1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00
llvm-mirror/lib/Target/X86/X86LegalizerInfo.cpp
Matt Arsenault cfaee823da GlobalISel: Allow shift amount to be a different type
For AMDGPU the shift amount is never 64-bit, and
this needs to use a 32-bit shift.

X86 uses i8, but seemed to be hacking around this before.

llvm-svn: 351882
2019-01-22 21:42:11 +00:00

512 lines
15 KiB
C++

//===- X86LegalizerInfo.cpp --------------------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for X86.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "X86LegalizerInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
using namespace llvm;
using namespace TargetOpcode;
using namespace LegalizeActions;
/// FIXME: The following static functions are SizeChangeStrategy functions
/// that are meant to temporarily mimic the behaviour of the old legalization
/// based on doubling/halving non-legal types as closely as possible. This is
/// not entirly possible as only legalizing the types that are exactly a power
/// of 2 times the size of the legal types would require specifying all those
/// sizes explicitly.
/// In practice, not specifying those isn't a problem, and the below functions
/// should disappear quickly as we add support for legalizing non-power-of-2
/// sized types further.
static void
addAndInterleaveWithUnsupported(LegalizerInfo::SizeAndActionsVec &result,
const LegalizerInfo::SizeAndActionsVec &v) {
for (unsigned i = 0; i < v.size(); ++i) {
result.push_back(v[i]);
if (i + 1 < v[i].first && i + 1 < v.size() &&
v[i + 1].first != v[i].first + 1)
result.push_back({v[i].first + 1, Unsupported});
}
}
static LegalizerInfo::SizeAndActionsVec
widen_1(const LegalizerInfo::SizeAndActionsVec &v) {
assert(v.size() >= 1);
assert(v[0].first > 1);
LegalizerInfo::SizeAndActionsVec result = {{1, WidenScalar},
{2, Unsupported}};
addAndInterleaveWithUnsupported(result, v);
auto Largest = result.back().first;
result.push_back({Largest + 1, Unsupported});
return result;
}
X86LegalizerInfo::X86LegalizerInfo(const X86Subtarget &STI,
const X86TargetMachine &TM)
: Subtarget(STI), TM(TM) {
setLegalizerInfo32bit();
setLegalizerInfo64bit();
setLegalizerInfoSSE1();
setLegalizerInfoSSE2();
setLegalizerInfoSSE41();
setLegalizerInfoAVX();
setLegalizerInfoAVX2();
setLegalizerInfoAVX512();
setLegalizerInfoAVX512DQ();
setLegalizerInfoAVX512BW();
setLegalizeScalarToDifferentSizeStrategy(G_PHI, 0, widen_1);
for (unsigned BinOp : {G_SUB, G_MUL, G_AND, G_OR, G_XOR})
setLegalizeScalarToDifferentSizeStrategy(BinOp, 0, widen_1);
for (unsigned MemOp : {G_LOAD, G_STORE})
setLegalizeScalarToDifferentSizeStrategy(MemOp, 0,
narrowToSmallerAndWidenToSmallest);
setLegalizeScalarToDifferentSizeStrategy(
G_GEP, 1, widenToLargerTypesUnsupportedOtherwise);
setLegalizeScalarToDifferentSizeStrategy(
G_CONSTANT, 0, widenToLargerTypesAndNarrowToLargest);
computeTables();
verify(*STI.getInstrInfo());
}
void X86LegalizerInfo::setLegalizerInfo32bit() {
const LLT p0 = LLT::pointer(0, TM.getPointerSizeInBits(0));
const LLT s1 = LLT::scalar(1);
const LLT s8 = LLT::scalar(8);
const LLT s16 = LLT::scalar(16);
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
const LLT s128 = LLT::scalar(128);
for (auto Ty : {p0, s1, s8, s16, s32})
setAction({G_IMPLICIT_DEF, Ty}, Legal);
for (auto Ty : {s8, s16, s32, p0})
setAction({G_PHI, Ty}, Legal);
for (unsigned BinOp : {G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR})
for (auto Ty : {s8, s16, s32})
setAction({BinOp, Ty}, Legal);
for (unsigned Op : {G_UADDE}) {
setAction({Op, s32}, Legal);
setAction({Op, 1, s1}, Legal);
}
for (unsigned MemOp : {G_LOAD, G_STORE}) {
for (auto Ty : {s8, s16, s32, p0})
setAction({MemOp, Ty}, Legal);
// And everything's fine in addrspace 0.
setAction({MemOp, 1, p0}, Legal);
}
// Pointer-handling
setAction({G_FRAME_INDEX, p0}, Legal);
setAction({G_GLOBAL_VALUE, p0}, Legal);
setAction({G_GEP, p0}, Legal);
setAction({G_GEP, 1, s32}, Legal);
if (!Subtarget.is64Bit()) {
getActionDefinitionsBuilder(G_PTRTOINT)
.legalForCartesianProduct({s1, s8, s16, s32}, {p0})
.maxScalar(0, s32)
.widenScalarToNextPow2(0, /*Min*/ 8);
getActionDefinitionsBuilder(G_INTTOPTR).legalFor({{p0, s32}});
// Shifts and SDIV
getActionDefinitionsBuilder(
{G_SDIV, G_SREM, G_UDIV, G_UREM})
.legalFor({s8, s16, s32})
.clampScalar(0, s8, s32);
getActionDefinitionsBuilder(
{G_SHL, G_LSHR, G_ASHR})
.legalFor({{s8, s8}, {s16, s8}, {s32, s8}})
.clampScalar(0, s8, s32)
.clampScalar(1, s8, s8);
}
// Control-flow
setAction({G_BRCOND, s1}, Legal);
// Constants
for (auto Ty : {s8, s16, s32, p0})
setAction({TargetOpcode::G_CONSTANT, Ty}, Legal);
// Extensions
for (auto Ty : {s8, s16, s32}) {
setAction({G_ZEXT, Ty}, Legal);
setAction({G_SEXT, Ty}, Legal);
setAction({G_ANYEXT, Ty}, Legal);
}
setAction({G_ANYEXT, s128}, Legal);
// Comparison
setAction({G_ICMP, s1}, Legal);
for (auto Ty : {s8, s16, s32, p0})
setAction({G_ICMP, 1, Ty}, Legal);
// Merge/Unmerge
for (const auto &Ty : {s16, s32, s64}) {
setAction({G_MERGE_VALUES, Ty}, Legal);
setAction({G_UNMERGE_VALUES, 1, Ty}, Legal);
}
for (const auto &Ty : {s8, s16, s32}) {
setAction({G_MERGE_VALUES, 1, Ty}, Legal);
setAction({G_UNMERGE_VALUES, Ty}, Legal);
}
}
void X86LegalizerInfo::setLegalizerInfo64bit() {
if (!Subtarget.is64Bit())
return;
const LLT p0 = LLT::pointer(0, TM.getPointerSizeInBits(0));
const LLT s1 = LLT::scalar(1);
const LLT s8 = LLT::scalar(8);
const LLT s16 = LLT::scalar(16);
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
const LLT s128 = LLT::scalar(128);
setAction({G_IMPLICIT_DEF, s64}, Legal);
// Need to have that, as tryFoldImplicitDef will create this pattern:
// s128 = EXTEND (G_IMPLICIT_DEF s32/s64) -> s128 = G_IMPLICIT_DEF
setAction({G_IMPLICIT_DEF, s128}, Legal);
setAction({G_PHI, s64}, Legal);
for (unsigned BinOp : {G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR})
setAction({BinOp, s64}, Legal);
for (unsigned MemOp : {G_LOAD, G_STORE})
setAction({MemOp, s64}, Legal);
// Pointer-handling
setAction({G_GEP, 1, s64}, Legal);
getActionDefinitionsBuilder(G_PTRTOINT)
.legalForCartesianProduct({s1, s8, s16, s32, s64}, {p0})
.maxScalar(0, s64)
.widenScalarToNextPow2(0, /*Min*/ 8);
getActionDefinitionsBuilder(G_INTTOPTR).legalFor({{p0, s64}});
// Constants
setAction({TargetOpcode::G_CONSTANT, s64}, Legal);
// Extensions
for (unsigned extOp : {G_ZEXT, G_SEXT, G_ANYEXT}) {
setAction({extOp, s64}, Legal);
}
getActionDefinitionsBuilder(G_SITOFP)
.legalForCartesianProduct({s32, s64})
.clampScalar(1, s32, s64)
.widenScalarToNextPow2(1)
.clampScalar(0, s32, s64)
.widenScalarToNextPow2(0);
getActionDefinitionsBuilder(G_FPTOSI)
.legalForCartesianProduct({s32, s64})
.clampScalar(1, s32, s64)
.widenScalarToNextPow2(0)
.clampScalar(0, s32, s64)
.widenScalarToNextPow2(1);
// Comparison
setAction({G_ICMP, 1, s64}, Legal);
getActionDefinitionsBuilder(G_FCMP)
.legalForCartesianProduct({s8}, {s32, s64})
.clampScalar(0, s8, s8)
.clampScalar(1, s32, s64)
.widenScalarToNextPow2(1);
// Divisions
getActionDefinitionsBuilder(
{G_SDIV, G_SREM, G_UDIV, G_UREM})
.legalFor({s8, s16, s32, s64})
.clampScalar(0, s8, s64);
// Shifts
getActionDefinitionsBuilder(
{G_SHL, G_LSHR, G_ASHR})
.legalFor({{s8, s8}, {s16, s8}, {s32, s8}, {s64, s8}})
.clampScalar(0, s8, s64)
.clampScalar(1, s8, s8);
// Merge/Unmerge
setAction({G_MERGE_VALUES, s128}, Legal);
setAction({G_UNMERGE_VALUES, 1, s128}, Legal);
setAction({G_MERGE_VALUES, 1, s128}, Legal);
setAction({G_UNMERGE_VALUES, s128}, Legal);
}
void X86LegalizerInfo::setLegalizerInfoSSE1() {
if (!Subtarget.hasSSE1())
return;
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
const LLT v4s32 = LLT::vector(4, 32);
const LLT v2s64 = LLT::vector(2, 64);
for (unsigned BinOp : {G_FADD, G_FSUB, G_FMUL, G_FDIV})
for (auto Ty : {s32, v4s32})
setAction({BinOp, Ty}, Legal);
for (unsigned MemOp : {G_LOAD, G_STORE})
for (auto Ty : {v4s32, v2s64})
setAction({MemOp, Ty}, Legal);
// Constants
setAction({TargetOpcode::G_FCONSTANT, s32}, Legal);
// Merge/Unmerge
for (const auto &Ty : {v4s32, v2s64}) {
setAction({G_CONCAT_VECTORS, Ty}, Legal);
setAction({G_UNMERGE_VALUES, 1, Ty}, Legal);
}
setAction({G_MERGE_VALUES, 1, s64}, Legal);
setAction({G_UNMERGE_VALUES, s64}, Legal);
}
void X86LegalizerInfo::setLegalizerInfoSSE2() {
if (!Subtarget.hasSSE2())
return;
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
const LLT v16s8 = LLT::vector(16, 8);
const LLT v8s16 = LLT::vector(8, 16);
const LLT v4s32 = LLT::vector(4, 32);
const LLT v2s64 = LLT::vector(2, 64);
const LLT v32s8 = LLT::vector(32, 8);
const LLT v16s16 = LLT::vector(16, 16);
const LLT v8s32 = LLT::vector(8, 32);
const LLT v4s64 = LLT::vector(4, 64);
for (unsigned BinOp : {G_FADD, G_FSUB, G_FMUL, G_FDIV})
for (auto Ty : {s64, v2s64})
setAction({BinOp, Ty}, Legal);
for (unsigned BinOp : {G_ADD, G_SUB})
for (auto Ty : {v16s8, v8s16, v4s32, v2s64})
setAction({BinOp, Ty}, Legal);
setAction({G_MUL, v8s16}, Legal);
setAction({G_FPEXT, s64}, Legal);
setAction({G_FPEXT, 1, s32}, Legal);
setAction({G_FPTRUNC, s32}, Legal);
setAction({G_FPTRUNC, 1, s64}, Legal);
// Constants
setAction({TargetOpcode::G_FCONSTANT, s64}, Legal);
// Merge/Unmerge
for (const auto &Ty :
{v16s8, v32s8, v8s16, v16s16, v4s32, v8s32, v2s64, v4s64}) {
setAction({G_CONCAT_VECTORS, Ty}, Legal);
setAction({G_UNMERGE_VALUES, 1, Ty}, Legal);
}
for (const auto &Ty : {v16s8, v8s16, v4s32, v2s64}) {
setAction({G_CONCAT_VECTORS, 1, Ty}, Legal);
setAction({G_UNMERGE_VALUES, Ty}, Legal);
}
}
void X86LegalizerInfo::setLegalizerInfoSSE41() {
if (!Subtarget.hasSSE41())
return;
const LLT v4s32 = LLT::vector(4, 32);
setAction({G_MUL, v4s32}, Legal);
}
void X86LegalizerInfo::setLegalizerInfoAVX() {
if (!Subtarget.hasAVX())
return;
const LLT v16s8 = LLT::vector(16, 8);
const LLT v8s16 = LLT::vector(8, 16);
const LLT v4s32 = LLT::vector(4, 32);
const LLT v2s64 = LLT::vector(2, 64);
const LLT v32s8 = LLT::vector(32, 8);
const LLT v64s8 = LLT::vector(64, 8);
const LLT v16s16 = LLT::vector(16, 16);
const LLT v32s16 = LLT::vector(32, 16);
const LLT v8s32 = LLT::vector(8, 32);
const LLT v16s32 = LLT::vector(16, 32);
const LLT v4s64 = LLT::vector(4, 64);
const LLT v8s64 = LLT::vector(8, 64);
for (unsigned MemOp : {G_LOAD, G_STORE})
for (auto Ty : {v8s32, v4s64})
setAction({MemOp, Ty}, Legal);
for (auto Ty : {v32s8, v16s16, v8s32, v4s64}) {
setAction({G_INSERT, Ty}, Legal);
setAction({G_EXTRACT, 1, Ty}, Legal);
}
for (auto Ty : {v16s8, v8s16, v4s32, v2s64}) {
setAction({G_INSERT, 1, Ty}, Legal);
setAction({G_EXTRACT, Ty}, Legal);
}
// Merge/Unmerge
for (const auto &Ty :
{v32s8, v64s8, v16s16, v32s16, v8s32, v16s32, v4s64, v8s64}) {
setAction({G_CONCAT_VECTORS, Ty}, Legal);
setAction({G_UNMERGE_VALUES, 1, Ty}, Legal);
}
for (const auto &Ty :
{v16s8, v32s8, v8s16, v16s16, v4s32, v8s32, v2s64, v4s64}) {
setAction({G_CONCAT_VECTORS, 1, Ty}, Legal);
setAction({G_UNMERGE_VALUES, Ty}, Legal);
}
}
void X86LegalizerInfo::setLegalizerInfoAVX2() {
if (!Subtarget.hasAVX2())
return;
const LLT v32s8 = LLT::vector(32, 8);
const LLT v16s16 = LLT::vector(16, 16);
const LLT v8s32 = LLT::vector(8, 32);
const LLT v4s64 = LLT::vector(4, 64);
const LLT v64s8 = LLT::vector(64, 8);
const LLT v32s16 = LLT::vector(32, 16);
const LLT v16s32 = LLT::vector(16, 32);
const LLT v8s64 = LLT::vector(8, 64);
for (unsigned BinOp : {G_ADD, G_SUB})
for (auto Ty : {v32s8, v16s16, v8s32, v4s64})
setAction({BinOp, Ty}, Legal);
for (auto Ty : {v16s16, v8s32})
setAction({G_MUL, Ty}, Legal);
// Merge/Unmerge
for (const auto &Ty : {v64s8, v32s16, v16s32, v8s64}) {
setAction({G_CONCAT_VECTORS, Ty}, Legal);
setAction({G_UNMERGE_VALUES, 1, Ty}, Legal);
}
for (const auto &Ty : {v32s8, v16s16, v8s32, v4s64}) {
setAction({G_CONCAT_VECTORS, 1, Ty}, Legal);
setAction({G_UNMERGE_VALUES, Ty}, Legal);
}
}
void X86LegalizerInfo::setLegalizerInfoAVX512() {
if (!Subtarget.hasAVX512())
return;
const LLT v16s8 = LLT::vector(16, 8);
const LLT v8s16 = LLT::vector(8, 16);
const LLT v4s32 = LLT::vector(4, 32);
const LLT v2s64 = LLT::vector(2, 64);
const LLT v32s8 = LLT::vector(32, 8);
const LLT v16s16 = LLT::vector(16, 16);
const LLT v8s32 = LLT::vector(8, 32);
const LLT v4s64 = LLT::vector(4, 64);
const LLT v64s8 = LLT::vector(64, 8);
const LLT v32s16 = LLT::vector(32, 16);
const LLT v16s32 = LLT::vector(16, 32);
const LLT v8s64 = LLT::vector(8, 64);
for (unsigned BinOp : {G_ADD, G_SUB})
for (auto Ty : {v16s32, v8s64})
setAction({BinOp, Ty}, Legal);
setAction({G_MUL, v16s32}, Legal);
for (unsigned MemOp : {G_LOAD, G_STORE})
for (auto Ty : {v16s32, v8s64})
setAction({MemOp, Ty}, Legal);
for (auto Ty : {v64s8, v32s16, v16s32, v8s64}) {
setAction({G_INSERT, Ty}, Legal);
setAction({G_EXTRACT, 1, Ty}, Legal);
}
for (auto Ty : {v32s8, v16s16, v8s32, v4s64, v16s8, v8s16, v4s32, v2s64}) {
setAction({G_INSERT, 1, Ty}, Legal);
setAction({G_EXTRACT, Ty}, Legal);
}
/************ VLX *******************/
if (!Subtarget.hasVLX())
return;
for (auto Ty : {v4s32, v8s32})
setAction({G_MUL, Ty}, Legal);
}
void X86LegalizerInfo::setLegalizerInfoAVX512DQ() {
if (!(Subtarget.hasAVX512() && Subtarget.hasDQI()))
return;
const LLT v8s64 = LLT::vector(8, 64);
setAction({G_MUL, v8s64}, Legal);
/************ VLX *******************/
if (!Subtarget.hasVLX())
return;
const LLT v2s64 = LLT::vector(2, 64);
const LLT v4s64 = LLT::vector(4, 64);
for (auto Ty : {v2s64, v4s64})
setAction({G_MUL, Ty}, Legal);
}
void X86LegalizerInfo::setLegalizerInfoAVX512BW() {
if (!(Subtarget.hasAVX512() && Subtarget.hasBWI()))
return;
const LLT v64s8 = LLT::vector(64, 8);
const LLT v32s16 = LLT::vector(32, 16);
for (unsigned BinOp : {G_ADD, G_SUB})
for (auto Ty : {v64s8, v32s16})
setAction({BinOp, Ty}, Legal);
setAction({G_MUL, v32s16}, Legal);
/************ VLX *******************/
if (!Subtarget.hasVLX())
return;
const LLT v8s16 = LLT::vector(8, 16);
const LLT v16s16 = LLT::vector(16, 16);
for (auto Ty : {v8s16, v16s16})
setAction({G_MUL, Ty}, Legal);
}