mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 03:33:20 +01:00
c9520d8dcf
This is directly defined in Instructions.h
1302 lines
48 KiB
C++
1302 lines
48 KiB
C++
//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the LoopInfo class that is used to identify natural loops
|
|
// and determine the loop depth of various nodes of the CFG. A natural loop
|
|
// has exactly one entry-point, which is called the header. Note that natural
|
|
// loops may actually be several loops that share the same header node.
|
|
//
|
|
// This analysis calculates the nesting structure of loops in a function. For
|
|
// each natural loop identified, this analysis identifies natural loops
|
|
// contained entirely within the loop and the basic blocks the make up the loop.
|
|
//
|
|
// It can calculate on the fly various bits of information, for example:
|
|
//
|
|
// * whether there is a preheader for the loop
|
|
// * the number of back edges to the header
|
|
// * whether or not a particular block branches out of the loop
|
|
// * the successor blocks of the loop
|
|
// * the loop depth
|
|
// * etc...
|
|
//
|
|
// Note that this analysis specifically identifies *Loops* not cycles or SCCs
|
|
// in the CFG. There can be strongly connected components in the CFG which
|
|
// this analysis will not recognize and that will not be represented by a Loop
|
|
// instance. In particular, a Loop might be inside such a non-loop SCC, or a
|
|
// non-loop SCC might contain a sub-SCC which is a Loop.
|
|
//
|
|
// For an overview of terminology used in this API (and thus all of our loop
|
|
// analyses or transforms), see docs/LoopTerminology.rst.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ANALYSIS_LOOPINFO_H
|
|
#define LLVM_ANALYSIS_LOOPINFO_H
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include <algorithm>
|
|
#include <utility>
|
|
|
|
namespace llvm {
|
|
|
|
class DominatorTree;
|
|
class LoopInfo;
|
|
class Loop;
|
|
class InductionDescriptor;
|
|
class MDNode;
|
|
class MemorySSAUpdater;
|
|
class ScalarEvolution;
|
|
class raw_ostream;
|
|
template <class N, bool IsPostDom> class DominatorTreeBase;
|
|
template <class N, class M> class LoopInfoBase;
|
|
template <class N, class M> class LoopBase;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// Instances of this class are used to represent loops that are detected in the
|
|
/// flow graph.
|
|
///
|
|
template <class BlockT, class LoopT> class LoopBase {
|
|
LoopT *ParentLoop;
|
|
// Loops contained entirely within this one.
|
|
std::vector<LoopT *> SubLoops;
|
|
|
|
// The list of blocks in this loop. First entry is the header node.
|
|
std::vector<BlockT *> Blocks;
|
|
|
|
SmallPtrSet<const BlockT *, 8> DenseBlockSet;
|
|
|
|
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
|
|
/// Indicator that this loop is no longer a valid loop.
|
|
bool IsInvalid = false;
|
|
#endif
|
|
|
|
LoopBase(const LoopBase<BlockT, LoopT> &) = delete;
|
|
const LoopBase<BlockT, LoopT> &
|
|
operator=(const LoopBase<BlockT, LoopT> &) = delete;
|
|
|
|
public:
|
|
/// Return the nesting level of this loop. An outer-most loop has depth 1,
|
|
/// for consistency with loop depth values used for basic blocks, where depth
|
|
/// 0 is used for blocks not inside any loops.
|
|
unsigned getLoopDepth() const {
|
|
assert(!isInvalid() && "Loop not in a valid state!");
|
|
unsigned D = 1;
|
|
for (const LoopT *CurLoop = ParentLoop; CurLoop;
|
|
CurLoop = CurLoop->ParentLoop)
|
|
++D;
|
|
return D;
|
|
}
|
|
BlockT *getHeader() const { return getBlocks().front(); }
|
|
/// Return the parent loop if it exists or nullptr for top
|
|
/// level loops.
|
|
|
|
/// A loop is either top-level in a function (that is, it is not
|
|
/// contained in any other loop) or it is entirely enclosed in
|
|
/// some other loop.
|
|
/// If a loop is top-level, it has no parent, otherwise its
|
|
/// parent is the innermost loop in which it is enclosed.
|
|
LoopT *getParentLoop() const { return ParentLoop; }
|
|
|
|
/// This is a raw interface for bypassing addChildLoop.
|
|
void setParentLoop(LoopT *L) {
|
|
assert(!isInvalid() && "Loop not in a valid state!");
|
|
ParentLoop = L;
|
|
}
|
|
|
|
/// Return true if the specified loop is contained within in this loop.
|
|
bool contains(const LoopT *L) const {
|
|
assert(!isInvalid() && "Loop not in a valid state!");
|
|
if (L == this)
|
|
return true;
|
|
if (!L)
|
|
return false;
|
|
return contains(L->getParentLoop());
|
|
}
|
|
|
|
/// Return true if the specified basic block is in this loop.
|
|
bool contains(const BlockT *BB) const {
|
|
assert(!isInvalid() && "Loop not in a valid state!");
|
|
return DenseBlockSet.count(BB);
|
|
}
|
|
|
|
/// Return true if the specified instruction is in this loop.
|
|
template <class InstT> bool contains(const InstT *Inst) const {
|
|
return contains(Inst->getParent());
|
|
}
|
|
|
|
/// Return the loops contained entirely within this loop.
|
|
const std::vector<LoopT *> &getSubLoops() const {
|
|
assert(!isInvalid() && "Loop not in a valid state!");
|
|
return SubLoops;
|
|
}
|
|
std::vector<LoopT *> &getSubLoopsVector() {
|
|
assert(!isInvalid() && "Loop not in a valid state!");
|
|
return SubLoops;
|
|
}
|
|
typedef typename std::vector<LoopT *>::const_iterator iterator;
|
|
typedef
|
|
typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
|
|
iterator begin() const { return getSubLoops().begin(); }
|
|
iterator end() const { return getSubLoops().end(); }
|
|
reverse_iterator rbegin() const { return getSubLoops().rbegin(); }
|
|
reverse_iterator rend() const { return getSubLoops().rend(); }
|
|
bool empty() const { return getSubLoops().empty(); }
|
|
|
|
/// Get a list of the basic blocks which make up this loop.
|
|
ArrayRef<BlockT *> getBlocks() const {
|
|
assert(!isInvalid() && "Loop not in a valid state!");
|
|
return Blocks;
|
|
}
|
|
typedef typename ArrayRef<BlockT *>::const_iterator block_iterator;
|
|
block_iterator block_begin() const { return getBlocks().begin(); }
|
|
block_iterator block_end() const { return getBlocks().end(); }
|
|
inline iterator_range<block_iterator> blocks() const {
|
|
assert(!isInvalid() && "Loop not in a valid state!");
|
|
return make_range(block_begin(), block_end());
|
|
}
|
|
|
|
/// Get the number of blocks in this loop in constant time.
|
|
/// Invalidate the loop, indicating that it is no longer a loop.
|
|
unsigned getNumBlocks() const {
|
|
assert(!isInvalid() && "Loop not in a valid state!");
|
|
return Blocks.size();
|
|
}
|
|
|
|
/// Return a direct, mutable handle to the blocks vector so that we can
|
|
/// mutate it efficiently with techniques like `std::remove`.
|
|
std::vector<BlockT *> &getBlocksVector() {
|
|
assert(!isInvalid() && "Loop not in a valid state!");
|
|
return Blocks;
|
|
}
|
|
/// Return a direct, mutable handle to the blocks set so that we can
|
|
/// mutate it efficiently.
|
|
SmallPtrSetImpl<const BlockT *> &getBlocksSet() {
|
|
assert(!isInvalid() && "Loop not in a valid state!");
|
|
return DenseBlockSet;
|
|
}
|
|
|
|
/// Return a direct, immutable handle to the blocks set.
|
|
const SmallPtrSetImpl<const BlockT *> &getBlocksSet() const {
|
|
assert(!isInvalid() && "Loop not in a valid state!");
|
|
return DenseBlockSet;
|
|
}
|
|
|
|
/// Return true if this loop is no longer valid. The only valid use of this
|
|
/// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to
|
|
/// true by the destructor. In other words, if this accessor returns true,
|
|
/// the caller has already triggered UB by calling this accessor; and so it
|
|
/// can only be called in a context where a return value of true indicates a
|
|
/// programmer error.
|
|
bool isInvalid() const {
|
|
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
|
|
return IsInvalid;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/// True if terminator in the block can branch to another block that is
|
|
/// outside of the current loop. \p BB must be inside the loop.
|
|
bool isLoopExiting(const BlockT *BB) const {
|
|
assert(!isInvalid() && "Loop not in a valid state!");
|
|
assert(contains(BB) && "Exiting block must be part of the loop");
|
|
for (const auto *Succ : children<const BlockT *>(BB)) {
|
|
if (!contains(Succ))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if \p BB is a loop-latch.
|
|
/// A latch block is a block that contains a branch back to the header.
|
|
/// This function is useful when there are multiple latches in a loop
|
|
/// because \fn getLoopLatch will return nullptr in that case.
|
|
bool isLoopLatch(const BlockT *BB) const {
|
|
assert(!isInvalid() && "Loop not in a valid state!");
|
|
assert(contains(BB) && "block does not belong to the loop");
|
|
|
|
BlockT *Header = getHeader();
|
|
auto PredBegin = GraphTraits<Inverse<BlockT *>>::child_begin(Header);
|
|
auto PredEnd = GraphTraits<Inverse<BlockT *>>::child_end(Header);
|
|
return std::find(PredBegin, PredEnd, BB) != PredEnd;
|
|
}
|
|
|
|
/// Calculate the number of back edges to the loop header.
|
|
unsigned getNumBackEdges() const {
|
|
assert(!isInvalid() && "Loop not in a valid state!");
|
|
unsigned NumBackEdges = 0;
|
|
BlockT *H = getHeader();
|
|
|
|
for (const auto Pred : children<Inverse<BlockT *>>(H))
|
|
if (contains(Pred))
|
|
++NumBackEdges;
|
|
|
|
return NumBackEdges;
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// APIs for simple analysis of the loop.
|
|
//
|
|
// Note that all of these methods can fail on general loops (ie, there may not
|
|
// be a preheader, etc). For best success, the loop simplification and
|
|
// induction variable canonicalization pass should be used to normalize loops
|
|
// for easy analysis. These methods assume canonical loops.
|
|
|
|
/// Return all blocks inside the loop that have successors outside of the
|
|
/// loop. These are the blocks _inside of the current loop_ which branch out.
|
|
/// The returned list is always unique.
|
|
void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
|
|
|
|
/// If getExitingBlocks would return exactly one block, return that block.
|
|
/// Otherwise return null.
|
|
BlockT *getExitingBlock() const;
|
|
|
|
/// Return all of the successor blocks of this loop. These are the blocks
|
|
/// _outside of the current loop_ which are branched to.
|
|
void getExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
|
|
|
|
/// If getExitBlocks would return exactly one block, return that block.
|
|
/// Otherwise return null.
|
|
BlockT *getExitBlock() const;
|
|
|
|
/// Return true if no exit block for the loop has a predecessor that is
|
|
/// outside the loop.
|
|
bool hasDedicatedExits() const;
|
|
|
|
/// Return all unique successor blocks of this loop.
|
|
/// These are the blocks _outside of the current loop_ which are branched to.
|
|
void getUniqueExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
|
|
|
|
/// Return all unique successor blocks of this loop except successors from
|
|
/// Latch block are not considered. If the exit comes from Latch has also
|
|
/// non Latch predecessor in a loop it will be added to ExitBlocks.
|
|
/// These are the blocks _outside of the current loop_ which are branched to.
|
|
void getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
|
|
|
|
/// If getUniqueExitBlocks would return exactly one block, return that block.
|
|
/// Otherwise return null.
|
|
BlockT *getUniqueExitBlock() const;
|
|
|
|
/// Edge type.
|
|
typedef std::pair<BlockT *, BlockT *> Edge;
|
|
|
|
/// Return all pairs of (_inside_block_,_outside_block_).
|
|
void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
|
|
|
|
/// If there is a preheader for this loop, return it. A loop has a preheader
|
|
/// if there is only one edge to the header of the loop from outside of the
|
|
/// loop. If this is the case, the block branching to the header of the loop
|
|
/// is the preheader node.
|
|
///
|
|
/// This method returns null if there is no preheader for the loop.
|
|
BlockT *getLoopPreheader() const;
|
|
|
|
/// If the given loop's header has exactly one unique predecessor outside the
|
|
/// loop, return it. Otherwise return null.
|
|
/// This is less strict that the loop "preheader" concept, which requires
|
|
/// the predecessor to have exactly one successor.
|
|
BlockT *getLoopPredecessor() const;
|
|
|
|
/// If there is a single latch block for this loop, return it.
|
|
/// A latch block is a block that contains a branch back to the header.
|
|
BlockT *getLoopLatch() const;
|
|
|
|
/// Return all loop latch blocks of this loop. A latch block is a block that
|
|
/// contains a branch back to the header.
|
|
void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const {
|
|
assert(!isInvalid() && "Loop not in a valid state!");
|
|
BlockT *H = getHeader();
|
|
for (const auto Pred : children<Inverse<BlockT *>>(H))
|
|
if (contains(Pred))
|
|
LoopLatches.push_back(Pred);
|
|
}
|
|
|
|
/// Return all inner loops in the loop nest rooted by the loop in preorder,
|
|
/// with siblings in forward program order.
|
|
template <class Type>
|
|
static void getInnerLoopsInPreorder(const LoopT &L,
|
|
SmallVectorImpl<Type> &PreOrderLoops) {
|
|
SmallVector<LoopT *, 4> PreOrderWorklist;
|
|
PreOrderWorklist.append(L.rbegin(), L.rend());
|
|
|
|
while (!PreOrderWorklist.empty()) {
|
|
LoopT *L = PreOrderWorklist.pop_back_val();
|
|
// Sub-loops are stored in forward program order, but will process the
|
|
// worklist backwards so append them in reverse order.
|
|
PreOrderWorklist.append(L->rbegin(), L->rend());
|
|
PreOrderLoops.push_back(L);
|
|
}
|
|
}
|
|
|
|
/// Return all loops in the loop nest rooted by the loop in preorder, with
|
|
/// siblings in forward program order.
|
|
SmallVector<const LoopT *, 4> getLoopsInPreorder() const {
|
|
SmallVector<const LoopT *, 4> PreOrderLoops;
|
|
const LoopT *CurLoop = static_cast<const LoopT *>(this);
|
|
PreOrderLoops.push_back(CurLoop);
|
|
getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
|
|
return PreOrderLoops;
|
|
}
|
|
SmallVector<LoopT *, 4> getLoopsInPreorder() {
|
|
SmallVector<LoopT *, 4> PreOrderLoops;
|
|
LoopT *CurLoop = static_cast<LoopT *>(this);
|
|
PreOrderLoops.push_back(CurLoop);
|
|
getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
|
|
return PreOrderLoops;
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// APIs for updating loop information after changing the CFG
|
|
//
|
|
|
|
/// This method is used by other analyses to update loop information.
|
|
/// NewBB is set to be a new member of the current loop.
|
|
/// Because of this, it is added as a member of all parent loops, and is added
|
|
/// to the specified LoopInfo object as being in the current basic block. It
|
|
/// is not valid to replace the loop header with this method.
|
|
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
|
|
|
|
/// This is used when splitting loops up. It replaces the OldChild entry in
|
|
/// our children list with NewChild, and updates the parent pointer of
|
|
/// OldChild to be null and the NewChild to be this loop.
|
|
/// This updates the loop depth of the new child.
|
|
void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
|
|
|
|
/// Add the specified loop to be a child of this loop.
|
|
/// This updates the loop depth of the new child.
|
|
void addChildLoop(LoopT *NewChild) {
|
|
assert(!isInvalid() && "Loop not in a valid state!");
|
|
assert(!NewChild->ParentLoop && "NewChild already has a parent!");
|
|
NewChild->ParentLoop = static_cast<LoopT *>(this);
|
|
SubLoops.push_back(NewChild);
|
|
}
|
|
|
|
/// This removes the specified child from being a subloop of this loop. The
|
|
/// loop is not deleted, as it will presumably be inserted into another loop.
|
|
LoopT *removeChildLoop(iterator I) {
|
|
assert(!isInvalid() && "Loop not in a valid state!");
|
|
assert(I != SubLoops.end() && "Cannot remove end iterator!");
|
|
LoopT *Child = *I;
|
|
assert(Child->ParentLoop == this && "Child is not a child of this loop!");
|
|
SubLoops.erase(SubLoops.begin() + (I - begin()));
|
|
Child->ParentLoop = nullptr;
|
|
return Child;
|
|
}
|
|
|
|
/// This removes the specified child from being a subloop of this loop. The
|
|
/// loop is not deleted, as it will presumably be inserted into another loop.
|
|
LoopT *removeChildLoop(LoopT *Child) {
|
|
return removeChildLoop(llvm::find(*this, Child));
|
|
}
|
|
|
|
/// This adds a basic block directly to the basic block list.
|
|
/// This should only be used by transformations that create new loops. Other
|
|
/// transformations should use addBasicBlockToLoop.
|
|
void addBlockEntry(BlockT *BB) {
|
|
assert(!isInvalid() && "Loop not in a valid state!");
|
|
Blocks.push_back(BB);
|
|
DenseBlockSet.insert(BB);
|
|
}
|
|
|
|
/// interface to reverse Blocks[from, end of loop] in this loop
|
|
void reverseBlock(unsigned from) {
|
|
assert(!isInvalid() && "Loop not in a valid state!");
|
|
std::reverse(Blocks.begin() + from, Blocks.end());
|
|
}
|
|
|
|
/// interface to do reserve() for Blocks
|
|
void reserveBlocks(unsigned size) {
|
|
assert(!isInvalid() && "Loop not in a valid state!");
|
|
Blocks.reserve(size);
|
|
}
|
|
|
|
/// This method is used to move BB (which must be part of this loop) to be the
|
|
/// loop header of the loop (the block that dominates all others).
|
|
void moveToHeader(BlockT *BB) {
|
|
assert(!isInvalid() && "Loop not in a valid state!");
|
|
if (Blocks[0] == BB)
|
|
return;
|
|
for (unsigned i = 0;; ++i) {
|
|
assert(i != Blocks.size() && "Loop does not contain BB!");
|
|
if (Blocks[i] == BB) {
|
|
Blocks[i] = Blocks[0];
|
|
Blocks[0] = BB;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// This removes the specified basic block from the current loop, updating the
|
|
/// Blocks as appropriate. This does not update the mapping in the LoopInfo
|
|
/// class.
|
|
void removeBlockFromLoop(BlockT *BB) {
|
|
assert(!isInvalid() && "Loop not in a valid state!");
|
|
auto I = find(Blocks, BB);
|
|
assert(I != Blocks.end() && "N is not in this list!");
|
|
Blocks.erase(I);
|
|
|
|
DenseBlockSet.erase(BB);
|
|
}
|
|
|
|
/// Verify loop structure
|
|
void verifyLoop() const;
|
|
|
|
/// Verify loop structure of this loop and all nested loops.
|
|
void verifyLoopNest(DenseSet<const LoopT *> *Loops) const;
|
|
|
|
/// Returns true if the loop is annotated parallel.
|
|
///
|
|
/// Derived classes can override this method using static template
|
|
/// polymorphism.
|
|
bool isAnnotatedParallel() const { return false; }
|
|
|
|
/// Print loop with all the BBs inside it.
|
|
void print(raw_ostream &OS, unsigned Depth = 0, bool Verbose = false) const;
|
|
|
|
protected:
|
|
friend class LoopInfoBase<BlockT, LoopT>;
|
|
|
|
/// This creates an empty loop.
|
|
LoopBase() : ParentLoop(nullptr) {}
|
|
|
|
explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) {
|
|
Blocks.push_back(BB);
|
|
DenseBlockSet.insert(BB);
|
|
}
|
|
|
|
// Since loop passes like SCEV are allowed to key analysis results off of
|
|
// `Loop` pointers, we cannot re-use pointers within a loop pass manager.
|
|
// This means loop passes should not be `delete` ing `Loop` objects directly
|
|
// (and risk a later `Loop` allocation re-using the address of a previous one)
|
|
// but should be using LoopInfo::markAsRemoved, which keeps around the `Loop`
|
|
// pointer till the end of the lifetime of the `LoopInfo` object.
|
|
//
|
|
// To make it easier to follow this rule, we mark the destructor as
|
|
// non-public.
|
|
~LoopBase() {
|
|
for (auto *SubLoop : SubLoops)
|
|
SubLoop->~LoopT();
|
|
|
|
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
|
|
IsInvalid = true;
|
|
#endif
|
|
SubLoops.clear();
|
|
Blocks.clear();
|
|
DenseBlockSet.clear();
|
|
ParentLoop = nullptr;
|
|
}
|
|
};
|
|
|
|
template <class BlockT, class LoopT>
|
|
raw_ostream &operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
|
|
Loop.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
// Implementation in LoopInfoImpl.h
|
|
extern template class LoopBase<BasicBlock, Loop>;
|
|
|
|
/// Represents a single loop in the control flow graph. Note that not all SCCs
|
|
/// in the CFG are necessarily loops.
|
|
class Loop : public LoopBase<BasicBlock, Loop> {
|
|
public:
|
|
/// A range representing the start and end location of a loop.
|
|
class LocRange {
|
|
DebugLoc Start;
|
|
DebugLoc End;
|
|
|
|
public:
|
|
LocRange() {}
|
|
LocRange(DebugLoc Start) : Start(Start), End(Start) {}
|
|
LocRange(DebugLoc Start, DebugLoc End)
|
|
: Start(std::move(Start)), End(std::move(End)) {}
|
|
|
|
const DebugLoc &getStart() const { return Start; }
|
|
const DebugLoc &getEnd() const { return End; }
|
|
|
|
/// Check for null.
|
|
///
|
|
explicit operator bool() const { return Start && End; }
|
|
};
|
|
|
|
/// Return true if the specified value is loop invariant.
|
|
bool isLoopInvariant(const Value *V) const;
|
|
|
|
/// Return true if all the operands of the specified instruction are loop
|
|
/// invariant.
|
|
bool hasLoopInvariantOperands(const Instruction *I) const;
|
|
|
|
/// If the given value is an instruction inside of the loop and it can be
|
|
/// hoisted, do so to make it trivially loop-invariant.
|
|
/// Return true if the value after any hoisting is loop invariant. This
|
|
/// function can be used as a slightly more aggressive replacement for
|
|
/// isLoopInvariant.
|
|
///
|
|
/// If InsertPt is specified, it is the point to hoist instructions to.
|
|
/// If null, the terminator of the loop preheader is used.
|
|
bool makeLoopInvariant(Value *V, bool &Changed,
|
|
Instruction *InsertPt = nullptr,
|
|
MemorySSAUpdater *MSSAU = nullptr) const;
|
|
|
|
/// If the given instruction is inside of the loop and it can be hoisted, do
|
|
/// so to make it trivially loop-invariant.
|
|
/// Return true if the instruction after any hoisting is loop invariant. This
|
|
/// function can be used as a slightly more aggressive replacement for
|
|
/// isLoopInvariant.
|
|
///
|
|
/// If InsertPt is specified, it is the point to hoist instructions to.
|
|
/// If null, the terminator of the loop preheader is used.
|
|
///
|
|
bool makeLoopInvariant(Instruction *I, bool &Changed,
|
|
Instruction *InsertPt = nullptr,
|
|
MemorySSAUpdater *MSSAU = nullptr) const;
|
|
|
|
/// Check to see if the loop has a canonical induction variable: an integer
|
|
/// recurrence that starts at 0 and increments by one each time through the
|
|
/// loop. If so, return the phi node that corresponds to it.
|
|
///
|
|
/// The IndVarSimplify pass transforms loops to have a canonical induction
|
|
/// variable.
|
|
///
|
|
PHINode *getCanonicalInductionVariable() const;
|
|
|
|
/// Obtain the unique incoming and back edge. Return false if they are
|
|
/// non-unique or the loop is dead; otherwise, return true.
|
|
bool getIncomingAndBackEdge(BasicBlock *&Incoming,
|
|
BasicBlock *&Backedge) const;
|
|
|
|
/// Below are some utilities to get the loop guard, loop bounds and induction
|
|
/// variable, and to check if a given phinode is an auxiliary induction
|
|
/// variable, if the loop is guarded, and if the loop is canonical.
|
|
///
|
|
/// Here is an example:
|
|
/// \code
|
|
/// for (int i = lb; i < ub; i+=step)
|
|
/// <loop body>
|
|
/// --- pseudo LLVMIR ---
|
|
/// beforeloop:
|
|
/// guardcmp = (lb < ub)
|
|
/// if (guardcmp) goto preheader; else goto afterloop
|
|
/// preheader:
|
|
/// loop:
|
|
/// i_1 = phi[{lb, preheader}, {i_2, latch}]
|
|
/// <loop body>
|
|
/// i_2 = i_1 + step
|
|
/// latch:
|
|
/// cmp = (i_2 < ub)
|
|
/// if (cmp) goto loop
|
|
/// exit:
|
|
/// afterloop:
|
|
/// \endcode
|
|
///
|
|
/// - getBounds
|
|
/// - getInitialIVValue --> lb
|
|
/// - getStepInst --> i_2 = i_1 + step
|
|
/// - getStepValue --> step
|
|
/// - getFinalIVValue --> ub
|
|
/// - getCanonicalPredicate --> '<'
|
|
/// - getDirection --> Increasing
|
|
///
|
|
/// - getInductionVariable --> i_1
|
|
/// - isAuxiliaryInductionVariable(x) --> true if x == i_1
|
|
/// - getLoopGuardBranch()
|
|
/// --> `if (guardcmp) goto preheader; else goto afterloop`
|
|
/// - isGuarded() --> true
|
|
/// - isCanonical --> false
|
|
struct LoopBounds {
|
|
/// Return the LoopBounds object if
|
|
/// - the given \p IndVar is an induction variable
|
|
/// - the initial value of the induction variable can be found
|
|
/// - the step instruction of the induction variable can be found
|
|
/// - the final value of the induction variable can be found
|
|
///
|
|
/// Else None.
|
|
static Optional<Loop::LoopBounds> getBounds(const Loop &L, PHINode &IndVar,
|
|
ScalarEvolution &SE);
|
|
|
|
/// Get the initial value of the loop induction variable.
|
|
Value &getInitialIVValue() const { return InitialIVValue; }
|
|
|
|
/// Get the instruction that updates the loop induction variable.
|
|
Instruction &getStepInst() const { return StepInst; }
|
|
|
|
/// Get the step that the loop induction variable gets updated by in each
|
|
/// loop iteration. Return nullptr if not found.
|
|
Value *getStepValue() const { return StepValue; }
|
|
|
|
/// Get the final value of the loop induction variable.
|
|
Value &getFinalIVValue() const { return FinalIVValue; }
|
|
|
|
/// Return the canonical predicate for the latch compare instruction, if
|
|
/// able to be calcuated. Else BAD_ICMP_PREDICATE.
|
|
///
|
|
/// A predicate is considered as canonical if requirements below are all
|
|
/// satisfied:
|
|
/// 1. The first successor of the latch branch is the loop header
|
|
/// If not, inverse the predicate.
|
|
/// 2. One of the operands of the latch comparison is StepInst
|
|
/// If not, and
|
|
/// - if the current calcuated predicate is not ne or eq, flip the
|
|
/// predicate.
|
|
/// - else if the loop is increasing, return slt
|
|
/// (notice that it is safe to change from ne or eq to sign compare)
|
|
/// - else if the loop is decreasing, return sgt
|
|
/// (notice that it is safe to change from ne or eq to sign compare)
|
|
///
|
|
/// Here is an example when both (1) and (2) are not satisfied:
|
|
/// \code
|
|
/// loop.header:
|
|
/// %iv = phi [%initialiv, %loop.preheader], [%inc, %loop.header]
|
|
/// %inc = add %iv, %step
|
|
/// %cmp = slt %iv, %finaliv
|
|
/// br %cmp, %loop.exit, %loop.header
|
|
/// loop.exit:
|
|
/// \endcode
|
|
/// - The second successor of the latch branch is the loop header instead
|
|
/// of the first successor (slt -> sge)
|
|
/// - The first operand of the latch comparison (%cmp) is the IndVar (%iv)
|
|
/// instead of the StepInst (%inc) (sge -> sgt)
|
|
///
|
|
/// The predicate would be sgt if both (1) and (2) are satisfied.
|
|
/// getCanonicalPredicate() returns sgt for this example.
|
|
/// Note: The IR is not changed.
|
|
ICmpInst::Predicate getCanonicalPredicate() const;
|
|
|
|
/// An enum for the direction of the loop
|
|
/// - for (int i = 0; i < ub; ++i) --> Increasing
|
|
/// - for (int i = ub; i > 0; --i) --> Descresing
|
|
/// - for (int i = x; i != y; i+=z) --> Unknown
|
|
enum class Direction { Increasing, Decreasing, Unknown };
|
|
|
|
/// Get the direction of the loop.
|
|
Direction getDirection() const;
|
|
|
|
private:
|
|
LoopBounds(const Loop &Loop, Value &I, Instruction &SI, Value *SV, Value &F,
|
|
ScalarEvolution &SE)
|
|
: L(Loop), InitialIVValue(I), StepInst(SI), StepValue(SV),
|
|
FinalIVValue(F), SE(SE) {}
|
|
|
|
const Loop &L;
|
|
|
|
// The initial value of the loop induction variable
|
|
Value &InitialIVValue;
|
|
|
|
// The instruction that updates the loop induction variable
|
|
Instruction &StepInst;
|
|
|
|
// The value that the loop induction variable gets updated by in each loop
|
|
// iteration
|
|
Value *StepValue;
|
|
|
|
// The final value of the loop induction variable
|
|
Value &FinalIVValue;
|
|
|
|
ScalarEvolution &SE;
|
|
};
|
|
|
|
/// Return the struct LoopBounds collected if all struct members are found,
|
|
/// else None.
|
|
Optional<LoopBounds> getBounds(ScalarEvolution &SE) const;
|
|
|
|
/// Return the loop induction variable if found, else return nullptr.
|
|
/// An instruction is considered as the loop induction variable if
|
|
/// - it is an induction variable of the loop; and
|
|
/// - it is used to determine the condition of the branch in the loop latch
|
|
///
|
|
/// Note: the induction variable doesn't need to be canonical, i.e. starts at
|
|
/// zero and increments by one each time through the loop (but it can be).
|
|
PHINode *getInductionVariable(ScalarEvolution &SE) const;
|
|
|
|
/// Get the loop induction descriptor for the loop induction variable. Return
|
|
/// true if the loop induction variable is found.
|
|
bool getInductionDescriptor(ScalarEvolution &SE,
|
|
InductionDescriptor &IndDesc) const;
|
|
|
|
/// Return true if the given PHINode \p AuxIndVar is
|
|
/// - in the loop header
|
|
/// - not used outside of the loop
|
|
/// - incremented by a loop invariant step for each loop iteration
|
|
/// - step instruction opcode should be add or sub
|
|
/// Note: auxiliary induction variable is not required to be used in the
|
|
/// conditional branch in the loop latch. (but it can be)
|
|
bool isAuxiliaryInductionVariable(PHINode &AuxIndVar,
|
|
ScalarEvolution &SE) const;
|
|
|
|
/// Return the loop guard branch, if it exists.
|
|
///
|
|
/// This currently only works on simplified loop, as it requires a preheader
|
|
/// and a latch to identify the guard. It will work on loops of the form:
|
|
/// \code
|
|
/// GuardBB:
|
|
/// br cond1, Preheader, ExitSucc <== GuardBranch
|
|
/// Preheader:
|
|
/// br Header
|
|
/// Header:
|
|
/// ...
|
|
/// br Latch
|
|
/// Latch:
|
|
/// br cond2, Header, ExitBlock
|
|
/// ExitBlock:
|
|
/// br ExitSucc
|
|
/// ExitSucc:
|
|
/// \endcode
|
|
BranchInst *getLoopGuardBranch() const;
|
|
|
|
/// Return true iff the loop is
|
|
/// - in simplify rotated form, and
|
|
/// - guarded by a loop guard branch.
|
|
bool isGuarded() const { return (getLoopGuardBranch() != nullptr); }
|
|
|
|
/// Return true if the loop is in rotated form.
|
|
///
|
|
/// This does not check if the loop was rotated by loop rotation, instead it
|
|
/// only checks if the loop is in rotated form (has a valid latch that exists
|
|
/// the loop).
|
|
bool isRotatedForm() const {
|
|
assert(!isInvalid() && "Loop not in a valid state!");
|
|
BasicBlock *Latch = getLoopLatch();
|
|
return Latch && isLoopExiting(Latch);
|
|
}
|
|
|
|
/// Return true if the loop induction variable starts at zero and increments
|
|
/// by one each time through the loop.
|
|
bool isCanonical(ScalarEvolution &SE) const;
|
|
|
|
/// Return true if the Loop is in LCSSA form.
|
|
bool isLCSSAForm(const DominatorTree &DT) const;
|
|
|
|
/// Return true if this Loop and all inner subloops are in LCSSA form.
|
|
bool isRecursivelyLCSSAForm(const DominatorTree &DT,
|
|
const LoopInfo &LI) const;
|
|
|
|
/// Return true if the Loop is in the form that the LoopSimplify form
|
|
/// transforms loops to, which is sometimes called normal form.
|
|
bool isLoopSimplifyForm() const;
|
|
|
|
/// Return true if the loop body is safe to clone in practice.
|
|
bool isSafeToClone() const;
|
|
|
|
/// Returns true if the loop is annotated parallel.
|
|
///
|
|
/// A parallel loop can be assumed to not contain any dependencies between
|
|
/// iterations by the compiler. That is, any loop-carried dependency checking
|
|
/// can be skipped completely when parallelizing the loop on the target
|
|
/// machine. Thus, if the parallel loop information originates from the
|
|
/// programmer, e.g. via the OpenMP parallel for pragma, it is the
|
|
/// programmer's responsibility to ensure there are no loop-carried
|
|
/// dependencies. The final execution order of the instructions across
|
|
/// iterations is not guaranteed, thus, the end result might or might not
|
|
/// implement actual concurrent execution of instructions across multiple
|
|
/// iterations.
|
|
bool isAnnotatedParallel() const;
|
|
|
|
/// Return the llvm.loop loop id metadata node for this loop if it is present.
|
|
///
|
|
/// If this loop contains the same llvm.loop metadata on each branch to the
|
|
/// header then the node is returned. If any latch instruction does not
|
|
/// contain llvm.loop or if multiple latches contain different nodes then
|
|
/// 0 is returned.
|
|
MDNode *getLoopID() const;
|
|
/// Set the llvm.loop loop id metadata for this loop.
|
|
///
|
|
/// The LoopID metadata node will be added to each terminator instruction in
|
|
/// the loop that branches to the loop header.
|
|
///
|
|
/// The LoopID metadata node should have one or more operands and the first
|
|
/// operand should be the node itself.
|
|
void setLoopID(MDNode *LoopID) const;
|
|
|
|
/// Add llvm.loop.unroll.disable to this loop's loop id metadata.
|
|
///
|
|
/// Remove existing unroll metadata and add unroll disable metadata to
|
|
/// indicate the loop has already been unrolled. This prevents a loop
|
|
/// from being unrolled more than is directed by a pragma if the loop
|
|
/// unrolling pass is run more than once (which it generally is).
|
|
void setLoopAlreadyUnrolled();
|
|
|
|
void dump() const;
|
|
void dumpVerbose() const;
|
|
|
|
/// Return the debug location of the start of this loop.
|
|
/// This looks for a BB terminating instruction with a known debug
|
|
/// location by looking at the preheader and header blocks. If it
|
|
/// cannot find a terminating instruction with location information,
|
|
/// it returns an unknown location.
|
|
DebugLoc getStartLoc() const;
|
|
|
|
/// Return the source code span of the loop.
|
|
LocRange getLocRange() const;
|
|
|
|
StringRef getName() const {
|
|
if (BasicBlock *Header = getHeader())
|
|
if (Header->hasName())
|
|
return Header->getName();
|
|
return "<unnamed loop>";
|
|
}
|
|
|
|
private:
|
|
Loop() = default;
|
|
|
|
friend class LoopInfoBase<BasicBlock, Loop>;
|
|
friend class LoopBase<BasicBlock, Loop>;
|
|
explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
|
|
~Loop() = default;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// This class builds and contains all of the top-level loop
|
|
/// structures in the specified function.
|
|
///
|
|
|
|
template <class BlockT, class LoopT> class LoopInfoBase {
|
|
// BBMap - Mapping of basic blocks to the inner most loop they occur in
|
|
DenseMap<const BlockT *, LoopT *> BBMap;
|
|
std::vector<LoopT *> TopLevelLoops;
|
|
BumpPtrAllocator LoopAllocator;
|
|
|
|
friend class LoopBase<BlockT, LoopT>;
|
|
friend class LoopInfo;
|
|
|
|
void operator=(const LoopInfoBase &) = delete;
|
|
LoopInfoBase(const LoopInfoBase &) = delete;
|
|
|
|
public:
|
|
LoopInfoBase() {}
|
|
~LoopInfoBase() { releaseMemory(); }
|
|
|
|
LoopInfoBase(LoopInfoBase &&Arg)
|
|
: BBMap(std::move(Arg.BBMap)),
|
|
TopLevelLoops(std::move(Arg.TopLevelLoops)),
|
|
LoopAllocator(std::move(Arg.LoopAllocator)) {
|
|
// We have to clear the arguments top level loops as we've taken ownership.
|
|
Arg.TopLevelLoops.clear();
|
|
}
|
|
LoopInfoBase &operator=(LoopInfoBase &&RHS) {
|
|
BBMap = std::move(RHS.BBMap);
|
|
|
|
for (auto *L : TopLevelLoops)
|
|
L->~LoopT();
|
|
|
|
TopLevelLoops = std::move(RHS.TopLevelLoops);
|
|
LoopAllocator = std::move(RHS.LoopAllocator);
|
|
RHS.TopLevelLoops.clear();
|
|
return *this;
|
|
}
|
|
|
|
void releaseMemory() {
|
|
BBMap.clear();
|
|
|
|
for (auto *L : TopLevelLoops)
|
|
L->~LoopT();
|
|
TopLevelLoops.clear();
|
|
LoopAllocator.Reset();
|
|
}
|
|
|
|
template <typename... ArgsTy> LoopT *AllocateLoop(ArgsTy &&... Args) {
|
|
LoopT *Storage = LoopAllocator.Allocate<LoopT>();
|
|
return new (Storage) LoopT(std::forward<ArgsTy>(Args)...);
|
|
}
|
|
|
|
/// iterator/begin/end - The interface to the top-level loops in the current
|
|
/// function.
|
|
///
|
|
typedef typename std::vector<LoopT *>::const_iterator iterator;
|
|
typedef
|
|
typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
|
|
iterator begin() const { return TopLevelLoops.begin(); }
|
|
iterator end() const { return TopLevelLoops.end(); }
|
|
reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
|
|
reverse_iterator rend() const { return TopLevelLoops.rend(); }
|
|
bool empty() const { return TopLevelLoops.empty(); }
|
|
|
|
/// Return all of the loops in the function in preorder across the loop
|
|
/// nests, with siblings in forward program order.
|
|
///
|
|
/// Note that because loops form a forest of trees, preorder is equivalent to
|
|
/// reverse postorder.
|
|
SmallVector<LoopT *, 4> getLoopsInPreorder();
|
|
|
|
/// Return all of the loops in the function in preorder across the loop
|
|
/// nests, with siblings in *reverse* program order.
|
|
///
|
|
/// Note that because loops form a forest of trees, preorder is equivalent to
|
|
/// reverse postorder.
|
|
///
|
|
/// Also note that this is *not* a reverse preorder. Only the siblings are in
|
|
/// reverse program order.
|
|
SmallVector<LoopT *, 4> getLoopsInReverseSiblingPreorder();
|
|
|
|
/// Return the inner most loop that BB lives in. If a basic block is in no
|
|
/// loop (for example the entry node), null is returned.
|
|
LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); }
|
|
|
|
/// Same as getLoopFor.
|
|
const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); }
|
|
|
|
/// Return the loop nesting level of the specified block. A depth of 0 means
|
|
/// the block is not inside any loop.
|
|
unsigned getLoopDepth(const BlockT *BB) const {
|
|
const LoopT *L = getLoopFor(BB);
|
|
return L ? L->getLoopDepth() : 0;
|
|
}
|
|
|
|
// True if the block is a loop header node
|
|
bool isLoopHeader(const BlockT *BB) const {
|
|
const LoopT *L = getLoopFor(BB);
|
|
return L && L->getHeader() == BB;
|
|
}
|
|
|
|
/// Return the top-level loops.
|
|
const std::vector<LoopT *> &getTopLevelLoops() const { return TopLevelLoops; }
|
|
|
|
/// Return the top-level loops.
|
|
std::vector<LoopT *> &getTopLevelLoopsVector() { return TopLevelLoops; }
|
|
|
|
/// This removes the specified top-level loop from this loop info object.
|
|
/// The loop is not deleted, as it will presumably be inserted into
|
|
/// another loop.
|
|
LoopT *removeLoop(iterator I) {
|
|
assert(I != end() && "Cannot remove end iterator!");
|
|
LoopT *L = *I;
|
|
assert(!L->getParentLoop() && "Not a top-level loop!");
|
|
TopLevelLoops.erase(TopLevelLoops.begin() + (I - begin()));
|
|
return L;
|
|
}
|
|
|
|
/// Change the top-level loop that contains BB to the specified loop.
|
|
/// This should be used by transformations that restructure the loop hierarchy
|
|
/// tree.
|
|
void changeLoopFor(BlockT *BB, LoopT *L) {
|
|
if (!L) {
|
|
BBMap.erase(BB);
|
|
return;
|
|
}
|
|
BBMap[BB] = L;
|
|
}
|
|
|
|
/// Replace the specified loop in the top-level loops list with the indicated
|
|
/// loop.
|
|
void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) {
|
|
auto I = find(TopLevelLoops, OldLoop);
|
|
assert(I != TopLevelLoops.end() && "Old loop not at top level!");
|
|
*I = NewLoop;
|
|
assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop &&
|
|
"Loops already embedded into a subloop!");
|
|
}
|
|
|
|
/// This adds the specified loop to the collection of top-level loops.
|
|
void addTopLevelLoop(LoopT *New) {
|
|
assert(!New->getParentLoop() && "Loop already in subloop!");
|
|
TopLevelLoops.push_back(New);
|
|
}
|
|
|
|
/// This method completely removes BB from all data structures,
|
|
/// including all of the Loop objects it is nested in and our mapping from
|
|
/// BasicBlocks to loops.
|
|
void removeBlock(BlockT *BB) {
|
|
auto I = BBMap.find(BB);
|
|
if (I != BBMap.end()) {
|
|
for (LoopT *L = I->second; L; L = L->getParentLoop())
|
|
L->removeBlockFromLoop(BB);
|
|
|
|
BBMap.erase(I);
|
|
}
|
|
}
|
|
|
|
// Internals
|
|
|
|
static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
|
|
const LoopT *ParentLoop) {
|
|
if (!SubLoop)
|
|
return true;
|
|
if (SubLoop == ParentLoop)
|
|
return false;
|
|
return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
|
|
}
|
|
|
|
/// Create the loop forest using a stable algorithm.
|
|
void analyze(const DominatorTreeBase<BlockT, false> &DomTree);
|
|
|
|
// Debugging
|
|
void print(raw_ostream &OS) const;
|
|
|
|
void verify(const DominatorTreeBase<BlockT, false> &DomTree) const;
|
|
|
|
/// Destroy a loop that has been removed from the `LoopInfo` nest.
|
|
///
|
|
/// This runs the destructor of the loop object making it invalid to
|
|
/// reference afterward. The memory is retained so that the *pointer* to the
|
|
/// loop remains valid.
|
|
///
|
|
/// The caller is responsible for removing this loop from the loop nest and
|
|
/// otherwise disconnecting it from the broader `LoopInfo` data structures.
|
|
/// Callers that don't naturally handle this themselves should probably call
|
|
/// `erase' instead.
|
|
void destroy(LoopT *L) {
|
|
L->~LoopT();
|
|
|
|
// Since LoopAllocator is a BumpPtrAllocator, this Deallocate only poisons
|
|
// \c L, but the pointer remains valid for non-dereferencing uses.
|
|
LoopAllocator.Deallocate(L);
|
|
}
|
|
};
|
|
|
|
// Implementation in LoopInfoImpl.h
|
|
extern template class LoopInfoBase<BasicBlock, Loop>;
|
|
|
|
class LoopInfo : public LoopInfoBase<BasicBlock, Loop> {
|
|
typedef LoopInfoBase<BasicBlock, Loop> BaseT;
|
|
|
|
friend class LoopBase<BasicBlock, Loop>;
|
|
|
|
void operator=(const LoopInfo &) = delete;
|
|
LoopInfo(const LoopInfo &) = delete;
|
|
|
|
public:
|
|
LoopInfo() {}
|
|
explicit LoopInfo(const DominatorTreeBase<BasicBlock, false> &DomTree);
|
|
|
|
LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {}
|
|
LoopInfo &operator=(LoopInfo &&RHS) {
|
|
BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
|
|
return *this;
|
|
}
|
|
|
|
/// Handle invalidation explicitly.
|
|
bool invalidate(Function &F, const PreservedAnalyses &PA,
|
|
FunctionAnalysisManager::Invalidator &);
|
|
|
|
// Most of the public interface is provided via LoopInfoBase.
|
|
|
|
/// Update LoopInfo after removing the last backedge from a loop. This updates
|
|
/// the loop forest and parent loops for each block so that \c L is no longer
|
|
/// referenced, but does not actually delete \c L immediately. The pointer
|
|
/// will remain valid until this LoopInfo's memory is released.
|
|
void erase(Loop *L);
|
|
|
|
/// Returns true if replacing From with To everywhere is guaranteed to
|
|
/// preserve LCSSA form.
|
|
bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
|
|
// Preserving LCSSA form is only problematic if the replacing value is an
|
|
// instruction.
|
|
Instruction *I = dyn_cast<Instruction>(To);
|
|
if (!I)
|
|
return true;
|
|
// If both instructions are defined in the same basic block then replacement
|
|
// cannot break LCSSA form.
|
|
if (I->getParent() == From->getParent())
|
|
return true;
|
|
// If the instruction is not defined in a loop then it can safely replace
|
|
// anything.
|
|
Loop *ToLoop = getLoopFor(I->getParent());
|
|
if (!ToLoop)
|
|
return true;
|
|
// If the replacing instruction is defined in the same loop as the original
|
|
// instruction, or in a loop that contains it as an inner loop, then using
|
|
// it as a replacement will not break LCSSA form.
|
|
return ToLoop->contains(getLoopFor(From->getParent()));
|
|
}
|
|
|
|
/// Checks if moving a specific instruction can break LCSSA in any loop.
|
|
///
|
|
/// Return true if moving \p Inst to before \p NewLoc will break LCSSA,
|
|
/// assuming that the function containing \p Inst and \p NewLoc is currently
|
|
/// in LCSSA form.
|
|
bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) {
|
|
assert(Inst->getFunction() == NewLoc->getFunction() &&
|
|
"Can't reason about IPO!");
|
|
|
|
auto *OldBB = Inst->getParent();
|
|
auto *NewBB = NewLoc->getParent();
|
|
|
|
// Movement within the same loop does not break LCSSA (the equality check is
|
|
// to avoid doing a hashtable lookup in case of intra-block movement).
|
|
if (OldBB == NewBB)
|
|
return true;
|
|
|
|
auto *OldLoop = getLoopFor(OldBB);
|
|
auto *NewLoop = getLoopFor(NewBB);
|
|
|
|
if (OldLoop == NewLoop)
|
|
return true;
|
|
|
|
// Check if Outer contains Inner; with the null loop counting as the
|
|
// "outermost" loop.
|
|
auto Contains = [](const Loop *Outer, const Loop *Inner) {
|
|
return !Outer || Outer->contains(Inner);
|
|
};
|
|
|
|
// To check that the movement of Inst to before NewLoc does not break LCSSA,
|
|
// we need to check two sets of uses for possible LCSSA violations at
|
|
// NewLoc: the users of NewInst, and the operands of NewInst.
|
|
|
|
// If we know we're hoisting Inst out of an inner loop to an outer loop,
|
|
// then the uses *of* Inst don't need to be checked.
|
|
|
|
if (!Contains(NewLoop, OldLoop)) {
|
|
for (Use &U : Inst->uses()) {
|
|
auto *UI = cast<Instruction>(U.getUser());
|
|
auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U)
|
|
: UI->getParent();
|
|
if (UBB != NewBB && getLoopFor(UBB) != NewLoop)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If we know we're sinking Inst from an outer loop into an inner loop, then
|
|
// the *operands* of Inst don't need to be checked.
|
|
|
|
if (!Contains(OldLoop, NewLoop)) {
|
|
// See below on why we can't handle phi nodes here.
|
|
if (isa<PHINode>(Inst))
|
|
return false;
|
|
|
|
for (Use &U : Inst->operands()) {
|
|
auto *DefI = dyn_cast<Instruction>(U.get());
|
|
if (!DefI)
|
|
return false;
|
|
|
|
// This would need adjustment if we allow Inst to be a phi node -- the
|
|
// new use block won't simply be NewBB.
|
|
|
|
auto *DefBlock = DefI->getParent();
|
|
if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
// Allow clients to walk the list of nested loops...
|
|
template <> struct GraphTraits<const Loop *> {
|
|
typedef const Loop *NodeRef;
|
|
typedef LoopInfo::iterator ChildIteratorType;
|
|
|
|
static NodeRef getEntryNode(const Loop *L) { return L; }
|
|
static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
|
|
static ChildIteratorType child_end(NodeRef N) { return N->end(); }
|
|
};
|
|
|
|
template <> struct GraphTraits<Loop *> {
|
|
typedef Loop *NodeRef;
|
|
typedef LoopInfo::iterator ChildIteratorType;
|
|
|
|
static NodeRef getEntryNode(Loop *L) { return L; }
|
|
static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
|
|
static ChildIteratorType child_end(NodeRef N) { return N->end(); }
|
|
};
|
|
|
|
/// Analysis pass that exposes the \c LoopInfo for a function.
|
|
class LoopAnalysis : public AnalysisInfoMixin<LoopAnalysis> {
|
|
friend AnalysisInfoMixin<LoopAnalysis>;
|
|
static AnalysisKey Key;
|
|
|
|
public:
|
|
typedef LoopInfo Result;
|
|
|
|
LoopInfo run(Function &F, FunctionAnalysisManager &AM);
|
|
};
|
|
|
|
/// Printer pass for the \c LoopAnalysis results.
|
|
class LoopPrinterPass : public PassInfoMixin<LoopPrinterPass> {
|
|
raw_ostream &OS;
|
|
|
|
public:
|
|
explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {}
|
|
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
|
|
};
|
|
|
|
/// Verifier pass for the \c LoopAnalysis results.
|
|
struct LoopVerifierPass : public PassInfoMixin<LoopVerifierPass> {
|
|
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
|
|
};
|
|
|
|
/// The legacy pass manager's analysis pass to compute loop information.
|
|
class LoopInfoWrapperPass : public FunctionPass {
|
|
LoopInfo LI;
|
|
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
|
|
LoopInfoWrapperPass();
|
|
|
|
LoopInfo &getLoopInfo() { return LI; }
|
|
const LoopInfo &getLoopInfo() const { return LI; }
|
|
|
|
/// Calculate the natural loop information for a given function.
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
void verifyAnalysis() const override;
|
|
|
|
void releaseMemory() override { LI.releaseMemory(); }
|
|
|
|
void print(raw_ostream &O, const Module *M = nullptr) const override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
};
|
|
|
|
/// Function to print a loop's contents as LLVM's text IR assembly.
|
|
void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner = "");
|
|
|
|
/// Find and return the loop attribute node for the attribute @p Name in
|
|
/// @p LoopID. Return nullptr if there is no such attribute.
|
|
MDNode *findOptionMDForLoopID(MDNode *LoopID, StringRef Name);
|
|
|
|
/// Find string metadata for a loop.
|
|
///
|
|
/// Returns the MDNode where the first operand is the metadata's name. The
|
|
/// following operands are the metadata's values. If no metadata with @p Name is
|
|
/// found, return nullptr.
|
|
MDNode *findOptionMDForLoop(const Loop *TheLoop, StringRef Name);
|
|
|
|
/// Return whether an MDNode might represent an access group.
|
|
///
|
|
/// Access group metadata nodes have to be distinct and empty. Being
|
|
/// always-empty ensures that it never needs to be changed (which -- because
|
|
/// MDNodes are designed immutable -- would require creating a new MDNode). Note
|
|
/// that this is not a sufficient condition: not every distinct and empty NDNode
|
|
/// is representing an access group.
|
|
bool isValidAsAccessGroup(MDNode *AccGroup);
|
|
|
|
/// Create a new LoopID after the loop has been transformed.
|
|
///
|
|
/// This can be used when no follow-up loop attributes are defined
|
|
/// (llvm::makeFollowupLoopID returning None) to stop transformations to be
|
|
/// applied again.
|
|
///
|
|
/// @param Context The LLVMContext in which to create the new LoopID.
|
|
/// @param OrigLoopID The original LoopID; can be nullptr if the original
|
|
/// loop has no LoopID.
|
|
/// @param RemovePrefixes Remove all loop attributes that have these prefixes.
|
|
/// Use to remove metadata of the transformation that has
|
|
/// been applied.
|
|
/// @param AddAttrs Add these loop attributes to the new LoopID.
|
|
///
|
|
/// @return A new LoopID that can be applied using Loop::setLoopID().
|
|
llvm::MDNode *
|
|
makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID,
|
|
llvm::ArrayRef<llvm::StringRef> RemovePrefixes,
|
|
llvm::ArrayRef<llvm::MDNode *> AddAttrs);
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|