mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-02 00:42:52 +01:00
840a3d1b41
Un-XFAIL this now that its working. llvm-svn: 36100
104 lines
2.5 KiB
Plaintext
104 lines
2.5 KiB
Plaintext
; Test that we can evaluate the exit values of various expression types. Since
|
|
; these loops all have predictable exit values we can replace the use outside
|
|
; of the loop with a closed-form computation, making the loop dead.
|
|
;
|
|
; RUN: llvm-upgrade < %s | llvm-as | opt -indvars -adce -simplifycfg | \
|
|
; RUN: llvm-dis | not grep br
|
|
|
|
int %polynomial_constant() {
|
|
br label %Loop
|
|
Loop:
|
|
%A1 = phi int [0, %0], [%A2, %Loop]
|
|
%B1 = phi int [0, %0], [%B2, %Loop]
|
|
%A2 = add int %A1, 1
|
|
%B2 = add int %B1, %A1
|
|
|
|
%C = seteq int %A1, 1000
|
|
br bool %C, label %Out, label %Loop
|
|
Out:
|
|
ret int %B2
|
|
}
|
|
|
|
int %NSquare(int %N) {
|
|
br label %Loop
|
|
Loop:
|
|
%X = phi int [0, %0], [%X2, %Loop]
|
|
%X2 = add int %X, 1
|
|
%c = seteq int %X, %N
|
|
br bool %c, label %Out, label %Loop
|
|
Out:
|
|
%Y = mul int %X, %X
|
|
ret int %Y
|
|
}
|
|
|
|
int %NSquareOver2(int %N) {
|
|
br label %Loop
|
|
Loop:
|
|
%X = phi int [0, %0], [%X2, %Loop]
|
|
%Y = phi int [15, %0], [%Y2, %Loop] ;; include offset of 15 for yuks
|
|
|
|
%Y2 = add int %Y, %X
|
|
|
|
%X2 = add int %X, 1
|
|
%c = seteq int %X, %N
|
|
br bool %c, label %Out, label %Loop
|
|
Out:
|
|
ret int %Y2
|
|
}
|
|
|
|
int %strength_reduced() {
|
|
br label %Loop
|
|
Loop:
|
|
%A1 = phi int [0, %0], [%A2, %Loop]
|
|
%B1 = phi int [0, %0], [%B2, %Loop]
|
|
%A2 = add int %A1, 1
|
|
%B2 = add int %B1, %A1
|
|
|
|
%C = seteq int %A1, 1000
|
|
br bool %C, label %Out, label %Loop
|
|
Out:
|
|
ret int %B2
|
|
}
|
|
|
|
int %chrec_equals() {
|
|
entry:
|
|
br label %no_exit
|
|
no_exit:
|
|
%i0 = phi int [ 0, %entry ], [ %i1, %no_exit ]
|
|
%ISq = mul int %i0, %i0
|
|
%i1 = add int %i0, 1
|
|
%tmp.1 = setne int %ISq, 10000 ; while (I*I != 1000)
|
|
br bool %tmp.1, label %no_exit, label %loopexit
|
|
loopexit:
|
|
ret int %i1
|
|
}
|
|
|
|
;; We should recognize B1 as being a recurrence, allowing us to compute the
|
|
;; trip count and eliminate the loop.
|
|
short %cast_chrec_test() {
|
|
br label %Loop
|
|
Loop:
|
|
%A1 = phi int [0, %0], [%A2, %Loop]
|
|
%B1 = cast int %A1 to short
|
|
%A2 = add int %A1, 1
|
|
|
|
%C = seteq short %B1, 1000
|
|
br bool %C, label %Out, label %Loop
|
|
Out:
|
|
ret short %B1
|
|
}
|
|
|
|
uint %linear_div_fold() { ;; for (i = 4; i != 68; i += 8) (exit with i/2)
|
|
entry:
|
|
br label %loop
|
|
loop:
|
|
%i = phi uint [ 4, %entry ], [ %i.next, %loop ]
|
|
%i.next = add uint %i, 8
|
|
%RV = div uint %i, 2
|
|
%c = setne uint %i, 68
|
|
br bool %c, label %loop, label %loopexit
|
|
loopexit:
|
|
ret uint %RV
|
|
}
|
|
|