1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00
llvm-mirror/tools/llvm-mca/Dispatch.cpp
2018-04-25 10:27:30 +00:00

443 lines
16 KiB
C++

//===--------------------- Dispatch.cpp -------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file implements methods declared by class RegisterFile, DispatchUnit
/// and RetireControlUnit.
///
//===----------------------------------------------------------------------===//
#include "Dispatch.h"
#include "Backend.h"
#include "HWEventListener.h"
#include "Scheduler.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "llvm-mca"
namespace mca {
void RegisterFile::initialize(const MCSchedModel &SM, unsigned NumRegs) {
// Create a default register file that "sees" all the machine registers
// declared by the target. The number of physical registers in the default
// register file is set equal to `NumRegs`. A value of zero for `NumRegs`
// means: this register file has an unbounded number of physical registers.
addRegisterFile({} /* all registers */, NumRegs);
if (!SM.hasExtraProcessorInfo())
return;
// For each user defined register file, allocate a RegisterMappingTracker
// object. The size of every register file, as well as the mapping between
// register files and register classes is specified via tablegen.
const MCExtraProcessorInfo &Info = SM.getExtraProcessorInfo();
for (unsigned I = 0, E = Info.NumRegisterFiles; I < E; ++I) {
const MCRegisterFileDesc &RF = Info.RegisterFiles[I];
// Skip invalid register files with zero physical registers.
unsigned Length = RF.NumRegisterCostEntries;
if (!RF.NumPhysRegs)
continue;
// The cost of a register definition is equivalent to the number of
// physical registers that are allocated at register renaming stage.
const MCRegisterCostEntry *FirstElt =
&Info.RegisterCostTable[RF.RegisterCostEntryIdx];
addRegisterFile(ArrayRef<MCRegisterCostEntry>(FirstElt, Length),
RF.NumPhysRegs);
}
}
void RegisterFile::addRegisterFile(ArrayRef<MCRegisterCostEntry> Entries,
unsigned NumPhysRegs) {
// A default register file is always allocated at index #0. That register file
// is mainly used to count the total number of mappings created by all
// register files at runtime. Users can limit the number of available physical
// registers in register file #0 through the command line flag
// `-register-file-size`.
unsigned RegisterFileIndex = RegisterFiles.size();
RegisterFiles.emplace_back(NumPhysRegs);
// Special case where there is no register class identifier in the set.
// An empty set of register classes means: this register file contains all
// the physical registers specified by the target.
if (Entries.empty()) {
for (std::pair<WriteState *, IndexPlusCostPairTy> &Mapping :
RegisterMappings)
Mapping.second = std::make_pair(RegisterFileIndex, 1U);
return;
}
// Now update the cost of individual registers.
for (const MCRegisterCostEntry &RCE : Entries) {
const MCRegisterClass &RC = MRI.getRegClass(RCE.RegisterClassID);
for (const MCPhysReg Reg : RC) {
IndexPlusCostPairTy &Entry = RegisterMappings[Reg].second;
if (Entry.first) {
// The only register file that is allowed to overlap is the default
// register file at index #0. The analysis is inaccurate if register
// files overlap.
errs() << "warning: register " << MRI.getName(Reg)
<< " defined in multiple register files.";
}
Entry.first = RegisterFileIndex;
Entry.second = RCE.Cost;
}
}
}
void RegisterFile::createNewMappings(IndexPlusCostPairTy Entry,
MutableArrayRef<unsigned> UsedPhysRegs) {
unsigned RegisterFileIndex = Entry.first;
unsigned Cost = Entry.second;
if (RegisterFileIndex) {
RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex];
RMT.NumUsedMappings += Cost;
UsedPhysRegs[RegisterFileIndex] += Cost;
}
// Now update the default register mapping tracker.
RegisterFiles[0].NumUsedMappings += Cost;
UsedPhysRegs[0] += Cost;
}
void RegisterFile::removeMappings(IndexPlusCostPairTy Entry,
MutableArrayRef<unsigned> FreedPhysRegs) {
unsigned RegisterFileIndex = Entry.first;
unsigned Cost = Entry.second;
if (RegisterFileIndex) {
RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex];
RMT.NumUsedMappings -= Cost;
FreedPhysRegs[RegisterFileIndex] += Cost;
}
// Now update the default register mapping tracker.
RegisterFiles[0].NumUsedMappings -= Cost;
FreedPhysRegs[0] += Cost;
}
void RegisterFile::addRegisterMapping(WriteState &WS,
MutableArrayRef<unsigned> UsedPhysRegs) {
unsigned RegID = WS.getRegisterID();
assert(RegID && "Adding an invalid register definition?");
RegisterMapping &Mapping = RegisterMappings[RegID];
Mapping.first = &WS;
for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I)
RegisterMappings[*I].first = &WS;
createNewMappings(Mapping.second, UsedPhysRegs);
// If this is a partial update, then we are done.
if (!WS.fullyUpdatesSuperRegs())
return;
for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I)
RegisterMappings[*I].first = &WS;
}
void RegisterFile::invalidateRegisterMapping(
const WriteState &WS, MutableArrayRef<unsigned> FreedPhysRegs) {
unsigned RegID = WS.getRegisterID();
bool ShouldInvalidateSuperRegs = WS.fullyUpdatesSuperRegs();
assert(RegID != 0 && "Invalidating an already invalid register?");
assert(WS.getCyclesLeft() != -512 &&
"Invalidating a write of unknown cycles!");
assert(WS.getCyclesLeft() <= 0 && "Invalid cycles left for this write!");
RegisterMapping &Mapping = RegisterMappings[RegID];
if (!Mapping.first)
return;
removeMappings(Mapping.second, FreedPhysRegs);
if (Mapping.first == &WS)
Mapping.first = nullptr;
for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I)
if (RegisterMappings[*I].first == &WS)
RegisterMappings[*I].first = nullptr;
if (!ShouldInvalidateSuperRegs)
return;
for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I)
if (RegisterMappings[*I].first == &WS)
RegisterMappings[*I].first = nullptr;
}
void RegisterFile::collectWrites(SmallVectorImpl<WriteState *> &Writes,
unsigned RegID) const {
assert(RegID && RegID < RegisterMappings.size());
WriteState *WS = RegisterMappings[RegID].first;
if (WS) {
DEBUG(dbgs() << "Found a dependent use of RegID=" << RegID << '\n');
Writes.push_back(WS);
}
// Handle potential partial register updates.
for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) {
WS = RegisterMappings[*I].first;
if (WS && std::find(Writes.begin(), Writes.end(), WS) == Writes.end()) {
DEBUG(dbgs() << "Found a dependent use of subReg " << *I << " (part of "
<< RegID << ")\n");
Writes.push_back(WS);
}
}
}
unsigned RegisterFile::isAvailable(ArrayRef<unsigned> Regs) const {
SmallVector<unsigned, 4> NumPhysRegs(getNumRegisterFiles());
// Find how many new mappings must be created for each register file.
for (const unsigned RegID : Regs) {
const IndexPlusCostPairTy &Entry = RegisterMappings[RegID].second;
if (Entry.first)
NumPhysRegs[Entry.first] += Entry.second;
NumPhysRegs[0] += Entry.second;
}
unsigned Response = 0;
for (unsigned I = 0, E = getNumRegisterFiles(); I < E; ++I) {
unsigned NumRegs = NumPhysRegs[I];
if (!NumRegs)
continue;
const RegisterMappingTracker &RMT = RegisterFiles[I];
if (!RMT.TotalMappings) {
// The register file has an unbounded number of microarchitectural
// registers.
continue;
}
if (RMT.TotalMappings < NumRegs) {
// The current register file is too small. This may occur if the number of
// microarchitectural registers in register file #0 was changed by the
// users via flag -reg-file-size. Alternatively, the scheduling model
// specified a too small number of registers for this register file.
report_fatal_error(
"Not enough microarchitectural registers in the register file");
}
if (RMT.TotalMappings < (RMT.NumUsedMappings + NumRegs))
Response |= (1U << I);
}
return Response;
}
#ifndef NDEBUG
void RegisterFile::dump() const {
for (unsigned I = 0, E = MRI.getNumRegs(); I < E; ++I) {
const RegisterMapping &RM = RegisterMappings[I];
dbgs() << MRI.getName(I) << ", " << I << ", Map=" << RM.second.first
<< ", ";
if (RM.first)
RM.first->dump();
else
dbgs() << "(null)\n";
}
for (unsigned I = 0, E = getNumRegisterFiles(); I < E; ++I) {
dbgs() << "Register File #" << I;
const RegisterMappingTracker &RMT = RegisterFiles[I];
dbgs() << "\n TotalMappings: " << RMT.TotalMappings
<< "\n NumUsedMappings: " << RMT.NumUsedMappings << '\n';
}
}
#endif
RetireControlUnit::RetireControlUnit(const llvm::MCSchedModel &SM,
DispatchUnit *DU)
: NextAvailableSlotIdx(0), CurrentInstructionSlotIdx(0),
AvailableSlots(SM.MicroOpBufferSize), MaxRetirePerCycle(0), Owner(DU) {
// Check if the scheduling model provides extra information about the machine
// processor. If so, then use that information to set the reorder buffer size
// and the maximum number of instructions retired per cycle.
if (SM.hasExtraProcessorInfo()) {
const MCExtraProcessorInfo &EPI = SM.getExtraProcessorInfo();
if (EPI.ReorderBufferSize)
AvailableSlots = EPI.ReorderBufferSize;
MaxRetirePerCycle = EPI.MaxRetirePerCycle;
}
assert(AvailableSlots && "Invalid reorder buffer size!");
Queue.resize(AvailableSlots);
}
// Reserves a number of slots, and returns a new token.
unsigned RetireControlUnit::reserveSlot(unsigned Index, unsigned NumMicroOps) {
assert(isAvailable(NumMicroOps));
unsigned NormalizedQuantity =
std::min(NumMicroOps, static_cast<unsigned>(Queue.size()));
// Zero latency instructions may have zero mOps. Artificially bump this
// value to 1. Although zero latency instructions don't consume scheduler
// resources, they still consume one slot in the retire queue.
NormalizedQuantity = std::max(NormalizedQuantity, 1U);
unsigned TokenID = NextAvailableSlotIdx;
Queue[NextAvailableSlotIdx] = {Index, NormalizedQuantity, false};
NextAvailableSlotIdx += NormalizedQuantity;
NextAvailableSlotIdx %= Queue.size();
AvailableSlots -= NormalizedQuantity;
return TokenID;
}
void DispatchUnit::notifyInstructionDispatched(unsigned Index,
ArrayRef<unsigned> UsedRegs) {
DEBUG(dbgs() << "[E] Instruction Dispatched: " << Index << '\n');
Owner->notifyInstructionEvent(HWInstructionDispatchedEvent(Index, UsedRegs));
}
void DispatchUnit::notifyInstructionRetired(unsigned Index) {
DEBUG(dbgs() << "[E] Instruction Retired: " << Index << '\n');
const Instruction &IS = Owner->getInstruction(Index);
SmallVector<unsigned, 4> FreedRegs(RAT->getNumRegisterFiles());
for (const std::unique_ptr<WriteState> &WS : IS.getDefs())
RAT->invalidateRegisterMapping(*WS.get(), FreedRegs);
Owner->notifyInstructionEvent(HWInstructionRetiredEvent(Index, FreedRegs));
Owner->eraseInstruction(Index);
}
void RetireControlUnit::cycleEvent() {
if (isEmpty())
return;
unsigned NumRetired = 0;
while (!isEmpty()) {
if (MaxRetirePerCycle != 0 && NumRetired == MaxRetirePerCycle)
break;
RUToken &Current = Queue[CurrentInstructionSlotIdx];
assert(Current.NumSlots && "Reserved zero slots?");
if (!Current.Executed)
break;
Owner->notifyInstructionRetired(Current.Index);
CurrentInstructionSlotIdx += Current.NumSlots;
CurrentInstructionSlotIdx %= Queue.size();
AvailableSlots += Current.NumSlots;
NumRetired++;
}
}
void RetireControlUnit::onInstructionExecuted(unsigned TokenID) {
assert(Queue.size() > TokenID);
assert(Queue[TokenID].Executed == false && Queue[TokenID].Index != ~0U);
Queue[TokenID].Executed = true;
}
#ifndef NDEBUG
void RetireControlUnit::dump() const {
dbgs() << "Retire Unit: { Total Slots=" << Queue.size()
<< ", Available Slots=" << AvailableSlots << " }\n";
}
#endif
bool DispatchUnit::checkRAT(unsigned Index, const Instruction &Instr) {
SmallVector<unsigned, 4> RegDefs;
for (const std::unique_ptr<WriteState> &RegDef : Instr.getDefs())
RegDefs.emplace_back(RegDef->getRegisterID());
unsigned RegisterMask = RAT->isAvailable(RegDefs);
// A mask with all zeroes means: register files are available.
if (RegisterMask) {
Owner->notifyStallEvent(
HWStallEvent(HWStallEvent::RegisterFileStall, Index));
return false;
}
return true;
}
bool DispatchUnit::checkRCU(unsigned Index, const InstrDesc &Desc) {
unsigned NumMicroOps = Desc.NumMicroOps;
if (RCU->isAvailable(NumMicroOps))
return true;
Owner->notifyStallEvent(
HWStallEvent(HWStallEvent::RetireControlUnitStall, Index));
return false;
}
bool DispatchUnit::checkScheduler(unsigned Index, const InstrDesc &Desc) {
return SC->canBeDispatched(Index, Desc);
}
void DispatchUnit::updateRAWDependencies(ReadState &RS,
const MCSubtargetInfo &STI) {
SmallVector<WriteState *, 4> DependentWrites;
collectWrites(DependentWrites, RS.getRegisterID());
RS.setDependentWrites(DependentWrites.size());
DEBUG(dbgs() << "Found " << DependentWrites.size() << " dependent writes\n");
// We know that this read depends on all the writes in DependentWrites.
// For each write, check if we have ReadAdvance information, and use it
// to figure out in how many cycles this read becomes available.
const ReadDescriptor &RD = RS.getDescriptor();
if (!RD.HasReadAdvanceEntries) {
for (WriteState *WS : DependentWrites)
WS->addUser(&RS, /* ReadAdvance */ 0);
return;
}
const MCSchedModel &SM = STI.getSchedModel();
const MCSchedClassDesc *SC = SM.getSchedClassDesc(RD.SchedClassID);
for (WriteState *WS : DependentWrites) {
unsigned WriteResID = WS->getWriteResourceID();
int ReadAdvance = STI.getReadAdvanceCycles(SC, RD.UseIndex, WriteResID);
WS->addUser(&RS, ReadAdvance);
}
// Prepare the set for another round.
DependentWrites.clear();
}
void DispatchUnit::dispatch(unsigned IID, Instruction *NewInst,
const MCSubtargetInfo &STI) {
assert(!CarryOver && "Cannot dispatch another instruction!");
unsigned NumMicroOps = NewInst->getDesc().NumMicroOps;
if (NumMicroOps > DispatchWidth) {
assert(AvailableEntries == DispatchWidth);
AvailableEntries = 0;
CarryOver = NumMicroOps - DispatchWidth;
} else {
assert(AvailableEntries >= NumMicroOps);
AvailableEntries -= NumMicroOps;
}
// Update RAW dependencies if this instruction is not a zero-latency
// instruction. The assumption is that a zero-latency instruction doesn't
// require to be issued to the scheduler for execution. More importantly, it
// doesn't have to wait on the register input operands.
if (NewInst->getDesc().MaxLatency)
for (std::unique_ptr<ReadState> &RS : NewInst->getUses())
updateRAWDependencies(*RS, STI);
// Allocate new mappings.
SmallVector<unsigned, 4> RegisterFiles(RAT->getNumRegisterFiles());
for (std::unique_ptr<WriteState> &WS : NewInst->getDefs())
RAT->addRegisterMapping(*WS, RegisterFiles);
// Reserve slots in the RCU, and notify the instruction that it has been
// dispatched to the schedulers for execution.
NewInst->dispatch(RCU->reserveSlot(IID, NumMicroOps));
// Notify listeners of the "instruction dispatched" event.
notifyInstructionDispatched(IID, RegisterFiles);
// Now move the instruction into the scheduler's queue.
// The scheduler is responsible for checking if this is a zero-latency
// instruction that doesn't consume pipeline/scheduler resources.
SC->scheduleInstruction(IID, *NewInst);
}
#ifndef NDEBUG
void DispatchUnit::dump() const {
RAT->dump();
RCU->dump();
}
#endif
} // namespace mca