1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00
llvm-mirror/unittests/Support/MathExtrasTest.cpp
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

472 lines
15 KiB
C++

//===- unittests/Support/MathExtrasTest.cpp - math utils tests ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/MathExtras.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
TEST(MathExtras, countTrailingZeros) {
uint8_t Z8 = 0;
uint16_t Z16 = 0;
uint32_t Z32 = 0;
uint64_t Z64 = 0;
EXPECT_EQ(8u, countTrailingZeros(Z8));
EXPECT_EQ(16u, countTrailingZeros(Z16));
EXPECT_EQ(32u, countTrailingZeros(Z32));
EXPECT_EQ(64u, countTrailingZeros(Z64));
uint8_t NZ8 = 42;
uint16_t NZ16 = 42;
uint32_t NZ32 = 42;
uint64_t NZ64 = 42;
EXPECT_EQ(1u, countTrailingZeros(NZ8));
EXPECT_EQ(1u, countTrailingZeros(NZ16));
EXPECT_EQ(1u, countTrailingZeros(NZ32));
EXPECT_EQ(1u, countTrailingZeros(NZ64));
}
TEST(MathExtras, countLeadingZeros) {
uint8_t Z8 = 0;
uint16_t Z16 = 0;
uint32_t Z32 = 0;
uint64_t Z64 = 0;
EXPECT_EQ(8u, countLeadingZeros(Z8));
EXPECT_EQ(16u, countLeadingZeros(Z16));
EXPECT_EQ(32u, countLeadingZeros(Z32));
EXPECT_EQ(64u, countLeadingZeros(Z64));
uint8_t NZ8 = 42;
uint16_t NZ16 = 42;
uint32_t NZ32 = 42;
uint64_t NZ64 = 42;
EXPECT_EQ(2u, countLeadingZeros(NZ8));
EXPECT_EQ(10u, countLeadingZeros(NZ16));
EXPECT_EQ(26u, countLeadingZeros(NZ32));
EXPECT_EQ(58u, countLeadingZeros(NZ64));
EXPECT_EQ(8u, countLeadingZeros(0x00F000FFu));
EXPECT_EQ(8u, countLeadingZeros(0x00F12345u));
for (unsigned i = 0; i <= 30; ++i) {
EXPECT_EQ(31 - i, countLeadingZeros(1u << i));
}
EXPECT_EQ(8u, countLeadingZeros(0x00F1234500F12345ULL));
EXPECT_EQ(1u, countLeadingZeros(1ULL << 62));
for (unsigned i = 0; i <= 62; ++i) {
EXPECT_EQ(63 - i, countLeadingZeros(1ULL << i));
}
}
TEST(MathExtras, onesMask) {
EXPECT_EQ(0U, maskLeadingOnes<uint8_t>(0));
EXPECT_EQ(0U, maskTrailingOnes<uint8_t>(0));
EXPECT_EQ(0U, maskLeadingOnes<uint16_t>(0));
EXPECT_EQ(0U, maskTrailingOnes<uint16_t>(0));
EXPECT_EQ(0U, maskLeadingOnes<uint32_t>(0));
EXPECT_EQ(0U, maskTrailingOnes<uint32_t>(0));
EXPECT_EQ(0U, maskLeadingOnes<uint64_t>(0));
EXPECT_EQ(0U, maskTrailingOnes<uint64_t>(0));
EXPECT_EQ(0x00000003U, maskTrailingOnes<uint32_t>(2U));
EXPECT_EQ(0xC0000000U, maskLeadingOnes<uint32_t>(2U));
EXPECT_EQ(0x000007FFU, maskTrailingOnes<uint32_t>(11U));
EXPECT_EQ(0xFFE00000U, maskLeadingOnes<uint32_t>(11U));
EXPECT_EQ(0xFFFFFFFFU, maskTrailingOnes<uint32_t>(32U));
EXPECT_EQ(0xFFFFFFFFU, maskLeadingOnes<uint32_t>(32U));
EXPECT_EQ(0xFFFFFFFFFFFFFFFFULL, maskTrailingOnes<uint64_t>(64U));
EXPECT_EQ(0xFFFFFFFFFFFFFFFFULL, maskLeadingOnes<uint64_t>(64U));
EXPECT_EQ(0x0000FFFFFFFFFFFFULL, maskTrailingOnes<uint64_t>(48U));
EXPECT_EQ(0xFFFFFFFFFFFF0000ULL, maskLeadingOnes<uint64_t>(48U));
}
TEST(MathExtras, findFirstSet) {
uint8_t Z8 = 0;
uint16_t Z16 = 0;
uint32_t Z32 = 0;
uint64_t Z64 = 0;
EXPECT_EQ(0xFFULL, findFirstSet(Z8));
EXPECT_EQ(0xFFFFULL, findFirstSet(Z16));
EXPECT_EQ(0xFFFFFFFFULL, findFirstSet(Z32));
EXPECT_EQ(0xFFFFFFFFFFFFFFFFULL, findFirstSet(Z64));
uint8_t NZ8 = 42;
uint16_t NZ16 = 42;
uint32_t NZ32 = 42;
uint64_t NZ64 = 42;
EXPECT_EQ(1u, findFirstSet(NZ8));
EXPECT_EQ(1u, findFirstSet(NZ16));
EXPECT_EQ(1u, findFirstSet(NZ32));
EXPECT_EQ(1u, findFirstSet(NZ64));
}
TEST(MathExtras, findLastSet) {
uint8_t Z8 = 0;
uint16_t Z16 = 0;
uint32_t Z32 = 0;
uint64_t Z64 = 0;
EXPECT_EQ(0xFFULL, findLastSet(Z8));
EXPECT_EQ(0xFFFFULL, findLastSet(Z16));
EXPECT_EQ(0xFFFFFFFFULL, findLastSet(Z32));
EXPECT_EQ(0xFFFFFFFFFFFFFFFFULL, findLastSet(Z64));
uint8_t NZ8 = 42;
uint16_t NZ16 = 42;
uint32_t NZ32 = 42;
uint64_t NZ64 = 42;
EXPECT_EQ(5u, findLastSet(NZ8));
EXPECT_EQ(5u, findLastSet(NZ16));
EXPECT_EQ(5u, findLastSet(NZ32));
EXPECT_EQ(5u, findLastSet(NZ64));
}
TEST(MathExtras, isIntN) {
EXPECT_TRUE(isIntN(16, 32767));
EXPECT_FALSE(isIntN(16, 32768));
}
TEST(MathExtras, isUIntN) {
EXPECT_TRUE(isUIntN(16, 65535));
EXPECT_FALSE(isUIntN(16, 65536));
EXPECT_TRUE(isUIntN(1, 0));
EXPECT_TRUE(isUIntN(6, 63));
}
TEST(MathExtras, maxIntN) {
EXPECT_EQ(32767, maxIntN(16));
EXPECT_EQ(2147483647, maxIntN(32));
EXPECT_EQ(std::numeric_limits<int32_t>::max(), maxIntN(32));
EXPECT_EQ(std::numeric_limits<int64_t>::max(), maxIntN(64));
}
TEST(MathExtras, minIntN) {
EXPECT_EQ(-32768LL, minIntN(16));
EXPECT_EQ(-64LL, minIntN(7));
EXPECT_EQ(std::numeric_limits<int32_t>::min(), minIntN(32));
EXPECT_EQ(std::numeric_limits<int64_t>::min(), minIntN(64));
}
TEST(MathExtras, maxUIntN) {
EXPECT_EQ(0xffffULL, maxUIntN(16));
EXPECT_EQ(0xffffffffULL, maxUIntN(32));
EXPECT_EQ(0xffffffffffffffffULL, maxUIntN(64));
EXPECT_EQ(1ULL, maxUIntN(1));
EXPECT_EQ(0x0fULL, maxUIntN(4));
}
TEST(MathExtras, reverseBits) {
uint8_t NZ8 = 42;
uint16_t NZ16 = 42;
uint32_t NZ32 = 42;
uint64_t NZ64 = 42;
EXPECT_EQ(0x54ULL, reverseBits(NZ8));
EXPECT_EQ(0x5400ULL, reverseBits(NZ16));
EXPECT_EQ(0x54000000ULL, reverseBits(NZ32));
EXPECT_EQ(0x5400000000000000ULL, reverseBits(NZ64));
}
TEST(MathExtras, isPowerOf2_32) {
EXPECT_FALSE(isPowerOf2_32(0));
EXPECT_TRUE(isPowerOf2_32(1 << 6));
EXPECT_TRUE(isPowerOf2_32(1 << 12));
EXPECT_FALSE(isPowerOf2_32((1 << 19) + 3));
EXPECT_FALSE(isPowerOf2_32(0xABCDEF0));
}
TEST(MathExtras, isPowerOf2_64) {
EXPECT_FALSE(isPowerOf2_64(0));
EXPECT_TRUE(isPowerOf2_64(1LL << 46));
EXPECT_TRUE(isPowerOf2_64(1LL << 12));
EXPECT_FALSE(isPowerOf2_64((1LL << 53) + 3));
EXPECT_FALSE(isPowerOf2_64(0xABCDEF0ABCDEF0LL));
}
TEST(MathExtras, PowerOf2Ceil) {
EXPECT_EQ(0U, PowerOf2Ceil(0U));
EXPECT_EQ(8U, PowerOf2Ceil(8U));
EXPECT_EQ(8U, PowerOf2Ceil(7U));
}
TEST(MathExtras, PowerOf2Floor) {
EXPECT_EQ(0U, PowerOf2Floor(0U));
EXPECT_EQ(8U, PowerOf2Floor(8U));
EXPECT_EQ(4U, PowerOf2Floor(7U));
}
TEST(MathExtras, ByteSwap_32) {
EXPECT_EQ(0x44332211u, ByteSwap_32(0x11223344));
EXPECT_EQ(0xDDCCBBAAu, ByteSwap_32(0xAABBCCDD));
}
TEST(MathExtras, ByteSwap_64) {
EXPECT_EQ(0x8877665544332211ULL, ByteSwap_64(0x1122334455667788LL));
EXPECT_EQ(0x1100FFEEDDCCBBAAULL, ByteSwap_64(0xAABBCCDDEEFF0011LL));
}
TEST(MathExtras, countLeadingOnes) {
for (int i = 30; i >= 0; --i) {
// Start with all ones and unset some bit.
EXPECT_EQ(31u - i, countLeadingOnes(0xFFFFFFFF ^ (1 << i)));
}
for (int i = 62; i >= 0; --i) {
// Start with all ones and unset some bit.
EXPECT_EQ(63u - i, countLeadingOnes(0xFFFFFFFFFFFFFFFFULL ^ (1LL << i)));
}
for (int i = 30; i >= 0; --i) {
// Start with all ones and unset some bit.
EXPECT_EQ(31u - i, countLeadingOnes(0xFFFFFFFF ^ (1 << i)));
}
}
TEST(MathExtras, FloatBits) {
static const float kValue = 5632.34f;
EXPECT_FLOAT_EQ(kValue, BitsToFloat(FloatToBits(kValue)));
}
TEST(MathExtras, DoubleBits) {
static const double kValue = 87987234.983498;
EXPECT_DOUBLE_EQ(kValue, BitsToDouble(DoubleToBits(kValue)));
}
TEST(MathExtras, MinAlign) {
EXPECT_EQ(1u, MinAlign(2, 3));
EXPECT_EQ(2u, MinAlign(2, 4));
EXPECT_EQ(1u, MinAlign(17, 64));
EXPECT_EQ(256u, MinAlign(256, 512));
}
TEST(MathExtras, NextPowerOf2) {
EXPECT_EQ(4u, NextPowerOf2(3));
EXPECT_EQ(16u, NextPowerOf2(15));
EXPECT_EQ(256u, NextPowerOf2(128));
}
TEST(MathExtras, alignTo) {
EXPECT_EQ(8u, alignTo(5, 8));
EXPECT_EQ(24u, alignTo(17, 8));
EXPECT_EQ(0u, alignTo(~0LL, 8));
EXPECT_EQ(7u, alignTo(5, 8, 7));
EXPECT_EQ(17u, alignTo(17, 8, 1));
EXPECT_EQ(3u, alignTo(~0LL, 8, 3));
EXPECT_EQ(552u, alignTo(321, 255, 42));
}
template<typename T>
void SaturatingAddTestHelper()
{
const T Max = std::numeric_limits<T>::max();
bool ResultOverflowed;
EXPECT_EQ(T(3), SaturatingAdd(T(1), T(2)));
EXPECT_EQ(T(3), SaturatingAdd(T(1), T(2), &ResultOverflowed));
EXPECT_FALSE(ResultOverflowed);
EXPECT_EQ(Max, SaturatingAdd(Max, T(1)));
EXPECT_EQ(Max, SaturatingAdd(Max, T(1), &ResultOverflowed));
EXPECT_TRUE(ResultOverflowed);
EXPECT_EQ(Max, SaturatingAdd(T(1), T(Max - 1)));
EXPECT_EQ(Max, SaturatingAdd(T(1), T(Max - 1), &ResultOverflowed));
EXPECT_FALSE(ResultOverflowed);
EXPECT_EQ(Max, SaturatingAdd(T(1), Max));
EXPECT_EQ(Max, SaturatingAdd(T(1), Max, &ResultOverflowed));
EXPECT_TRUE(ResultOverflowed);
EXPECT_EQ(Max, SaturatingAdd(Max, Max));
EXPECT_EQ(Max, SaturatingAdd(Max, Max, &ResultOverflowed));
EXPECT_TRUE(ResultOverflowed);
}
TEST(MathExtras, SaturatingAdd) {
SaturatingAddTestHelper<uint8_t>();
SaturatingAddTestHelper<uint16_t>();
SaturatingAddTestHelper<uint32_t>();
SaturatingAddTestHelper<uint64_t>();
}
template<typename T>
void SaturatingMultiplyTestHelper()
{
const T Max = std::numeric_limits<T>::max();
bool ResultOverflowed;
// Test basic multiplication.
EXPECT_EQ(T(6), SaturatingMultiply(T(2), T(3)));
EXPECT_EQ(T(6), SaturatingMultiply(T(2), T(3), &ResultOverflowed));
EXPECT_FALSE(ResultOverflowed);
EXPECT_EQ(T(6), SaturatingMultiply(T(3), T(2)));
EXPECT_EQ(T(6), SaturatingMultiply(T(3), T(2), &ResultOverflowed));
EXPECT_FALSE(ResultOverflowed);
// Test multiplication by zero.
EXPECT_EQ(T(0), SaturatingMultiply(T(0), T(0)));
EXPECT_EQ(T(0), SaturatingMultiply(T(0), T(0), &ResultOverflowed));
EXPECT_FALSE(ResultOverflowed);
EXPECT_EQ(T(0), SaturatingMultiply(T(1), T(0)));
EXPECT_EQ(T(0), SaturatingMultiply(T(1), T(0), &ResultOverflowed));
EXPECT_FALSE(ResultOverflowed);
EXPECT_EQ(T(0), SaturatingMultiply(T(0), T(1)));
EXPECT_EQ(T(0), SaturatingMultiply(T(0), T(1), &ResultOverflowed));
EXPECT_FALSE(ResultOverflowed);
EXPECT_EQ(T(0), SaturatingMultiply(Max, T(0)));
EXPECT_EQ(T(0), SaturatingMultiply(Max, T(0), &ResultOverflowed));
EXPECT_FALSE(ResultOverflowed);
EXPECT_EQ(T(0), SaturatingMultiply(T(0), Max));
EXPECT_EQ(T(0), SaturatingMultiply(T(0), Max, &ResultOverflowed));
EXPECT_FALSE(ResultOverflowed);
// Test multiplication by maximum value.
EXPECT_EQ(Max, SaturatingMultiply(Max, T(2)));
EXPECT_EQ(Max, SaturatingMultiply(Max, T(2), &ResultOverflowed));
EXPECT_TRUE(ResultOverflowed);
EXPECT_EQ(Max, SaturatingMultiply(T(2), Max));
EXPECT_EQ(Max, SaturatingMultiply(T(2), Max, &ResultOverflowed));
EXPECT_TRUE(ResultOverflowed);
EXPECT_EQ(Max, SaturatingMultiply(Max, Max));
EXPECT_EQ(Max, SaturatingMultiply(Max, Max, &ResultOverflowed));
EXPECT_TRUE(ResultOverflowed);
// Test interesting boundary conditions for algorithm -
// ((1 << A) - 1) * ((1 << B) + K) for K in [-1, 0, 1]
// and A + B == std::numeric_limits<T>::digits.
// We expect overflow iff A > B and K = 1.
const int Digits = std::numeric_limits<T>::digits;
for (int A = 1, B = Digits - 1; B >= 1; ++A, --B) {
for (int K = -1; K <= 1; ++K) {
T X = (T(1) << A) - T(1);
T Y = (T(1) << B) + K;
bool OverflowExpected = A > B && K == 1;
if(OverflowExpected) {
EXPECT_EQ(Max, SaturatingMultiply(X, Y));
EXPECT_EQ(Max, SaturatingMultiply(X, Y, &ResultOverflowed));
EXPECT_TRUE(ResultOverflowed);
} else {
EXPECT_EQ(X * Y, SaturatingMultiply(X, Y));
EXPECT_EQ(X * Y, SaturatingMultiply(X, Y, &ResultOverflowed));
EXPECT_FALSE(ResultOverflowed);
}
}
}
}
TEST(MathExtras, SaturatingMultiply) {
SaturatingMultiplyTestHelper<uint8_t>();
SaturatingMultiplyTestHelper<uint16_t>();
SaturatingMultiplyTestHelper<uint32_t>();
SaturatingMultiplyTestHelper<uint64_t>();
}
template<typename T>
void SaturatingMultiplyAddTestHelper()
{
const T Max = std::numeric_limits<T>::max();
bool ResultOverflowed;
// Test basic multiply-add.
EXPECT_EQ(T(16), SaturatingMultiplyAdd(T(2), T(3), T(10)));
EXPECT_EQ(T(16), SaturatingMultiplyAdd(T(2), T(3), T(10), &ResultOverflowed));
EXPECT_FALSE(ResultOverflowed);
// Test multiply overflows, add doesn't overflow
EXPECT_EQ(Max, SaturatingMultiplyAdd(Max, Max, T(0), &ResultOverflowed));
EXPECT_TRUE(ResultOverflowed);
// Test multiply doesn't overflow, add overflows
EXPECT_EQ(Max, SaturatingMultiplyAdd(T(1), T(1), Max, &ResultOverflowed));
EXPECT_TRUE(ResultOverflowed);
// Test multiply-add with Max as operand
EXPECT_EQ(Max, SaturatingMultiplyAdd(T(1), T(1), Max, &ResultOverflowed));
EXPECT_TRUE(ResultOverflowed);
EXPECT_EQ(Max, SaturatingMultiplyAdd(T(1), Max, T(1), &ResultOverflowed));
EXPECT_TRUE(ResultOverflowed);
EXPECT_EQ(Max, SaturatingMultiplyAdd(Max, Max, T(1), &ResultOverflowed));
EXPECT_TRUE(ResultOverflowed);
EXPECT_EQ(Max, SaturatingMultiplyAdd(Max, Max, Max, &ResultOverflowed));
EXPECT_TRUE(ResultOverflowed);
// Test multiply-add with 0 as operand
EXPECT_EQ(T(1), SaturatingMultiplyAdd(T(1), T(1), T(0), &ResultOverflowed));
EXPECT_FALSE(ResultOverflowed);
EXPECT_EQ(T(1), SaturatingMultiplyAdd(T(1), T(0), T(1), &ResultOverflowed));
EXPECT_FALSE(ResultOverflowed);
EXPECT_EQ(T(1), SaturatingMultiplyAdd(T(0), T(0), T(1), &ResultOverflowed));
EXPECT_FALSE(ResultOverflowed);
EXPECT_EQ(T(0), SaturatingMultiplyAdd(T(0), T(0), T(0), &ResultOverflowed));
EXPECT_FALSE(ResultOverflowed);
}
TEST(MathExtras, SaturatingMultiplyAdd) {
SaturatingMultiplyAddTestHelper<uint8_t>();
SaturatingMultiplyAddTestHelper<uint16_t>();
SaturatingMultiplyAddTestHelper<uint32_t>();
SaturatingMultiplyAddTestHelper<uint64_t>();
}
TEST(MathExtras, IsShiftedUInt) {
EXPECT_TRUE((isShiftedUInt<1, 0>(0)));
EXPECT_TRUE((isShiftedUInt<1, 0>(1)));
EXPECT_FALSE((isShiftedUInt<1, 0>(2)));
EXPECT_FALSE((isShiftedUInt<1, 0>(3)));
EXPECT_FALSE((isShiftedUInt<1, 0>(0x8000000000000000)));
EXPECT_TRUE((isShiftedUInt<1, 63>(0x8000000000000000)));
EXPECT_TRUE((isShiftedUInt<2, 62>(0xC000000000000000)));
EXPECT_FALSE((isShiftedUInt<2, 62>(0xE000000000000000)));
// 0x201 is ten bits long and has a 1 in the MSB and LSB.
EXPECT_TRUE((isShiftedUInt<10, 5>(uint64_t(0x201) << 5)));
EXPECT_FALSE((isShiftedUInt<10, 5>(uint64_t(0x201) << 4)));
EXPECT_FALSE((isShiftedUInt<10, 5>(uint64_t(0x201) << 6)));
}
TEST(MathExtras, IsShiftedInt) {
EXPECT_TRUE((isShiftedInt<1, 0>(0)));
EXPECT_TRUE((isShiftedInt<1, 0>(-1)));
EXPECT_FALSE((isShiftedInt<1, 0>(2)));
EXPECT_FALSE((isShiftedInt<1, 0>(3)));
EXPECT_FALSE((isShiftedInt<1, 0>(0x8000000000000000)));
EXPECT_TRUE((isShiftedInt<1, 63>(0x8000000000000000)));
EXPECT_TRUE((isShiftedInt<2, 62>(0xC000000000000000)));
EXPECT_FALSE((isShiftedInt<2, 62>(0xE000000000000000)));
// 0x201 is ten bits long and has a 1 in the MSB and LSB.
EXPECT_TRUE((isShiftedInt<11, 5>(int64_t(0x201) << 5)));
EXPECT_FALSE((isShiftedInt<11, 5>(int64_t(0x201) << 3)));
EXPECT_FALSE((isShiftedInt<11, 5>(int64_t(0x201) << 6)));
EXPECT_TRUE((isShiftedInt<11, 5>(-(int64_t(0x201) << 5))));
EXPECT_FALSE((isShiftedInt<11, 5>(-(int64_t(0x201) << 3))));
EXPECT_FALSE((isShiftedInt<11, 5>(-(int64_t(0x201) << 6))));
EXPECT_TRUE((isShiftedInt<6, 10>(-(int64_t(1) << 15))));
EXPECT_FALSE((isShiftedInt<6, 10>(int64_t(1) << 15)));
}
} // namespace