1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00
llvm-mirror/lib/Target/PowerPC/PPCBranchCoalescing.cpp
James Y Knight af0734bc33 Change the INLINEASM_BR MachineInstr to be a non-terminating instruction.
Before this instruction supported output values, it fit fairly
naturally as a terminator. However, being a terminator while also
supporting outputs causes some trouble, as the physreg->vreg COPY
operations cannot be in the same block.

Modeling it as a non-terminator allows it to be handled the same way
as invoke is handled already.

Most of the changes here were created by auditing all the existing
users of MachineBasicBlock::isEHPad() and
MachineBasicBlock::hasEHPadSuccessor(), and adding calls to
isInlineAsmBrIndirectTarget or mayHaveInlineAsmBr, as appropriate.

Reviewed By: nickdesaulniers, void

Differential Revision: https://reviews.llvm.org/D79794
2020-07-01 12:51:50 -04:00

794 lines
30 KiB
C++

//===-- CoalesceBranches.cpp - Coalesce blocks with the same condition ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Coalesce basic blocks guarded by the same branch condition into a single
/// basic block.
///
//===----------------------------------------------------------------------===//
#include "PPC.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "ppc-branch-coalescing"
STATISTIC(NumBlocksCoalesced, "Number of blocks coalesced");
STATISTIC(NumPHINotMoved, "Number of PHI Nodes that cannot be merged");
STATISTIC(NumBlocksNotCoalesced, "Number of blocks not coalesced");
//===----------------------------------------------------------------------===//
// PPCBranchCoalescing
//===----------------------------------------------------------------------===//
///
/// Improve scheduling by coalescing branches that depend on the same condition.
/// This pass looks for blocks that are guarded by the same branch condition
/// and attempts to merge the blocks together. Such opportunities arise from
/// the expansion of select statements in the IR.
///
/// This pass does not handle implicit operands on branch statements. In order
/// to run on targets that use implicit operands, changes need to be made in the
/// canCoalesceBranch and canMerge methods.
///
/// Example: the following LLVM IR
///
/// %test = icmp eq i32 %x 0
/// %tmp1 = select i1 %test, double %a, double 2.000000e-03
/// %tmp2 = select i1 %test, double %b, double 5.000000e-03
///
/// expands to the following machine code:
///
/// %bb.0: derived from LLVM BB %entry
/// liveins: %f1 %f3 %x6
/// <SNIP1>
/// %0 = COPY %f1; F8RC:%0
/// %5 = CMPLWI killed %4, 0; CRRC:%5 GPRC:%4
/// %8 = LXSDX %zero8, killed %7, implicit %rm;
/// mem:LD8[ConstantPool] F8RC:%8 G8RC:%7
/// BCC 76, %5, <%bb.2>; CRRC:%5
/// Successors according to CFG: %bb.1(?%) %bb.2(?%)
///
/// %bb.1: derived from LLVM BB %entry
/// Predecessors according to CFG: %bb.0
/// Successors according to CFG: %bb.2(?%)
///
/// %bb.2: derived from LLVM BB %entry
/// Predecessors according to CFG: %bb.0 %bb.1
/// %9 = PHI %8, <%bb.1>, %0, <%bb.0>;
/// F8RC:%9,%8,%0
/// <SNIP2>
/// BCC 76, %5, <%bb.4>; CRRC:%5
/// Successors according to CFG: %bb.3(?%) %bb.4(?%)
///
/// %bb.3: derived from LLVM BB %entry
/// Predecessors according to CFG: %bb.2
/// Successors according to CFG: %bb.4(?%)
///
/// %bb.4: derived from LLVM BB %entry
/// Predecessors according to CFG: %bb.2 %bb.3
/// %13 = PHI %12, <%bb.3>, %2, <%bb.2>;
/// F8RC:%13,%12,%2
/// <SNIP3>
/// BLR8 implicit %lr8, implicit %rm, implicit %f1
///
/// When this pattern is detected, branch coalescing will try to collapse
/// it by moving code in %bb.2 to %bb.0 and/or %bb.4 and removing %bb.3.
///
/// If all conditions are meet, IR should collapse to:
///
/// %bb.0: derived from LLVM BB %entry
/// liveins: %f1 %f3 %x6
/// <SNIP1>
/// %0 = COPY %f1; F8RC:%0
/// %5 = CMPLWI killed %4, 0; CRRC:%5 GPRC:%4
/// %8 = LXSDX %zero8, killed %7, implicit %rm;
/// mem:LD8[ConstantPool] F8RC:%8 G8RC:%7
/// <SNIP2>
/// BCC 76, %5, <%bb.4>; CRRC:%5
/// Successors according to CFG: %bb.1(0x2aaaaaaa / 0x80000000 = 33.33%)
/// %bb.4(0x55555554 / 0x80000000 = 66.67%)
///
/// %bb.1: derived from LLVM BB %entry
/// Predecessors according to CFG: %bb.0
/// Successors according to CFG: %bb.4(0x40000000 / 0x80000000 = 50.00%)
///
/// %bb.4: derived from LLVM BB %entry
/// Predecessors according to CFG: %bb.0 %bb.1
/// %9 = PHI %8, <%bb.1>, %0, <%bb.0>;
/// F8RC:%9,%8,%0
/// %13 = PHI %12, <%bb.1>, %2, <%bb.0>;
/// F8RC:%13,%12,%2
/// <SNIP3>
/// BLR8 implicit %lr8, implicit %rm, implicit %f1
///
/// Branch Coalescing does not split blocks, it moves everything in the same
/// direction ensuring it does not break use/definition semantics.
///
/// PHI nodes and its corresponding use instructions are moved to its successor
/// block if there are no uses within the successor block PHI nodes. PHI
/// node ordering cannot be assumed.
///
/// Non-PHI can be moved up to the predecessor basic block or down to the
/// successor basic block following any PHI instructions. Whether it moves
/// up or down depends on whether the register(s) defined in the instructions
/// are used in current block or in any PHI instructions at the beginning of
/// the successor block.
namespace {
class PPCBranchCoalescing : public MachineFunctionPass {
struct CoalescingCandidateInfo {
MachineBasicBlock *BranchBlock; // Block containing the branch
MachineBasicBlock *BranchTargetBlock; // Block branched to
MachineBasicBlock *FallThroughBlock; // Fall-through if branch not taken
SmallVector<MachineOperand, 4> Cond;
bool MustMoveDown;
bool MustMoveUp;
CoalescingCandidateInfo();
void clear();
};
MachineDominatorTree *MDT;
MachinePostDominatorTree *MPDT;
const TargetInstrInfo *TII;
MachineRegisterInfo *MRI;
void initialize(MachineFunction &F);
bool canCoalesceBranch(CoalescingCandidateInfo &Cand);
bool identicalOperands(ArrayRef<MachineOperand> OperandList1,
ArrayRef<MachineOperand> OperandList2) const;
bool validateCandidates(CoalescingCandidateInfo &SourceRegion,
CoalescingCandidateInfo &TargetRegion) const;
public:
static char ID;
PPCBranchCoalescing() : MachineFunctionPass(ID) {
initializePPCBranchCoalescingPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineDominatorTree>();
AU.addRequired<MachinePostDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
StringRef getPassName() const override { return "Branch Coalescing"; }
bool mergeCandidates(CoalescingCandidateInfo &SourceRegion,
CoalescingCandidateInfo &TargetRegion);
bool canMoveToBeginning(const MachineInstr &MI,
const MachineBasicBlock &MBB) const;
bool canMoveToEnd(const MachineInstr &MI,
const MachineBasicBlock &MBB) const;
bool canMerge(CoalescingCandidateInfo &SourceRegion,
CoalescingCandidateInfo &TargetRegion) const;
void moveAndUpdatePHIs(MachineBasicBlock *SourceRegionMBB,
MachineBasicBlock *TargetRegionMBB);
bool runOnMachineFunction(MachineFunction &MF) override;
};
} // End anonymous namespace.
char PPCBranchCoalescing::ID = 0;
/// createPPCBranchCoalescingPass - returns an instance of the Branch Coalescing
/// Pass
FunctionPass *llvm::createPPCBranchCoalescingPass() {
return new PPCBranchCoalescing();
}
INITIALIZE_PASS_BEGIN(PPCBranchCoalescing, DEBUG_TYPE,
"Branch Coalescing", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
INITIALIZE_PASS_END(PPCBranchCoalescing, DEBUG_TYPE, "Branch Coalescing",
false, false)
PPCBranchCoalescing::CoalescingCandidateInfo::CoalescingCandidateInfo()
: BranchBlock(nullptr), BranchTargetBlock(nullptr),
FallThroughBlock(nullptr), MustMoveDown(false), MustMoveUp(false) {}
void PPCBranchCoalescing::CoalescingCandidateInfo::clear() {
BranchBlock = nullptr;
BranchTargetBlock = nullptr;
FallThroughBlock = nullptr;
Cond.clear();
MustMoveDown = false;
MustMoveUp = false;
}
void PPCBranchCoalescing::initialize(MachineFunction &MF) {
MDT = &getAnalysis<MachineDominatorTree>();
MPDT = &getAnalysis<MachinePostDominatorTree>();
TII = MF.getSubtarget().getInstrInfo();
MRI = &MF.getRegInfo();
}
///
/// Analyze the branch statement to determine if it can be coalesced. This
/// method analyses the branch statement for the given candidate to determine
/// if it can be coalesced. If the branch can be coalesced, then the
/// BranchTargetBlock and the FallThroughBlock are recorded in the specified
/// Candidate.
///
///\param[in,out] Cand The coalescing candidate to analyze
///\return true if and only if the branch can be coalesced, false otherwise
///
bool PPCBranchCoalescing::canCoalesceBranch(CoalescingCandidateInfo &Cand) {
LLVM_DEBUG(dbgs() << "Determine if branch block "
<< Cand.BranchBlock->getNumber() << " can be coalesced:");
MachineBasicBlock *FalseMBB = nullptr;
if (TII->analyzeBranch(*Cand.BranchBlock, Cand.BranchTargetBlock, FalseMBB,
Cand.Cond)) {
LLVM_DEBUG(dbgs() << "TII unable to Analyze Branch - skip\n");
return false;
}
for (auto &I : Cand.BranchBlock->terminators()) {
LLVM_DEBUG(dbgs() << "Looking at terminator : " << I << "\n");
if (!I.isBranch())
continue;
// The analyzeBranch method does not include any implicit operands.
// This is not an issue on PPC but must be handled on other targets.
// For this pass to be made target-independent, the analyzeBranch API
// need to be updated to support implicit operands and there would
// need to be a way to verify that any implicit operands would not be
// clobbered by merging blocks. This would include identifying the
// implicit operands as well as the basic block they are defined in.
// This could be done by changing the analyzeBranch API to have it also
// record and return the implicit operands and the blocks where they are
// defined. Alternatively, the BranchCoalescing code would need to be
// extended to identify the implicit operands. The analysis in canMerge
// must then be extended to prove that none of the implicit operands are
// changed in the blocks that are combined during coalescing.
if (I.getNumOperands() != I.getNumExplicitOperands()) {
LLVM_DEBUG(dbgs() << "Terminator contains implicit operands - skip : "
<< I << "\n");
return false;
}
}
if (Cand.BranchBlock->isEHPad() || Cand.BranchBlock->hasEHPadSuccessor()) {
LLVM_DEBUG(dbgs() << "EH Pad - skip\n");
return false;
}
if (Cand.BranchBlock->mayHaveInlineAsmBr()) {
LLVM_DEBUG(dbgs() << "Inline Asm Br - skip\n");
return false;
}
// For now only consider triangles (i.e, BranchTargetBlock is set,
// FalseMBB is null, and BranchTargetBlock is a successor to BranchBlock)
if (!Cand.BranchTargetBlock || FalseMBB ||
!Cand.BranchBlock->isSuccessor(Cand.BranchTargetBlock)) {
LLVM_DEBUG(dbgs() << "Does not form a triangle - skip\n");
return false;
}
// Ensure there are only two successors
if (Cand.BranchBlock->succ_size() != 2) {
LLVM_DEBUG(dbgs() << "Does not have 2 successors - skip\n");
return false;
}
// Sanity check - the block must be able to fall through
assert(Cand.BranchBlock->canFallThrough() &&
"Expecting the block to fall through!");
// We have already ensured there are exactly two successors to
// BranchBlock and that BranchTargetBlock is a successor to BranchBlock.
// Ensure the single fall though block is empty.
MachineBasicBlock *Succ =
(*Cand.BranchBlock->succ_begin() == Cand.BranchTargetBlock)
? *Cand.BranchBlock->succ_rbegin()
: *Cand.BranchBlock->succ_begin();
assert(Succ && "Expecting a valid fall-through block\n");
if (!Succ->empty()) {
LLVM_DEBUG(dbgs() << "Fall-through block contains code -- skip\n");
return false;
}
if (!Succ->isSuccessor(Cand.BranchTargetBlock)) {
LLVM_DEBUG(
dbgs()
<< "Successor of fall through block is not branch taken block\n");
return false;
}
Cand.FallThroughBlock = Succ;
LLVM_DEBUG(dbgs() << "Valid Candidate\n");
return true;
}
///
/// Determine if the two operand lists are identical
///
/// \param[in] OpList1 operand list
/// \param[in] OpList2 operand list
/// \return true if and only if the operands lists are identical
///
bool PPCBranchCoalescing::identicalOperands(
ArrayRef<MachineOperand> OpList1, ArrayRef<MachineOperand> OpList2) const {
if (OpList1.size() != OpList2.size()) {
LLVM_DEBUG(dbgs() << "Operand list is different size\n");
return false;
}
for (unsigned i = 0; i < OpList1.size(); ++i) {
const MachineOperand &Op1 = OpList1[i];
const MachineOperand &Op2 = OpList2[i];
LLVM_DEBUG(dbgs() << "Op1: " << Op1 << "\n"
<< "Op2: " << Op2 << "\n");
if (Op1.isIdenticalTo(Op2)) {
// filter out instructions with physical-register uses
if (Op1.isReg() &&
Register::isPhysicalRegister(Op1.getReg())
// If the physical register is constant then we can assume the value
// has not changed between uses.
&& !(Op1.isUse() && MRI->isConstantPhysReg(Op1.getReg()))) {
LLVM_DEBUG(dbgs() << "The operands are not provably identical.\n");
return false;
}
LLVM_DEBUG(dbgs() << "Op1 and Op2 are identical!\n");
continue;
}
// If the operands are not identical, but are registers, check to see if the
// definition of the register produces the same value. If they produce the
// same value, consider them to be identical.
if (Op1.isReg() && Op2.isReg() &&
Register::isVirtualRegister(Op1.getReg()) &&
Register::isVirtualRegister(Op2.getReg())) {
MachineInstr *Op1Def = MRI->getVRegDef(Op1.getReg());
MachineInstr *Op2Def = MRI->getVRegDef(Op2.getReg());
if (TII->produceSameValue(*Op1Def, *Op2Def, MRI)) {
LLVM_DEBUG(dbgs() << "Op1Def: " << *Op1Def << " and " << *Op2Def
<< " produce the same value!\n");
} else {
LLVM_DEBUG(dbgs() << "Operands produce different values\n");
return false;
}
} else {
LLVM_DEBUG(dbgs() << "The operands are not provably identical.\n");
return false;
}
}
return true;
}
///
/// Moves ALL PHI instructions in SourceMBB to beginning of TargetMBB
/// and update them to refer to the new block. PHI node ordering
/// cannot be assumed so it does not matter where the PHI instructions
/// are moved to in TargetMBB.
///
/// \param[in] SourceMBB block to move PHI instructions from
/// \param[in] TargetMBB block to move PHI instructions to
///
void PPCBranchCoalescing::moveAndUpdatePHIs(MachineBasicBlock *SourceMBB,
MachineBasicBlock *TargetMBB) {
MachineBasicBlock::iterator MI = SourceMBB->begin();
MachineBasicBlock::iterator ME = SourceMBB->getFirstNonPHI();
if (MI == ME) {
LLVM_DEBUG(dbgs() << "SourceMBB contains no PHI instructions.\n");
return;
}
// Update all PHI instructions in SourceMBB and move to top of TargetMBB
for (MachineBasicBlock::iterator Iter = MI; Iter != ME; Iter++) {
MachineInstr &PHIInst = *Iter;
for (unsigned i = 2, e = PHIInst.getNumOperands() + 1; i != e; i += 2) {
MachineOperand &MO = PHIInst.getOperand(i);
if (MO.getMBB() == SourceMBB)
MO.setMBB(TargetMBB);
}
}
TargetMBB->splice(TargetMBB->begin(), SourceMBB, MI, ME);
}
///
/// This function checks if MI can be moved to the beginning of the TargetMBB
/// following PHI instructions. A MI instruction can be moved to beginning of
/// the TargetMBB if there are no uses of it within the TargetMBB PHI nodes.
///
/// \param[in] MI the machine instruction to move.
/// \param[in] TargetMBB the machine basic block to move to
/// \return true if it is safe to move MI to beginning of TargetMBB,
/// false otherwise.
///
bool PPCBranchCoalescing::canMoveToBeginning(const MachineInstr &MI,
const MachineBasicBlock &TargetMBB
) const {
LLVM_DEBUG(dbgs() << "Checking if " << MI << " can move to beginning of "
<< TargetMBB.getNumber() << "\n");
for (auto &Def : MI.defs()) { // Looking at Def
for (auto &Use : MRI->use_instructions(Def.getReg())) {
if (Use.isPHI() && Use.getParent() == &TargetMBB) {
LLVM_DEBUG(dbgs() << " *** used in a PHI -- cannot move ***\n");
return false;
}
}
}
LLVM_DEBUG(dbgs() << " Safe to move to the beginning.\n");
return true;
}
///
/// This function checks if MI can be moved to the end of the TargetMBB,
/// immediately before the first terminator. A MI instruction can be moved
/// to then end of the TargetMBB if no PHI node defines what MI uses within
/// it's own MBB.
///
/// \param[in] MI the machine instruction to move.
/// \param[in] TargetMBB the machine basic block to move to
/// \return true if it is safe to move MI to end of TargetMBB,
/// false otherwise.
///
bool PPCBranchCoalescing::canMoveToEnd(const MachineInstr &MI,
const MachineBasicBlock &TargetMBB
) const {
LLVM_DEBUG(dbgs() << "Checking if " << MI << " can move to end of "
<< TargetMBB.getNumber() << "\n");
for (auto &Use : MI.uses()) {
if (Use.isReg() && Register::isVirtualRegister(Use.getReg())) {
MachineInstr *DefInst = MRI->getVRegDef(Use.getReg());
if (DefInst->isPHI() && DefInst->getParent() == MI.getParent()) {
LLVM_DEBUG(dbgs() << " *** Cannot move this instruction ***\n");
return false;
} else {
LLVM_DEBUG(
dbgs() << " *** def is in another block -- safe to move!\n");
}
}
}
LLVM_DEBUG(dbgs() << " Safe to move to the end.\n");
return true;
}
///
/// This method checks to ensure the two coalescing candidates follows the
/// expected pattern required for coalescing.
///
/// \param[in] SourceRegion The candidate to move statements from
/// \param[in] TargetRegion The candidate to move statements to
/// \return true if all instructions in SourceRegion.BranchBlock can be merged
/// into a block in TargetRegion; false otherwise.
///
bool PPCBranchCoalescing::validateCandidates(
CoalescingCandidateInfo &SourceRegion,
CoalescingCandidateInfo &TargetRegion) const {
if (TargetRegion.BranchTargetBlock != SourceRegion.BranchBlock)
llvm_unreachable("Expecting SourceRegion to immediately follow TargetRegion");
else if (!MDT->dominates(TargetRegion.BranchBlock, SourceRegion.BranchBlock))
llvm_unreachable("Expecting TargetRegion to dominate SourceRegion");
else if (!MPDT->dominates(SourceRegion.BranchBlock, TargetRegion.BranchBlock))
llvm_unreachable("Expecting SourceRegion to post-dominate TargetRegion");
else if (!TargetRegion.FallThroughBlock->empty() ||
!SourceRegion.FallThroughBlock->empty())
llvm_unreachable("Expecting fall-through blocks to be empty");
return true;
}
///
/// This method determines whether the two coalescing candidates can be merged.
/// In order to be merged, all instructions must be able to
/// 1. Move to the beginning of the SourceRegion.BranchTargetBlock;
/// 2. Move to the end of the TargetRegion.BranchBlock.
/// Merging involves moving the instructions in the
/// TargetRegion.BranchTargetBlock (also SourceRegion.BranchBlock).
///
/// This function first try to move instructions from the
/// TargetRegion.BranchTargetBlock down, to the beginning of the
/// SourceRegion.BranchTargetBlock. This is not possible if any register defined
/// in TargetRegion.BranchTargetBlock is used in a PHI node in the
/// SourceRegion.BranchTargetBlock. In this case, check whether the statement
/// can be moved up, to the end of the TargetRegion.BranchBlock (immediately
/// before the branch statement). If it cannot move, then these blocks cannot
/// be merged.
///
/// Note that there is no analysis for moving instructions past the fall-through
/// blocks because they are confirmed to be empty. An assert is thrown if they
/// are not.
///
/// \param[in] SourceRegion The candidate to move statements from
/// \param[in] TargetRegion The candidate to move statements to
/// \return true if all instructions in SourceRegion.BranchBlock can be merged
/// into a block in TargetRegion, false otherwise.
///
bool PPCBranchCoalescing::canMerge(CoalescingCandidateInfo &SourceRegion,
CoalescingCandidateInfo &TargetRegion) const {
if (!validateCandidates(SourceRegion, TargetRegion))
return false;
// Walk through PHI nodes first and see if they force the merge into the
// SourceRegion.BranchTargetBlock.
for (MachineBasicBlock::iterator
I = SourceRegion.BranchBlock->instr_begin(),
E = SourceRegion.BranchBlock->getFirstNonPHI();
I != E; ++I) {
for (auto &Def : I->defs())
for (auto &Use : MRI->use_instructions(Def.getReg())) {
if (Use.isPHI() && Use.getParent() == SourceRegion.BranchTargetBlock) {
LLVM_DEBUG(dbgs()
<< "PHI " << *I
<< " defines register used in another "
"PHI within branch target block -- can't merge\n");
NumPHINotMoved++;
return false;
}
if (Use.getParent() == SourceRegion.BranchBlock) {
LLVM_DEBUG(dbgs() << "PHI " << *I
<< " defines register used in this "
"block -- all must move down\n");
SourceRegion.MustMoveDown = true;
}
}
}
// Walk through the MI to see if they should be merged into
// TargetRegion.BranchBlock (up) or SourceRegion.BranchTargetBlock (down)
for (MachineBasicBlock::iterator
I = SourceRegion.BranchBlock->getFirstNonPHI(),
E = SourceRegion.BranchBlock->end();
I != E; ++I) {
if (!canMoveToBeginning(*I, *SourceRegion.BranchTargetBlock)) {
LLVM_DEBUG(dbgs() << "Instruction " << *I
<< " cannot move down - must move up!\n");
SourceRegion.MustMoveUp = true;
}
if (!canMoveToEnd(*I, *TargetRegion.BranchBlock)) {
LLVM_DEBUG(dbgs() << "Instruction " << *I
<< " cannot move up - must move down!\n");
SourceRegion.MustMoveDown = true;
}
}
return (SourceRegion.MustMoveUp && SourceRegion.MustMoveDown) ? false : true;
}
/// Merge the instructions from SourceRegion.BranchBlock,
/// SourceRegion.BranchTargetBlock, and SourceRegion.FallThroughBlock into
/// TargetRegion.BranchBlock, TargetRegion.BranchTargetBlock and
/// TargetRegion.FallThroughBlock respectively.
///
/// The successors for blocks in TargetRegion will be updated to use the
/// successors from blocks in SourceRegion. Finally, the blocks in SourceRegion
/// will be removed from the function.
///
/// A region consists of a BranchBlock, a FallThroughBlock, and a
/// BranchTargetBlock. Branch coalesce works on patterns where the
/// TargetRegion's BranchTargetBlock must also be the SourceRegions's
/// BranchBlock.
///
/// Before mergeCandidates:
///
/// +---------------------------+
/// | TargetRegion.BranchBlock |
/// +---------------------------+
/// / |
/// / +--------------------------------+
/// | | TargetRegion.FallThroughBlock |
/// \ +--------------------------------+
/// \ |
/// +----------------------------------+
/// | TargetRegion.BranchTargetBlock |
/// | SourceRegion.BranchBlock |
/// +----------------------------------+
/// / |
/// / +--------------------------------+
/// | | SourceRegion.FallThroughBlock |
/// \ +--------------------------------+
/// \ |
/// +----------------------------------+
/// | SourceRegion.BranchTargetBlock |
/// +----------------------------------+
///
/// After mergeCandidates:
///
/// +-----------------------------+
/// | TargetRegion.BranchBlock |
/// | SourceRegion.BranchBlock |
/// +-----------------------------+
/// / |
/// / +---------------------------------+
/// | | TargetRegion.FallThroughBlock |
/// | | SourceRegion.FallThroughBlock |
/// \ +---------------------------------+
/// \ |
/// +----------------------------------+
/// | SourceRegion.BranchTargetBlock |
/// +----------------------------------+
///
/// \param[in] SourceRegion The candidate to move blocks from
/// \param[in] TargetRegion The candidate to move blocks to
///
bool PPCBranchCoalescing::mergeCandidates(CoalescingCandidateInfo &SourceRegion,
CoalescingCandidateInfo &TargetRegion) {
if (SourceRegion.MustMoveUp && SourceRegion.MustMoveDown) {
llvm_unreachable("Cannot have both MustMoveDown and MustMoveUp set!");
return false;
}
if (!validateCandidates(SourceRegion, TargetRegion))
return false;
// Start the merging process by first handling the BranchBlock.
// Move any PHIs in SourceRegion.BranchBlock down to the branch-taken block
moveAndUpdatePHIs(SourceRegion.BranchBlock, SourceRegion.BranchTargetBlock);
// Move remaining instructions in SourceRegion.BranchBlock into
// TargetRegion.BranchBlock
MachineBasicBlock::iterator firstInstr =
SourceRegion.BranchBlock->getFirstNonPHI();
MachineBasicBlock::iterator lastInstr =
SourceRegion.BranchBlock->getFirstTerminator();
MachineBasicBlock *Source = SourceRegion.MustMoveDown
? SourceRegion.BranchTargetBlock
: TargetRegion.BranchBlock;
MachineBasicBlock::iterator Target =
SourceRegion.MustMoveDown
? SourceRegion.BranchTargetBlock->getFirstNonPHI()
: TargetRegion.BranchBlock->getFirstTerminator();
Source->splice(Target, SourceRegion.BranchBlock, firstInstr, lastInstr);
// Once PHI and instructions have been moved we need to clean up the
// control flow.
// Remove SourceRegion.FallThroughBlock before transferring successors of
// SourceRegion.BranchBlock to TargetRegion.BranchBlock.
SourceRegion.BranchBlock->removeSuccessor(SourceRegion.FallThroughBlock);
TargetRegion.BranchBlock->transferSuccessorsAndUpdatePHIs(
SourceRegion.BranchBlock);
// Update branch in TargetRegion.BranchBlock to jump to
// SourceRegion.BranchTargetBlock
// In this case, TargetRegion.BranchTargetBlock == SourceRegion.BranchBlock.
TargetRegion.BranchBlock->ReplaceUsesOfBlockWith(
SourceRegion.BranchBlock, SourceRegion.BranchTargetBlock);
// Remove the branch statement(s) in SourceRegion.BranchBlock
MachineBasicBlock::iterator I =
SourceRegion.BranchBlock->terminators().begin();
while (I != SourceRegion.BranchBlock->terminators().end()) {
MachineInstr &CurrInst = *I;
++I;
if (CurrInst.isBranch())
CurrInst.eraseFromParent();
}
// Fall-through block should be empty since this is part of the condition
// to coalesce the branches.
assert(TargetRegion.FallThroughBlock->empty() &&
"FallThroughBlocks should be empty!");
// Transfer successor information and move PHIs down to the
// branch-taken block.
TargetRegion.FallThroughBlock->transferSuccessorsAndUpdatePHIs(
SourceRegion.FallThroughBlock);
TargetRegion.FallThroughBlock->removeSuccessor(SourceRegion.BranchBlock);
// Remove the blocks from the function.
assert(SourceRegion.BranchBlock->empty() &&
"Expecting branch block to be empty!");
SourceRegion.BranchBlock->eraseFromParent();
assert(SourceRegion.FallThroughBlock->empty() &&
"Expecting fall-through block to be empty!\n");
SourceRegion.FallThroughBlock->eraseFromParent();
NumBlocksCoalesced++;
return true;
}
bool PPCBranchCoalescing::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()) || MF.empty())
return false;
bool didSomething = false;
LLVM_DEBUG(dbgs() << "******** Branch Coalescing ********\n");
initialize(MF);
LLVM_DEBUG(dbgs() << "Function: "; MF.dump(); dbgs() << "\n");
CoalescingCandidateInfo Cand1, Cand2;
// Walk over blocks and find candidates to merge
// Continue trying to merge with the first candidate found, as long as merging
// is successfull.
for (MachineBasicBlock &MBB : MF) {
bool MergedCandidates = false;
do {
MergedCandidates = false;
Cand1.clear();
Cand2.clear();
Cand1.BranchBlock = &MBB;
// If unable to coalesce the branch, then continue to next block
if (!canCoalesceBranch(Cand1))
break;
Cand2.BranchBlock = Cand1.BranchTargetBlock;
if (!canCoalesceBranch(Cand2))
break;
// Sanity check
// The branch-taken block of the second candidate should post-dominate the
// first candidate
assert(MPDT->dominates(Cand2.BranchTargetBlock, Cand1.BranchBlock) &&
"Branch-taken block should post-dominate first candidate");
if (!identicalOperands(Cand1.Cond, Cand2.Cond)) {
LLVM_DEBUG(dbgs() << "Blocks " << Cand1.BranchBlock->getNumber()
<< " and " << Cand2.BranchBlock->getNumber()
<< " have different branches\n");
break;
}
if (!canMerge(Cand2, Cand1)) {
LLVM_DEBUG(dbgs() << "Cannot merge blocks "
<< Cand1.BranchBlock->getNumber() << " and "
<< Cand2.BranchBlock->getNumber() << "\n");
NumBlocksNotCoalesced++;
continue;
}
LLVM_DEBUG(dbgs() << "Merging blocks " << Cand1.BranchBlock->getNumber()
<< " and " << Cand1.BranchTargetBlock->getNumber()
<< "\n");
MergedCandidates = mergeCandidates(Cand2, Cand1);
if (MergedCandidates)
didSomething = true;
LLVM_DEBUG(dbgs() << "Function after merging: "; MF.dump();
dbgs() << "\n");
} while (MergedCandidates);
}
#ifndef NDEBUG
// Verify MF is still valid after branch coalescing
if (didSomething)
MF.verify(nullptr, "Error in code produced by branch coalescing");
#endif // NDEBUG
LLVM_DEBUG(dbgs() << "Finished Branch Coalescing\n");
return didSomething;
}