullptr;
}
/// \brief Extract a Value from Metadata, if any, allowing null.
///
/// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
/// Value it does contain is of the wrong subclass, allowing \c MD to be null.
template <class X, class Y>
inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
dyn_extract_or_null(Y &&MD) {
if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
return dyn_cast<X>(V->getValue());
return nullptr;
}
} // end namespace mdconst
//===----------------------------------------------------------------------===//
/// \brief A single uniqued string.
///
/// These are used to efficiently contain a byte sequence for metadata.
/// MDString is always unnamed.
class MDString : public Metadata {
friend class StringMapEntry<MDString>;
StringMapEntry<MDString> *Entry = nullptr;
MDString() : Metadata(MDStringKind, Uniqued) {}
public:
MDString(const MDString &) = delete;
MDString &operator=(MDString &&) = delete;
MDString &operator=(const MDString &) = delete;
static MDString *get(LLVMContext &Context, StringRef Str);
static MDString *get(LLVMContext &Context, const char *Str) {
return get(Context, Str ? StringRef(Str) : StringRef());
}
StringRef getString() const;
unsigned getLength() const { return (unsigned)getString().size(); }
using iterator = StringRef::iterator;
/// \brief Pointer to the first byte of the string.
iterator begin() const { return getString().begin(); }
/// \brief Pointer to one byte past the end of the string.
iterator end() const { return getString().end(); }
const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
const unsigned char *bytes_end() const { return getString().bytes_end(); }
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const Metadata *MD) {
return MD->getMetadataID() == MDStringKind;
}
};
/// \brief A collection of metadata nodes that might be associated with a
/// memory access used by the alias-analysis infrastructure.
struct AAMDNodes {
explicit AAMDNodes(MDNode *T = nullptr, MDNode *S = nullptr,
MDNode *N = nullptr)
: TBAA(T), Scope(S), NoAlias(N) {}
bool operator==(const AAMDNodes &A) const {
return TBAA == A.TBAA && Scope == A.Scope && NoAlias == A.NoAlias;
}
bool operator!=(const AAMDNodes &A) const { return !(*this == A); }
explicit operator bool() const { return TBAA || Scope || NoAlias; }
/// \brief The tag for type-based alias analysis.
MDNode *TBAA;
/// \brief The tag for alias scope specification (used with noalias).
MDNode *Scope;
/// \brief The tag specifying the noalias scope.
MDNode *NoAlias;
/// \brief Given two sets of AAMDNodes that apply to the same pointer,
/// give the best AAMDNodes that are compatible with both (i.e. a set of
/// nodes whose allowable aliasing conclusions are a subset of those
/// allowable by both of the inputs). However, for efficiency
/// reasons, do not create any new MDNodes.
AAMDNodes intersect(const AAMDNodes &Other) {
AAMDNodes Result;
Result.TBAA = Other.TBAA == TBAA ? TBAA : nullptr;
Result.Scope = Other.Scope == Scope ? Scope : nullptr;
Result.NoAlias = Other.NoAlias == NoAlias ? NoAlias : nullptr;
return Result;
}
};
// Specialize DenseMapInfo for AAMDNodes.
template<>
struct DenseMapInfo<AAMDNodes> {
static inline AAMDNodes getEmptyKey() {
return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(),
nullptr, nullptr);
}
static inline AAMDNodes getTombstoneKey() {
return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(),
nullptr, nullptr);
}
static unsigned getHashValue(const AAMDNodes &Val) {
return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
}
static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
return LHS == RHS;
}
};
/// \brief Tracking metadata reference owned by Metadata.
///
/// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
/// of \a Metadata, which has the option of registering itself for callbacks to
/// re-unique itself.
///
/// In particular, this is used by \a MDNode.
class MDOperand {
Metadata *MD = nullptr;
public:
MDOperand() = default;
MDOperand(MDOperand &&) = delete;
MDOperand(const MDOperand &) = delete;
MDOperand &operator=(MDOperand &&) = delete;
MDOperand &operator=(const MDOperand &) = delete;
~MDOperand() { untrack(); }
Metadata *get() const { return MD; }
operator Metadata *() const { return get(); }
Metadata *operator->() const { return get(); }
Metadata &operator*() const { return *get(); }
void reset() {
untrack();
MD = nullptr;
}
void reset(Metadata *MD, Metadata *Owner) {
untrack();
this->MD = MD;
track(Owner);
}
private:
void track(Metadata *Owner) {
if (MD) {
if (Owner)
MetadataTracking::track(this, *MD, *Owner);
else
MetadataTracking::track(MD);
}
}
void untrack() {
assert(static_cast<void *>(this) == &MD && "Expected same address");
if (MD)
MetadataTracking::untrack(MD);
}
};
template <> struct simplify_type<MDOperand> {
using SimpleType = Metadata *;
static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
};
template <> struct simplify_type<const MDOperand> {
using SimpleType = Metadata *;
static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
};
/// \brief Pointer to the context, with optional RAUW support.
///
/// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
/// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
class ContextAndReplaceableUses {
PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;
public:
ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
ContextAndReplaceableUses(
std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
: Ptr(ReplaceableUses.release()) {
assert(getReplaceableUses() && "Expected non-null replaceable uses");
}
ContextAndReplaceableUses() = delete;
ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
ContextAndReplaceableUses &
operator=(const ContextAndReplaceableUses &) = delete;
~ContextAndReplaceableUses() { delete getReplaceableUses(); }
operator LLVMContext &() { return getContext(); }
/// \brief Whether this contains RAUW support.
bool hasReplaceableUses() const {
return Ptr.is<ReplaceableMetadataImpl *>();
}
LLVMContext &getContext() const {
if (hasReplaceableUses())
return getReplaceableUses()->getContext();
return *Ptr.get<LLVMContext *>();
}
ReplaceableMetadataImpl *getReplaceableUses() const {
if (hasReplaceableUses())
return Ptr.get<ReplaceableMetadataImpl *>();
return nullptr;
}
/// Ensure that this has RAUW support, and then return it.
ReplaceableMetadataImpl *getOrCreateReplaceableUses() {
if (!hasReplaceableUses())
makeReplaceable(llvm::make_unique<ReplaceableMetadataImpl>(getContext()));
return getReplaceableUses();
}
/// \brief Assign RAUW support to this.
///
/// Make this replaceable, taking ownership of \c ReplaceableUses (which must
/// not be null).
void
makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
assert(ReplaceableUses && "Expected non-null replaceable uses");
assert(&ReplaceableUses->getContext() == &getContext() &&
"Expected same context");
delete getReplaceableUses();
Ptr = ReplaceableUses.release();
}
/// \brief Drop RAUW support.
///
/// Cede ownership of RAUW support, returning it.
std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
assert(hasReplaceableUses() && "Expected to own replaceable uses");
std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
getReplaceableUses());
Ptr = &ReplaceableUses->getContext();
return ReplaceableUses;
}
};
struct TempMDNodeDeleter {
inline void operator()(MDNode *Node) const;
};
#define HANDLE_MDNODE_LEAF(CLASS) \
using Temp##CLASS = std::unique_ptr<CLASS, TempMDNodeDeleter>;
#define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
#include "llvm/IR/Metadata.def"
/// \brief Metadata node.
///
/// Metadata nodes can be uniqued, like constants, or distinct. Temporary
/// metadata nodes (with full support for RAUW) can be used to delay uniquing
/// until forward references are known. The basic metadata node is an \a
/// MDTuple.
///
/// There is limited support for RAUW at construction time. At construction
/// time, if any operand is a temporary node (or an unresolved uniqued node,
/// which indicates a transitive temporary operand), the node itself will be
/// unresolved. As soon as all operands become resolved, it will drop RAUW
/// support permanently.
///
/// If an unresolved node is part of a cycle, \a resolveCycles() needs
/// to be called on some member of the cycle once all temporary nodes have been
/// replaced.
class MDNode : public Metadata {
friend class ReplaceableMetadataImpl;
friend class LLVMContextImpl;
unsigned NumOperands;
unsigned NumUnresolved;
ContextAndReplaceableUses Context;
protected:
MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = None);
~MDNode() = default;
void *operator new(size_t Size, unsigned NumOps);
void operator delete(void *Mem);
/// \brief Required by std, but never called.
void operator delete(void *, unsigned) {
llvm_unreachable("Constructor throws?");
}
/// \brief Required by std, but never called.
void operator delete(void *, unsigned, bool) {
llvm_unreachable("Constructor throws?");
}
void dropAllReferences();
MDOperand *mutable_begin() { return mutable_end() - NumOperands; }
MDOperand *mutable_end() { return reinterpret_cast<MDOperand *>(this); }
using mutable_op_range = iterator_range<MDOperand *>;
mutable_op_range mutable_operands() {
return mutable_op_range(mutable_begin(), mutable_end());
}
public:
MDNode(const MDNode &) = delete;
void operator=(const MDNode &) = delete;
void *operator new(size_t) = delete;
static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
static inline MDTuple *getIfExists(LLVMContext &Context,
ArrayRef<Metadata *> MDs);
static inline MDTuple *getDistinct(LLVMContext &Context,
ArrayRef<Metadata *> MDs);
static inline TempMDTuple getTemporary(LLVMContext &Context,
ArrayRef<Metadata *> MDs);
/// \brief Create a (temporary) clone of this.
TempMDNode clone() const;
/// \brief Deallocate a node created by getTemporary.
///
/// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
/// references will be reset.
static void deleteTemporary(MDNode *N);
LLVMContext &getContext() const { return Context.getContext(); }
/// \brief Replace a specific operand.
void replaceOperandWith(unsigned I, Metadata *New);
/// \brief Check if node is fully resolved.
///
/// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
/// this always returns \c true.
///
/// If \a isUniqued(), returns \c true if this has already dropped RAUW
/// support (because all operands are resolved).
///
/// As forward declarations are resolved, their containers should get
/// resolved automatically. However, if this (or one of its operands) is
/// involved in a cycle, \a resolveCycles() needs to be called explicitly.
bool isResolved() const { return !isTemporary() && !NumUnresolved; }
bool isUniqued() const { return Storage == Uniqued; }
bool isDistinct() const { return Storage == Distinct; }
bool isTemporary() const { return Storage == Temporary; }
/// \brief RAUW a temporary.
///
/// \pre \a isTemporary() must be \c true.
void replaceAllUsesWith(Metadata *MD) {
assert(isTemporary() && "Expected temporary node");
if (Context.hasReplaceableUses())
Context.getReplaceableUses()->replaceAllUsesWith(MD);
}
/// \brief Resolve cycles.
///
/// Once all forward declarations have been resolved, force cycles to be
/// resolved.
///
/// \pre No operands (or operands' operands, etc.) have \a isTemporary().
void resolveCycles();
/// \brief Replace a temporary node with a permanent one.
///
/// Try to create a uniqued version of \c N -- in place, if possible -- and
/// return it. If \c N cannot be uniqued, return a distinct node instead.
template <class T>
static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
return cast<T>(N.release()->replaceWithPermanentImpl());
}
/// \brief Replace a temporary node with a uniqued one.
///
/// Create a uniqued version of \c N -- in place, if possible -- and return
/// it. Takes ownership of the temporary node.
///
/// \pre N does not self-reference.
template <class T>
static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
return cast<T>(N.release()->replaceWithUniquedImpl());
}
/// \brief Replace a temporary node with a distinct one.
///
/// Create a distinct version of \c N -- in place, if possible -- and return
/// it. Takes ownership of the temporary node.
template <class T>
static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
return cast<T>(N.release()->replaceWithDistinctImpl());
}
private:
MDNode *replaceWithPermanentImpl();
MDNode *replaceWithUniquedImpl();
MDNode *replaceWithDistinctImpl();
protected:
/// \brief Set an operand.
///
/// Sets the operand directly, without worrying about uniquing.
void setOperand(unsigned I, Metadata *New);
void storeDistinctInContext();
template <class T, class StoreT>
static T *storeImpl(T *N, StorageType Storage, StoreT &Store);
template <class T> static T *storeImpl(T *N, StorageType Storage);
private:
void handleChangedOperand(void *Ref, Metadata *New);
/// Resolve a unique, unresolved node.
void resolve();
/// Drop RAUW support, if any.
void dropReplaceableUses();
void resolveAfterOperandChange(Metadata *Old, Metadata *New);
void decrementUnresolvedOperandCount();
void countUnresolvedOperands();
/// \brief Mutate this to be "uniqued".
///
/// Mutate this so that \a isUniqued().
/// \pre \a isTemporary().
/// \pre already added to uniquing set.
void makeUniqued();
/// \brief Mutate this to be "distinct".
///
/// Mutate this so that \a isDistinct().
/// \pre \a isTemporary().
void makeDistinct();
void deleteAsSubclass();
MDNode *uniquify();
void eraseFromStore();
template <class NodeTy> struct HasCachedHash;
template <class NodeTy>
static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
N->recalculateHash();
}
template <class NodeTy>
static void dispatchRecalculateHash(NodeTy *, std::false_type) {}
template <class NodeTy>
static void dispatchResetHash(NodeTy *N, std::true_type) {
N->setHash(0);
}
template <class NodeTy>
static void dispatchResetHash(NodeTy *, std::false_type) {}
public:
using op_iterator = const MDOperand *;
using op_range = iterator_range<op_iterator>;
op_iterator op_begin() const {
return const_cast<MDNode *>(this)->mutable_begin();
}
op_iterator op_end() const {
return const_cast<MDNode *>(this)->mutable_end();
}
op_range operands() const { return op_range(op_begin(), op_end()); }
const MDOperand &getOperand(unsigned I) const {
assert(I < NumOperands && "Out of range");
return op_begin()[I];
}
/// \brief Return number of MDNode operands.
unsigned getNumOperands() const { return NumOperands; }
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Metadata *MD) {
switch (MD->getMetadataID()) {
default:
return false;
#define HANDLE_MDNODE_LEAF(CLASS) \
case CLASS##Kind: \
return true;
#include "llvm/IR/Metadata.def"
}
}
/// \brief Check whether MDNode is a vtable access.
bool isTBAAVtableAccess() const;
/// \brief Methods for metadata merging.
static MDNode *concatenate(MDNode *A, MDNode *B);
static MDNode *intersect(MDNode *A, MDNode *B);
static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
static MDNode *getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B);
};
/// \brief Tuple of metadata.
///
/// This is the simple \a MDNode arbitrary tuple. Nodes are uniqued by
/// default based on their operands.
class MDTuple : public MDNode {
friend class LLVMContextImpl;
friend class MDNode;
MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
ArrayRef<Metadata *> Vals)
: MDNode(C, MDTupleKind, Storage, Vals) {
setHash(Hash);
}
~MDTuple() { dropAllReferences(); }
void setHash(unsigned Hash) { SubclassData32 = Hash; }
void recalculateHash();
static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
StorageType Storage, bool ShouldCreate = true);
TempMDTuple cloneImpl() const {
return getTemporary(getContext(),
SmallVector<Metadata *, 4>(op_begin(), op_end()));
}
public:
/// \brief Get the hash, if any.
unsigned getHash() const { return SubclassData32; }
static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
return getImpl(Context, MDs, Uniqued);
}
static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false);
}
/// \brief Return a distinct node.
///
/// Return a distinct node -- i.e., a node that is not uniqued.
static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
return getImpl(Context, MDs, Distinct);
}
/// \brief Return a temporary node.
///
/// For use in constructing cyclic MDNode structures. A temporary MDNode is
/// not uniqued, may be RAUW'd, and must be manually deleted with
/// deleteTemporary.
static TempMDTuple getTemporary(LLVMContext &Context,
ArrayRef<Metadata *> MDs) {
return TempMDTuple(getImpl(Context, MDs, Temporary));
}
/// \brief Return a (temporary) clone of this.
TempMDTuple clone() const { return cloneImpl(); }
static bool classof(const Metadata *MD) {
return MD->getMetadataID() == MDTupleKind;
}
};
MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
return MDTuple::get(Context, MDs);
}
MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
return MDTuple::getIfExists(Context, MDs);
}
MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
return MDTuple::getDistinct(Context, MDs);
}
TempMDTuple MDNode::getTemporary(LLVMContext &Context,
ArrayRef<Metadata *> MDs) {
return MDTuple::getTemporary(Context, MDs);
}
void TempMDNodeDeleter::operator()(MDNode *Node) const {
MDNode::deleteTemporary(Node);
}
/// \brief Typed iterator through MDNode operands.
///
/// An iterator that transforms an \a MDNode::iterator into an iterator over a
/// particular Metadata subclass.
template <class T>
class TypedMDOperandIterator
: public std::iterator<std::input_iterator_tag, T *, std::ptrdiff_t, void,
T *> {
MDNode::op_iterator I = nullptr;
public:
TypedMDOperandIterator() = default;
explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}
T *operator*() const { return cast_or_null<T>(*I); }
TypedMDOperandIterator &operator++() {
++I;
return *this;
}
TypedMDOperandIterator operator++(int) {
TypedMDOperandIterator Temp(*this);
++I;
return Temp;
}
bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
};
/// \brief Typed, array-like tuple of metadata.
///
/// This is a wrapper for \a MDTuple that makes it act like an array holding a
/// particular type of metadata.
template <class T> class MDTupleTypedArrayWrapper {
const MDTuple *N = nullptr;
public:
MDTupleTypedArrayWrapper() = default;
MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}
template <class U>
MDTupleTypedArrayWrapper(
const MDTupleTypedArrayWrapper<U> &Other,
typename std::enable_if<std::is_convertible<U *, T *>::value>::type * =
nullptr)
: N(Other.get()) {}
template <class U>
explicit MDTupleTypedArrayWrapper(
const MDTupleTypedArrayWrapper<U> &Other,
typename std::enable_if<!std::is_convertible<U *, T *>::value>::type * =
nullptr)
: N(Other.get()) {}
explicit operator bool() const { return get(); }
explicit operator MDTuple *() const { return get(); }
MDTuple *get() const { return const_cast<MDTuple *>(N); }
MDTuple *operator->() const { return get(); }
MDTuple &operator*() const { return *get(); }
// FIXME: Fix callers and remove condition on N.
unsigned size() const { return N ? N->getNumOperands() : 0u; }
bool empty() const { return N ? N->getNumOperands() == 0 : true; }
T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }
// FIXME: Fix callers and remove condition on N.
using iterator = TypedMDOperandIterator<T>;
iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
};
#define HANDLE_METADATA(CLASS) \
using CLASS##Array = MDTupleTypedArrayWrapper<CLASS>;
#include "llvm/IR/Metadata.def"
/// Placeholder metadata for operands of distinct MDNodes.
///
/// This is a lightweight placeholder for an operand of a distinct node. It's
/// purpose is to help track forward references when creating a distinct node.
/// This allows distinct nodes involved in a cycle to be constructed before
/// their operands without requiring a heavyweight temporary node with
/// full-blown RAUW support.
///
/// Each placeholder supports only a single MDNode user. Clients should pass
/// an ID, retrieved via \a getID(), to indicate the "real" operand that this
/// should be replaced with.
///
/// While it would be possible to implement move operators, they would be
/// fairly expensive. Leave them unimplemented to discourage their use
/// (clients can use std::deque, std::list, BumpPtrAllocator, etc.).
class DistinctMDOperandPlaceholder : public Metadata {
friend class MetadataTracking;
Metadata **Use = nullptr;
public:
explicit DistinctMDOperandPlaceholder(unsigned ID)
: Metadata(DistinctMDOperandPlaceholderKind, Distinct) {
SubclassData32 = ID;
}
DistinctMDOperandPlaceholder() = delete;
DistinctMDOperandPlaceholder(DistinctMDOperandPlaceholder &&) = delete;
DistinctMDOperandPlaceholder(const DistinctMDOperandPlaceholder &) = delete;
~DistinctMDOperandPlaceholder() {
if (Use)
*Use = nullptr;
}
unsigned getID() const { return SubclassData32; }
/// Replace the use of this with MD.
void replaceUseWith(Metadata *MD) {
if (!Use)
return;
*Use = MD;
if (*Use)
MetadataTracking::track(*Use);
Metadata *T = cast<Metadata>(this);
MetadataTracking::untrack(T);
assert(!Use && "Use is still being tracked despite being untracked!");
}
};
//===----------------------------------------------------------------------===//
/// \brief A tuple of MDNodes.
///
/// Despite its name, a NamedMDNode isn't itself an MDNode. NamedMDNodes belong
/// to modules, have names, and contain lists of MDNodes.
///
/// TODO: Inherit from Metadata.
class NamedMDNode : public ilist_node<NamedMDNode> {
friend class LLVMContextImpl;
friend class Module;
std::string Name;
Module *Parent = nullptr;
void *Operands; // SmallVector<TrackingMDRef, 4>
void setParent(Module *M) { Parent = M; }
explicit NamedMDNode(const Twine &N);
template<class T1, class T2>
class op_iterator_impl :
public std::iterator<std::bidirectional_iterator_tag, T2> {
friend class NamedMDNode;
const NamedMDNode *Node = nullptr;
unsigned Idx = 0;
op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) {}
public:
op_iterator_impl() = default;
bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
op_iterator_impl &operator++() {
++Idx;
return *this;
}
op_iterator_impl operator++(int) {
op_iterator_impl tmp(*this);
operator++();
return tmp;
}
op_iterator_impl &operator--() {
--Idx;
return *this;
}
op_iterator_impl operator--(int) {
op_iterator_impl tmp(*this);
operator--();
return tmp;
}
T1 operator*() const { return Node->getOperand(Idx); }
};
public:
NamedMDNode(const NamedMDNode &) = delete;
~NamedMDNode();
/// \brief Drop all references and remove the node from parent module.
void eraseFromParent();
/// Remove all uses and clear node vector.
void dropAllReferences() { clearOperands(); }
/// Drop all references to this node's operands.
void clearOperands();
/// \brief Get the module that holds this named metadata collection.
inline Module *getParent() { return Parent; }
inline const Module *getParent() const { return Parent; }
MDNode *getOperand(unsigned i) const;
unsigned getNumOperands() const;
void addOperand(MDNode *M);
void setOperand(unsigned I, MDNode *New);
StringRef getName() const;
void print(raw_ostream &ROS, bool IsForDebug = false) const;
void print(raw_ostream &ROS, ModuleSlotTracker &MST,
bool IsForDebug = false) const;
void dump() const;
// ---------------------------------------------------------------------------
// Operand Iterator interface...
//
using op_iterator = op_iterator_impl<MDNode *, MDNode>;
op_iterator op_begin() { return op_iterator(this, 0); }
op_iterator op_end() { return op_iterator(this, getNumOperands()); }
using const_op_iterator = op_iterator_impl<const MDNode *, MDNode>;
const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
const_op_iterator op_end() const { return const_op_iterator(this, getNumOperands()); }
inline iterator_range<op_iterator> operands() {
return make_range(op_begin(), op_end());
}
inline iterator_range<const_op_iterator> operands() const {
return make_range(op_begin(), op_end());
}
};
} // end namespace llvm
#endif // LLVM_IR_METADATA_H