1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-26 14:33:02 +02:00
llvm-mirror/lib/Target/Mips/MipsInstrFPU.td
Daniel Sanders 6ec0cf9dc8 [mips][microMIPS] Fix an issue with selecting sqrt instruction in LLVM backend
Summary:
This fixes 7 tests during fast LLVM test-suite run:
* MultiSource/Benchmarks/McCat/18-imp/imp
* MultiSource/Applications/oggenc/oggenc
* MultiSource/Benchmarks/MallocBench/gs/gs
* MultiSource/Benchmarks/MiBench/automotive-susan/automotive-susan
* MultiSource/Benchmarks/VersaBench/beamformer/beamformer
* MultiSource/Benchmarks/MiBench/consumer-lame/consumer-lame
* MultiSource/Benchmarks/Bullet/bullet

Error message was in the form of:
fatal error: error in backend: Cannot select: 0x95c3288: f32 = fsqrt 0x95c0190 [ORD=9] [ID=18]
  0x95c0190: f32 = fadd 0x95bef30, 0x95c4d00 [ORD=8] [ID=17]
    0x95bef30: f32 = fmul 0x95c4988, 0x95c4988 [ORD=5] [ID=16]
...

There was problem with selecting sqrt instruction in LLVM backend.

To fix the issue changes are made in TableGen definition for sqrt instruction in MipsInstrFPU.td and new test file sqrt.ll is added to LLVM regression tests.

Patch by Zlatko Buljan

Reviewers: zoran.jovanovic, hvarga, dsanders

Subscribers: llvm-commits, petarj

Differential Revision: http://reviews.llvm.org/D13235

llvm-svn: 249416
2015-10-06 15:17:25 +00:00

621 lines
28 KiB
TableGen

//===-- MipsInstrFPU.td - Mips FPU Instruction Information -*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the Mips FPU instruction set.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Floating Point Instructions
// ------------------------
// * 64bit fp:
// - 32 64-bit registers (default mode)
// - 16 even 32-bit registers (32-bit compatible mode) for
// single and double access.
// * 32bit fp:
// - 16 even 32-bit registers - single and double (aliased)
// - 32 32-bit registers (within single-only mode)
//===----------------------------------------------------------------------===//
// Floating Point Compare and Branch
def SDT_MipsFPBrcond : SDTypeProfile<0, 3, [SDTCisInt<0>,
SDTCisVT<1, i32>,
SDTCisVT<2, OtherVT>]>;
def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>,
SDTCisVT<2, i32>]>;
def SDT_MipsCMovFP : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisVT<2, i32>,
SDTCisSameAs<1, 3>]>;
def SDT_MipsTruncIntFP : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisFP<1>]>;
def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
SDTCisVT<1, i32>,
SDTCisSameAs<1, 2>]>;
def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
SDTCisVT<1, f64>,
SDTCisVT<2, i32>]>;
def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>;
def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>;
def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>;
def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
[SDNPHasChain, SDNPOptInGlue]>;
def MipsTruncIntFP : SDNode<"MipsISD::TruncIntFP", SDT_MipsTruncIntFP>;
def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>;
def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64",
SDT_MipsExtractElementF64>;
// Operand for printing out a condition code.
let PrintMethod = "printFCCOperand", DecoderMethod = "DecodeCondCode" in
def condcode : Operand<i32>;
//===----------------------------------------------------------------------===//
// Feature predicates.
//===----------------------------------------------------------------------===//
def IsFP64bit : Predicate<"Subtarget->isFP64bit()">,
AssemblerPredicate<"FeatureFP64Bit">;
def NotFP64bit : Predicate<"!Subtarget->isFP64bit()">,
AssemblerPredicate<"!FeatureFP64Bit">;
def IsSingleFloat : Predicate<"Subtarget->isSingleFloat()">,
AssemblerPredicate<"FeatureSingleFloat">;
def IsNotSingleFloat : Predicate<"!Subtarget->isSingleFloat()">,
AssemblerPredicate<"!FeatureSingleFloat">;
def IsNotSoftFloat : Predicate<"!Subtarget->useSoftFloat()">,
AssemblerPredicate<"!FeatureSoftFloat">;
//===----------------------------------------------------------------------===//
// Mips FGR size adjectives.
// They are mutually exclusive.
//===----------------------------------------------------------------------===//
class FGR_32 { list<Predicate> FGRPredicates = [NotFP64bit]; }
class FGR_64 { list<Predicate> FGRPredicates = [IsFP64bit]; }
class HARDFLOAT { list<Predicate> HardFloatPredicate = [IsNotSoftFloat]; }
//===----------------------------------------------------------------------===//
// FP immediate patterns.
def fpimm0 : PatLeaf<(fpimm), [{
return N->isExactlyValue(+0.0);
}]>;
def fpimm0neg : PatLeaf<(fpimm), [{
return N->isExactlyValue(-0.0);
}]>;
//===----------------------------------------------------------------------===//
// Instruction Class Templates
//
// A set of multiclasses is used to address the register usage.
//
// S32 - single precision in 16 32bit even fp registers
// single precision in 32 32bit fp registers in SingleOnly mode
// S64 - single precision in 32 64bit fp registers (In64BitMode)
// D32 - double precision in 16 32bit even fp registers
// D64 - double precision in 32 64bit fp registers (In64BitMode)
//
// Only S32 and D32 are supported right now.
//===----------------------------------------------------------------------===//
class ADDS_FT<string opstr, RegisterOperand RC, InstrItinClass Itin, bit IsComm,
SDPatternOperator OpNode= null_frag> :
InstSE<(outs RC:$fd), (ins RC:$fs, RC:$ft),
!strconcat(opstr, "\t$fd, $fs, $ft"),
[(set RC:$fd, (OpNode RC:$fs, RC:$ft))], Itin, FrmFR, opstr>,
HARDFLOAT {
let isCommutable = IsComm;
}
multiclass ADDS_M<string opstr, InstrItinClass Itin, bit IsComm,
SDPatternOperator OpNode = null_frag> {
def _D32 : MMRel, ADDS_FT<opstr, AFGR64Opnd, Itin, IsComm, OpNode>, FGR_32;
def _D64 : ADDS_FT<opstr, FGR64Opnd, Itin, IsComm, OpNode>, FGR_64 {
string DecoderNamespace = "Mips64";
}
}
class ABSS_FT<string opstr, RegisterOperand DstRC, RegisterOperand SrcRC,
InstrItinClass Itin, SDPatternOperator OpNode= null_frag> :
InstSE<(outs DstRC:$fd), (ins SrcRC:$fs), !strconcat(opstr, "\t$fd, $fs"),
[(set DstRC:$fd, (OpNode SrcRC:$fs))], Itin, FrmFR, opstr>,
HARDFLOAT,
NeverHasSideEffects;
multiclass ABSS_M<string opstr, InstrItinClass Itin,
SDPatternOperator OpNode= null_frag> {
def _D32 : MMRel, ABSS_FT<opstr, AFGR64Opnd, AFGR64Opnd, Itin, OpNode>,
FGR_32;
def _D64 : ABSS_FT<opstr, FGR64Opnd, FGR64Opnd, Itin, OpNode>, FGR_64 {
string DecoderNamespace = "Mips64";
}
}
multiclass ROUND_M<string opstr, InstrItinClass Itin> {
def _D32 : MMRel, ABSS_FT<opstr, FGR32Opnd, AFGR64Opnd, Itin>, FGR_32;
def _D64 : ABSS_FT<opstr, FGR32Opnd, FGR64Opnd, Itin>, FGR_64 {
let DecoderNamespace = "Mips64";
}
}
class MFC1_FT<string opstr, RegisterOperand DstRC, RegisterOperand SrcRC,
InstrItinClass Itin, SDPatternOperator OpNode= null_frag> :
InstSE<(outs DstRC:$rt), (ins SrcRC:$fs), !strconcat(opstr, "\t$rt, $fs"),
[(set DstRC:$rt, (OpNode SrcRC:$fs))], Itin, FrmFR, opstr>, HARDFLOAT;
class MTC1_FT<string opstr, RegisterOperand DstRC, RegisterOperand SrcRC,
InstrItinClass Itin, SDPatternOperator OpNode= null_frag> :
InstSE<(outs DstRC:$fs), (ins SrcRC:$rt), !strconcat(opstr, "\t$rt, $fs"),
[(set DstRC:$fs, (OpNode SrcRC:$rt))], Itin, FrmFR, opstr>, HARDFLOAT;
class MTC1_64_FT<string opstr, RegisterOperand DstRC, RegisterOperand SrcRC,
InstrItinClass Itin> :
InstSE<(outs DstRC:$fs), (ins DstRC:$fs_in, SrcRC:$rt),
!strconcat(opstr, "\t$rt, $fs"), [], Itin, FrmFR, opstr>, HARDFLOAT {
// $fs_in is part of a white lie to work around a widespread bug in the FPU
// implementation. See expandBuildPairF64 for details.
let Constraints = "$fs = $fs_in";
}
class LW_FT<string opstr, RegisterOperand RC, InstrItinClass Itin,
SDPatternOperator OpNode= null_frag> :
InstSE<(outs RC:$rt), (ins mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
[(set RC:$rt, (OpNode addrDefault:$addr))], Itin, FrmFI, opstr>,
HARDFLOAT {
let DecoderMethod = "DecodeFMem";
let mayLoad = 1;
}
class SW_FT<string opstr, RegisterOperand RC, InstrItinClass Itin,
SDPatternOperator OpNode= null_frag> :
InstSE<(outs), (ins RC:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
[(OpNode RC:$rt, addrDefault:$addr)], Itin, FrmFI, opstr>, HARDFLOAT {
let DecoderMethod = "DecodeFMem";
let mayStore = 1;
}
class MADDS_FT<string opstr, RegisterOperand RC, InstrItinClass Itin,
SDPatternOperator OpNode = null_frag> :
InstSE<(outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft),
!strconcat(opstr, "\t$fd, $fr, $fs, $ft"),
[(set RC:$fd, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr))], Itin,
FrmFR, opstr>, HARDFLOAT;
class NMADDS_FT<string opstr, RegisterOperand RC, InstrItinClass Itin,
SDPatternOperator OpNode = null_frag> :
InstSE<(outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft),
!strconcat(opstr, "\t$fd, $fr, $fs, $ft"),
[(set RC:$fd, (fsub fpimm0, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr)))],
Itin, FrmFR, opstr>, HARDFLOAT;
class LWXC1_FT<string opstr, RegisterOperand DRC,
InstrItinClass Itin, SDPatternOperator OpNode = null_frag> :
InstSE<(outs DRC:$fd), (ins PtrRC:$base, PtrRC:$index),
!strconcat(opstr, "\t$fd, ${index}(${base})"),
[(set DRC:$fd, (OpNode (add iPTR:$base, iPTR:$index)))], Itin,
FrmFI, opstr>, HARDFLOAT {
let AddedComplexity = 20;
}
class SWXC1_FT<string opstr, RegisterOperand DRC,
InstrItinClass Itin, SDPatternOperator OpNode = null_frag> :
InstSE<(outs), (ins DRC:$fs, PtrRC:$base, PtrRC:$index),
!strconcat(opstr, "\t$fs, ${index}(${base})"),
[(OpNode DRC:$fs, (add iPTR:$base, iPTR:$index))], Itin,
FrmFI, opstr>, HARDFLOAT {
let AddedComplexity = 20;
}
class BC1F_FT<string opstr, DAGOperand opnd, InstrItinClass Itin,
SDPatternOperator Op = null_frag, bit DelaySlot = 1> :
InstSE<(outs), (ins FCCRegsOpnd:$fcc, opnd:$offset),
!strconcat(opstr, "\t$fcc, $offset"),
[(MipsFPBrcond Op, FCCRegsOpnd:$fcc, bb:$offset)], Itin,
FrmFI, opstr>, HARDFLOAT {
let isBranch = 1;
let isTerminator = 1;
let hasDelaySlot = DelaySlot;
let Defs = [AT];
}
class CEQS_FT<string typestr, RegisterClass RC, InstrItinClass Itin,
SDPatternOperator OpNode = null_frag> :
InstSE<(outs), (ins RC:$fs, RC:$ft, condcode:$cond),
!strconcat("c.$cond.", typestr, "\t$fs, $ft"),
[(OpNode RC:$fs, RC:$ft, imm:$cond)], Itin, FrmFR,
!strconcat("c.$cond.", typestr)>, HARDFLOAT {
let Defs = [FCC0];
let isCodeGenOnly = 1;
}
class C_COND_FT<string CondStr, string Typestr, RegisterOperand RC,
InstrItinClass itin> :
InstSE<(outs), (ins RC:$fs, RC:$ft),
!strconcat("c.", CondStr, ".", Typestr, "\t$fs, $ft"), [], itin,
FrmFR>, HARDFLOAT;
multiclass C_COND_M<string TypeStr, RegisterOperand RC, bits<5> fmt,
InstrItinClass itin> {
def C_F_#NAME : C_COND_FT<"f", TypeStr, RC, itin>, C_COND_FM<fmt, 0>;
def C_UN_#NAME : C_COND_FT<"un", TypeStr, RC, itin>, C_COND_FM<fmt, 1>;
def C_EQ_#NAME : C_COND_FT<"eq", TypeStr, RC, itin>, C_COND_FM<fmt, 2>;
def C_UEQ_#NAME : C_COND_FT<"ueq", TypeStr, RC, itin>, C_COND_FM<fmt, 3>;
def C_OLT_#NAME : C_COND_FT<"olt", TypeStr, RC, itin>, C_COND_FM<fmt, 4>;
def C_ULT_#NAME : C_COND_FT<"ult", TypeStr, RC, itin>, C_COND_FM<fmt, 5>;
def C_OLE_#NAME : C_COND_FT<"ole", TypeStr, RC, itin>, C_COND_FM<fmt, 6>;
def C_ULE_#NAME : C_COND_FT<"ule", TypeStr, RC, itin>, C_COND_FM<fmt, 7>;
def C_SF_#NAME : C_COND_FT<"sf", TypeStr, RC, itin>, C_COND_FM<fmt, 8>;
def C_NGLE_#NAME : C_COND_FT<"ngle", TypeStr, RC, itin>, C_COND_FM<fmt, 9>;
def C_SEQ_#NAME : C_COND_FT<"seq", TypeStr, RC, itin>, C_COND_FM<fmt, 10>;
def C_NGL_#NAME : C_COND_FT<"ngl", TypeStr, RC, itin>, C_COND_FM<fmt, 11>;
def C_LT_#NAME : C_COND_FT<"lt", TypeStr, RC, itin>, C_COND_FM<fmt, 12>;
def C_NGE_#NAME : C_COND_FT<"nge", TypeStr, RC, itin>, C_COND_FM<fmt, 13>;
def C_LE_#NAME : C_COND_FT<"le", TypeStr, RC, itin>, C_COND_FM<fmt, 14>;
def C_NGT_#NAME : C_COND_FT<"ngt", TypeStr, RC, itin>, C_COND_FM<fmt, 15>;
}
defm S : C_COND_M<"s", FGR32Opnd, 16, II_C_CC_S>, ISA_MIPS1_NOT_32R6_64R6;
defm D32 : C_COND_M<"d", AFGR64Opnd, 17, II_C_CC_D>, ISA_MIPS1_NOT_32R6_64R6,
FGR_32;
let DecoderNamespace = "Mips64" in
defm D64 : C_COND_M<"d", FGR64Opnd, 17, II_C_CC_D>, ISA_MIPS1_NOT_32R6_64R6,
FGR_64;
//===----------------------------------------------------------------------===//
// Floating Point Instructions
//===----------------------------------------------------------------------===//
def ROUND_W_S : MMRel, ABSS_FT<"round.w.s", FGR32Opnd, FGR32Opnd, II_ROUND>,
ABSS_FM<0xc, 16>, ISA_MIPS2;
let AdditionalPredicates = [NotInMicroMips] in {
def TRUNC_W_S : MMRel, StdMMR6Rel, ABSS_FT<"trunc.w.s", FGR32Opnd, FGR32Opnd, II_TRUNC>,
ABSS_FM<0xd, 16>, ISA_MIPS2;
def CEIL_W_S : MMRel, StdMMR6Rel, ABSS_FT<"ceil.w.s", FGR32Opnd, FGR32Opnd, II_CEIL>,
ABSS_FM<0xe, 16>, ISA_MIPS2;
def FLOOR_W_S : MMRel, StdMMR6Rel, ABSS_FT<"floor.w.s", FGR32Opnd, FGR32Opnd, II_FLOOR>,
ABSS_FM<0xf, 16>, ISA_MIPS2;
}
def CVT_W_S : MMRel, ABSS_FT<"cvt.w.s", FGR32Opnd, FGR32Opnd, II_CVT>,
ABSS_FM<0x24, 16>;
defm ROUND_W : ROUND_M<"round.w.d", II_ROUND>, ABSS_FM<0xc, 17>, ISA_MIPS2;
defm TRUNC_W : ROUND_M<"trunc.w.d", II_TRUNC>, ABSS_FM<0xd, 17>, ISA_MIPS2;
defm CEIL_W : ROUND_M<"ceil.w.d", II_CEIL>, ABSS_FM<0xe, 17>, ISA_MIPS2;
defm FLOOR_W : ROUND_M<"floor.w.d", II_FLOOR>, ABSS_FM<0xf, 17>, ISA_MIPS2;
defm CVT_W : ROUND_M<"cvt.w.d", II_CVT>, ABSS_FM<0x24, 17>;
let DecoderNamespace = "Mips64" in {
def ROUND_L_S : ABSS_FT<"round.l.s", FGR64Opnd, FGR32Opnd, II_ROUND>,
ABSS_FM<0x8, 16>, FGR_64;
def ROUND_L_D64 : ABSS_FT<"round.l.d", FGR64Opnd, FGR64Opnd, II_ROUND>,
ABSS_FM<0x8, 17>, FGR_64;
let AdditionalPredicates = [NotInMicroMips] in {
def TRUNC_L_S : ABSS_FT<"trunc.l.s", FGR64Opnd, FGR32Opnd, II_TRUNC>,
ABSS_FM<0x9, 16>, FGR_64;
def TRUNC_L_D64 : ABSS_FT<"trunc.l.d", FGR64Opnd, FGR64Opnd, II_TRUNC>,
ABSS_FM<0x9, 17>, FGR_64;
def CEIL_L_S : ABSS_FT<"ceil.l.s", FGR64Opnd, FGR32Opnd, II_CEIL>,
ABSS_FM<0xa, 16>, FGR_64;
def CEIL_L_D64 : ABSS_FT<"ceil.l.d", FGR64Opnd, FGR64Opnd, II_CEIL>,
ABSS_FM<0xa, 17>, FGR_64;
def FLOOR_L_S : ABSS_FT<"floor.l.s", FGR64Opnd, FGR32Opnd, II_FLOOR>,
ABSS_FM<0xb, 16>, FGR_64;
def FLOOR_L_D64 : ABSS_FT<"floor.l.d", FGR64Opnd, FGR64Opnd, II_FLOOR>,
ABSS_FM<0xb, 17>, FGR_64;
}
}
def CVT_S_W : MMRel, ABSS_FT<"cvt.s.w", FGR32Opnd, FGR32Opnd, II_CVT>,
ABSS_FM<0x20, 20>;
let AdditionalPredicates = [NotInMicroMips] in{
def CVT_L_S : MMRel, ABSS_FT<"cvt.l.s", FGR64Opnd, FGR32Opnd, II_CVT>,
ABSS_FM<0x25, 16>, INSN_MIPS3_32R2;
def CVT_L_D64: MMRel, ABSS_FT<"cvt.l.d", FGR64Opnd, FGR64Opnd, II_CVT>,
ABSS_FM<0x25, 17>, INSN_MIPS3_32R2;
}
def CVT_S_D32 : MMRel, ABSS_FT<"cvt.s.d", FGR32Opnd, AFGR64Opnd, II_CVT>,
ABSS_FM<0x20, 17>, FGR_32;
def CVT_D32_W : MMRel, ABSS_FT<"cvt.d.w", AFGR64Opnd, FGR32Opnd, II_CVT>,
ABSS_FM<0x21, 20>, FGR_32;
def CVT_D32_S : MMRel, ABSS_FT<"cvt.d.s", AFGR64Opnd, FGR32Opnd, II_CVT>,
ABSS_FM<0x21, 16>, FGR_32;
let DecoderNamespace = "Mips64" in {
def CVT_S_D64 : ABSS_FT<"cvt.s.d", FGR32Opnd, FGR64Opnd, II_CVT>,
ABSS_FM<0x20, 17>, FGR_64;
let AdditionalPredicates = [NotInMicroMips] in{
def CVT_S_L : ABSS_FT<"cvt.s.l", FGR32Opnd, FGR64Opnd, II_CVT>,
ABSS_FM<0x20, 21>, FGR_64;
}
def CVT_D64_W : ABSS_FT<"cvt.d.w", FGR64Opnd, FGR32Opnd, II_CVT>,
ABSS_FM<0x21, 20>, FGR_64;
def CVT_D64_S : ABSS_FT<"cvt.d.s", FGR64Opnd, FGR32Opnd, II_CVT>,
ABSS_FM<0x21, 16>, FGR_64;
def CVT_D64_L : ABSS_FT<"cvt.d.l", FGR64Opnd, FGR64Opnd, II_CVT>,
ABSS_FM<0x21, 21>, FGR_64;
}
let isPseudo = 1, isCodeGenOnly = 1 in {
def PseudoCVT_S_W : ABSS_FT<"", FGR32Opnd, GPR32Opnd, II_CVT>;
def PseudoCVT_D32_W : ABSS_FT<"", AFGR64Opnd, GPR32Opnd, II_CVT>;
def PseudoCVT_S_L : ABSS_FT<"", FGR64Opnd, GPR64Opnd, II_CVT>;
def PseudoCVT_D64_W : ABSS_FT<"", FGR64Opnd, GPR32Opnd, II_CVT>;
def PseudoCVT_D64_L : ABSS_FT<"", FGR64Opnd, GPR64Opnd, II_CVT>;
}
def FABS_S : MMRel, ABSS_FT<"abs.s", FGR32Opnd, FGR32Opnd, II_ABS, fabs>,
ABSS_FM<0x5, 16>;
def FNEG_S : MMRel, ABSS_FT<"neg.s", FGR32Opnd, FGR32Opnd, II_NEG, fneg>,
ABSS_FM<0x7, 16>;
defm FABS : ABSS_M<"abs.d", II_ABS, fabs>, ABSS_FM<0x5, 17>;
defm FNEG : ABSS_M<"neg.d", II_NEG, fneg>, ABSS_FM<0x7, 17>;
def FSQRT_S : MMRel, StdMMR6Rel, ABSS_FT<"sqrt.s", FGR32Opnd, FGR32Opnd,
II_SQRT_S, fsqrt>, ABSS_FM<0x4, 16>, ISA_MIPS2;
defm FSQRT : ABSS_M<"sqrt.d", II_SQRT_D, fsqrt>, ABSS_FM<0x4, 17>, ISA_MIPS2;
// The odd-numbered registers are only referenced when doing loads,
// stores, and moves between floating-point and integer registers.
// When defining instructions, we reference all 32-bit registers,
// regardless of register aliasing.
/// Move Control Registers From/To CPU Registers
def CFC1 : MMRel, MFC1_FT<"cfc1", GPR32Opnd, CCROpnd, II_CFC1>, MFC1_FM<2>;
def CTC1 : MMRel, MTC1_FT<"ctc1", CCROpnd, GPR32Opnd, II_CTC1>, MFC1_FM<6>;
def MFC1 : MMRel, MFC1_FT<"mfc1", GPR32Opnd, FGR32Opnd, II_MFC1,
bitconvert>, MFC1_FM<0>;
def MTC1 : MMRel, MTC1_FT<"mtc1", FGR32Opnd, GPR32Opnd, II_MTC1,
bitconvert>, MFC1_FM<4>;
def MFHC1_D32 : MMRel, MFC1_FT<"mfhc1", GPR32Opnd, AFGR64Opnd, II_MFHC1>,
MFC1_FM<3>, ISA_MIPS32R2, FGR_32;
def MFHC1_D64 : MFC1_FT<"mfhc1", GPR32Opnd, FGR64Opnd, II_MFHC1>,
MFC1_FM<3>, ISA_MIPS32R2, FGR_64 {
let DecoderNamespace = "Mips64";
}
def MTHC1_D32 : MMRel, MTC1_64_FT<"mthc1", AFGR64Opnd, GPR32Opnd, II_MTHC1>,
MFC1_FM<7>, ISA_MIPS32R2, FGR_32;
def MTHC1_D64 : MTC1_64_FT<"mthc1", FGR64Opnd, GPR32Opnd, II_MTHC1>,
MFC1_FM<7>, ISA_MIPS32R2, FGR_64 {
let DecoderNamespace = "Mips64";
}
def DMFC1 : MFC1_FT<"dmfc1", GPR64Opnd, FGR64Opnd, II_DMFC1,
bitconvert>, MFC1_FM<1>, ISA_MIPS3;
def DMTC1 : MTC1_FT<"dmtc1", FGR64Opnd, GPR64Opnd, II_DMTC1,
bitconvert>, MFC1_FM<5>, ISA_MIPS3;
def FMOV_S : MMRel, ABSS_FT<"mov.s", FGR32Opnd, FGR32Opnd, II_MOV_S>,
ABSS_FM<0x6, 16>;
def FMOV_D32 : MMRel, ABSS_FT<"mov.d", AFGR64Opnd, AFGR64Opnd, II_MOV_D>,
ABSS_FM<0x6, 17>, FGR_32;
def FMOV_D64 : ABSS_FT<"mov.d", FGR64Opnd, FGR64Opnd, II_MOV_D>,
ABSS_FM<0x6, 17>, FGR_64 {
let DecoderNamespace = "Mips64";
}
/// Floating Point Memory Instructions
def LWC1 : MMRel, LW_FT<"lwc1", FGR32Opnd, II_LWC1, load>, LW_FM<0x31>;
def SWC1 : MMRel, SW_FT<"swc1", FGR32Opnd, II_SWC1, store>, LW_FM<0x39>;
let DecoderNamespace = "Mips64" in {
def LDC164 : LW_FT<"ldc1", FGR64Opnd, II_LDC1, load>, LW_FM<0x35>, ISA_MIPS2,
FGR_64;
def SDC164 : SW_FT<"sdc1", FGR64Opnd, II_SDC1, store>, LW_FM<0x3d>, ISA_MIPS2,
FGR_64;
}
def LDC1 : MMRel, LW_FT<"ldc1", AFGR64Opnd, II_LDC1, load>, LW_FM<0x35>,
ISA_MIPS2, FGR_32;
def SDC1 : MMRel, SW_FT<"sdc1", AFGR64Opnd, II_SDC1, store>, LW_FM<0x3d>,
ISA_MIPS2, FGR_32;
// Indexed loads and stores.
// Base register + offset register addressing mode (indicated by "x" in the
// instruction mnemonic) is disallowed under NaCl.
let AdditionalPredicates = [IsNotNaCl] in {
def LWXC1 : MMRel, LWXC1_FT<"lwxc1", FGR32Opnd, II_LWXC1, load>, LWXC1_FM<0>,
INSN_MIPS4_32R2_NOT_32R6_64R6;
def SWXC1 : MMRel, SWXC1_FT<"swxc1", FGR32Opnd, II_SWXC1, store>, SWXC1_FM<8>,
INSN_MIPS4_32R2_NOT_32R6_64R6;
}
let AdditionalPredicates = [NotInMicroMips, IsNotNaCl] in {
def LDXC1 : LWXC1_FT<"ldxc1", AFGR64Opnd, II_LDXC1, load>, LWXC1_FM<1>,
INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32;
def SDXC1 : SWXC1_FT<"sdxc1", AFGR64Opnd, II_SDXC1, store>, SWXC1_FM<9>,
INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32;
}
let DecoderNamespace="Mips64" in {
def LDXC164 : LWXC1_FT<"ldxc1", FGR64Opnd, II_LDXC1, load>, LWXC1_FM<1>,
INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64;
def SDXC164 : SWXC1_FT<"sdxc1", FGR64Opnd, II_SDXC1, store>, SWXC1_FM<9>,
INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64;
}
// Load/store doubleword indexed unaligned.
let AdditionalPredicates = [IsNotNaCl] in {
def LUXC1 : MMRel, LWXC1_FT<"luxc1", AFGR64Opnd, II_LUXC1>, LWXC1_FM<0x5>,
INSN_MIPS5_32R2_NOT_32R6_64R6, FGR_32;
def SUXC1 : MMRel, SWXC1_FT<"suxc1", AFGR64Opnd, II_SUXC1>, SWXC1_FM<0xd>,
INSN_MIPS5_32R2_NOT_32R6_64R6, FGR_32;
}
let DecoderNamespace="Mips64" in {
def LUXC164 : LWXC1_FT<"luxc1", FGR64Opnd, II_LUXC1>, LWXC1_FM<0x5>,
INSN_MIPS5_32R2_NOT_32R6_64R6, FGR_64;
def SUXC164 : SWXC1_FT<"suxc1", FGR64Opnd, II_SUXC1>, SWXC1_FM<0xd>,
INSN_MIPS5_32R2_NOT_32R6_64R6, FGR_64;
}
/// Floating-point Aritmetic
def FADD_S : MMRel, ADDS_FT<"add.s", FGR32Opnd, II_ADD_S, 1, fadd>,
ADDS_FM<0x00, 16>;
defm FADD : ADDS_M<"add.d", II_ADD_D, 1, fadd>, ADDS_FM<0x00, 17>;
def FDIV_S : MMRel, ADDS_FT<"div.s", FGR32Opnd, II_DIV_S, 0, fdiv>,
ADDS_FM<0x03, 16>;
defm FDIV : ADDS_M<"div.d", II_DIV_D, 0, fdiv>, ADDS_FM<0x03, 17>;
def FMUL_S : MMRel, ADDS_FT<"mul.s", FGR32Opnd, II_MUL_S, 1, fmul>,
ADDS_FM<0x02, 16>;
defm FMUL : ADDS_M<"mul.d", II_MUL_D, 1, fmul>, ADDS_FM<0x02, 17>;
def FSUB_S : MMRel, ADDS_FT<"sub.s", FGR32Opnd, II_SUB_S, 0, fsub>,
ADDS_FM<0x01, 16>;
defm FSUB : ADDS_M<"sub.d", II_SUB_D, 0, fsub>, ADDS_FM<0x01, 17>;
def MADD_S : MMRel, MADDS_FT<"madd.s", FGR32Opnd, II_MADD_S, fadd>,
MADDS_FM<4, 0>, INSN_MIPS4_32R2_NOT_32R6_64R6;
def MSUB_S : MMRel, MADDS_FT<"msub.s", FGR32Opnd, II_MSUB_S, fsub>,
MADDS_FM<5, 0>, INSN_MIPS4_32R2_NOT_32R6_64R6;
let AdditionalPredicates = [NoNaNsFPMath] in {
def NMADD_S : MMRel, NMADDS_FT<"nmadd.s", FGR32Opnd, II_NMADD_S, fadd>,
MADDS_FM<6, 0>, INSN_MIPS4_32R2_NOT_32R6_64R6;
def NMSUB_S : MMRel, NMADDS_FT<"nmsub.s", FGR32Opnd, II_NMSUB_S, fsub>,
MADDS_FM<7, 0>, INSN_MIPS4_32R2_NOT_32R6_64R6;
}
def MADD_D32 : MMRel, MADDS_FT<"madd.d", AFGR64Opnd, II_MADD_D, fadd>,
MADDS_FM<4, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32;
def MSUB_D32 : MMRel, MADDS_FT<"msub.d", AFGR64Opnd, II_MSUB_D, fsub>,
MADDS_FM<5, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32;
let AdditionalPredicates = [NoNaNsFPMath] in {
def NMADD_D32 : MMRel, NMADDS_FT<"nmadd.d", AFGR64Opnd, II_NMADD_D, fadd>,
MADDS_FM<6, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32;
def NMSUB_D32 : MMRel, NMADDS_FT<"nmsub.d", AFGR64Opnd, II_NMSUB_D, fsub>,
MADDS_FM<7, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32;
}
let DecoderNamespace = "Mips64" in {
def MADD_D64 : MADDS_FT<"madd.d", FGR64Opnd, II_MADD_D, fadd>,
MADDS_FM<4, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64;
def MSUB_D64 : MADDS_FT<"msub.d", FGR64Opnd, II_MSUB_D, fsub>,
MADDS_FM<5, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64;
}
let AdditionalPredicates = [NoNaNsFPMath],
DecoderNamespace = "Mips64" in {
def NMADD_D64 : NMADDS_FT<"nmadd.d", FGR64Opnd, II_NMADD_D, fadd>,
MADDS_FM<6, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64;
def NMSUB_D64 : NMADDS_FT<"nmsub.d", FGR64Opnd, II_NMSUB_D, fsub>,
MADDS_FM<7, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64;
}
//===----------------------------------------------------------------------===//
// Floating Point Branch Codes
//===----------------------------------------------------------------------===//
// Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
// They must be kept in synch.
def MIPS_BRANCH_F : PatLeaf<(i32 0)>;
def MIPS_BRANCH_T : PatLeaf<(i32 1)>;
def BC1F : MMRel, BC1F_FT<"bc1f", brtarget, II_BC1F, MIPS_BRANCH_F>,
BC1F_FM<0, 0>, ISA_MIPS1_NOT_32R6_64R6;
def BC1FL : MMRel, BC1F_FT<"bc1fl", brtarget, II_BC1FL, MIPS_BRANCH_F, 0>,
BC1F_FM<1, 0>, ISA_MIPS2_NOT_32R6_64R6;
def BC1T : MMRel, BC1F_FT<"bc1t", brtarget, II_BC1T, MIPS_BRANCH_T>,
BC1F_FM<0, 1>, ISA_MIPS1_NOT_32R6_64R6;
def BC1TL : MMRel, BC1F_FT<"bc1tl", brtarget, II_BC1TL, MIPS_BRANCH_T, 0>,
BC1F_FM<1, 1>, ISA_MIPS2_NOT_32R6_64R6;
/// Floating Point Compare
def FCMP_S32 : MMRel, CEQS_FT<"s", FGR32, II_C_CC_S, MipsFPCmp>, CEQS_FM<16>,
ISA_MIPS1_NOT_32R6_64R6;
def FCMP_D32 : MMRel, CEQS_FT<"d", AFGR64, II_C_CC_D, MipsFPCmp>, CEQS_FM<17>,
ISA_MIPS1_NOT_32R6_64R6, FGR_32;
let DecoderNamespace = "Mips64" in
def FCMP_D64 : CEQS_FT<"d", FGR64, II_C_CC_D, MipsFPCmp>, CEQS_FM<17>,
ISA_MIPS1_NOT_32R6_64R6, FGR_64;
//===----------------------------------------------------------------------===//
// Floating Point Pseudo-Instructions
//===----------------------------------------------------------------------===//
// This pseudo instr gets expanded into 2 mtc1 instrs after register
// allocation.
class BuildPairF64Base<RegisterOperand RO> :
PseudoSE<(outs RO:$dst), (ins GPR32Opnd:$lo, GPR32Opnd:$hi),
[(set RO:$dst, (MipsBuildPairF64 GPR32Opnd:$lo, GPR32Opnd:$hi))]>;
def BuildPairF64 : BuildPairF64Base<AFGR64Opnd>, FGR_32, HARDFLOAT;
def BuildPairF64_64 : BuildPairF64Base<FGR64Opnd>, FGR_64, HARDFLOAT;
// This pseudo instr gets expanded into 2 mfc1 instrs after register
// allocation.
// if n is 0, lower part of src is extracted.
// if n is 1, higher part of src is extracted.
class ExtractElementF64Base<RegisterOperand RO> :
PseudoSE<(outs GPR32Opnd:$dst), (ins RO:$src, i32imm:$n),
[(set GPR32Opnd:$dst, (MipsExtractElementF64 RO:$src, imm:$n))]>;
def ExtractElementF64 : ExtractElementF64Base<AFGR64Opnd>, FGR_32, HARDFLOAT;
def ExtractElementF64_64 : ExtractElementF64Base<FGR64Opnd>, FGR_64, HARDFLOAT;
//===----------------------------------------------------------------------===//
// InstAliases.
//===----------------------------------------------------------------------===//
def : MipsInstAlias<"bc1t $offset", (BC1T FCC0, brtarget:$offset)>,
ISA_MIPS1_NOT_32R6_64R6, HARDFLOAT;
def : MipsInstAlias<"bc1tl $offset", (BC1TL FCC0, brtarget:$offset)>,
ISA_MIPS2_NOT_32R6_64R6, HARDFLOAT;
def : MipsInstAlias<"bc1f $offset", (BC1F FCC0, brtarget:$offset)>,
ISA_MIPS1_NOT_32R6_64R6, HARDFLOAT;
def : MipsInstAlias<"bc1fl $offset", (BC1FL FCC0, brtarget:$offset)>,
ISA_MIPS2_NOT_32R6_64R6, HARDFLOAT;
//===----------------------------------------------------------------------===//
// Floating Point Patterns
//===----------------------------------------------------------------------===//
def : MipsPat<(f32 fpimm0), (MTC1 ZERO)>;
def : MipsPat<(f32 fpimm0neg), (FNEG_S (MTC1 ZERO))>;
def : MipsPat<(f32 (sint_to_fp GPR32Opnd:$src)),
(PseudoCVT_S_W GPR32Opnd:$src)>;
def : MipsPat<(MipsTruncIntFP FGR32Opnd:$src),
(TRUNC_W_S FGR32Opnd:$src)>;
def : MipsPat<(f64 (sint_to_fp GPR32Opnd:$src)),
(PseudoCVT_D32_W GPR32Opnd:$src)>, FGR_32;
def : MipsPat<(MipsTruncIntFP AFGR64Opnd:$src),
(TRUNC_W_D32 AFGR64Opnd:$src)>, FGR_32;
def : MipsPat<(f32 (fround AFGR64Opnd:$src)),
(CVT_S_D32 AFGR64Opnd:$src)>, FGR_32;
def : MipsPat<(f64 (fextend FGR32Opnd:$src)),
(CVT_D32_S FGR32Opnd:$src)>, FGR_32;
def : MipsPat<(f64 fpimm0), (DMTC1 ZERO_64)>, FGR_64;
def : MipsPat<(f64 fpimm0neg), (FNEG_D64 (DMTC1 ZERO_64))>, FGR_64;
def : MipsPat<(f64 (sint_to_fp GPR32Opnd:$src)),
(PseudoCVT_D64_W GPR32Opnd:$src)>, FGR_64;
def : MipsPat<(f32 (sint_to_fp GPR64Opnd:$src)),
(EXTRACT_SUBREG (PseudoCVT_S_L GPR64Opnd:$src), sub_lo)>, FGR_64;
def : MipsPat<(f64 (sint_to_fp GPR64Opnd:$src)),
(PseudoCVT_D64_L GPR64Opnd:$src)>, FGR_64;
def : MipsPat<(MipsTruncIntFP FGR64Opnd:$src),
(TRUNC_W_D64 FGR64Opnd:$src)>, FGR_64;
def : MipsPat<(MipsTruncIntFP FGR32Opnd:$src),
(TRUNC_L_S FGR32Opnd:$src)>, FGR_64;
def : MipsPat<(MipsTruncIntFP FGR64Opnd:$src),
(TRUNC_L_D64 FGR64Opnd:$src)>, FGR_64;
def : MipsPat<(f32 (fround FGR64Opnd:$src)),
(CVT_S_D64 FGR64Opnd:$src)>, FGR_64;
def : MipsPat<(f64 (fextend FGR32Opnd:$src)),
(CVT_D64_S FGR32Opnd:$src)>, FGR_64;
// Patterns for loads/stores with a reg+imm operand.
let AddedComplexity = 40 in {
def : LoadRegImmPat<LWC1, f32, load>;
def : StoreRegImmPat<SWC1, f32>;
def : LoadRegImmPat<LDC164, f64, load>, FGR_64;
def : StoreRegImmPat<SDC164, f64>, FGR_64;
def : LoadRegImmPat<LDC1, f64, load>, FGR_32;
def : StoreRegImmPat<SDC1, f64>, FGR_32;
}