1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 12:43:36 +01:00
llvm-mirror/test/Transforms/IRCE/clamp.ll
Fedor Sergeev 3a27395ee7 [New PM][IRCE] port of Inductive Range Check Elimination pass to the new pass manager
There are two nontrivial details here:
* Loop structure update interface is quite different with new pass manager,
  so the code to add new loops was factored out

* BranchProbabilityInfo is not a loop analysis, so it can not be just getResult'ed from
  within the loop pass. It cant even be queried through getCachedResult as LoopCanonicalization
  sequence (e.g. LoopSimplify) might invalidate BPI results.

  Complete solution for BPI will likely take some time to discuss and figure out,
  so for now this was partially solved by making BPI optional in IRCE
  (skipping a couple of profitability checks if it is absent).

Most of the IRCE tests got their corresponding new-pass-manager variant enabled.
Only two of them depend on BPI, both marked with TODO, to be turned on when BPI
starts being available for loop passes.

Reviewers: chandlerc, mkazantsev, sanjoy, asbirlea
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D43795

llvm-svn: 327619
2018-03-15 11:01:19 +00:00

96 lines
3.9 KiB
LLVM

; RUN: opt -verify-loop-info -irce-print-changed-loops -irce -S < %s 2>&1 | FileCheck %s
; RUN: opt -verify-loop-info -irce-print-changed-loops -passes='require<branch-prob>,loop(irce)' -S < %s 2>&1 | FileCheck %s
; The test demonstrates that incorrect behavior of Clamp may lead to incorrect
; calculation of post-loop exit condition.
; CHECK-LABEL: irce: in function test_01: constrained Loop at depth 1 containing: %loop<header><exiting>,%in_bounds<exiting>,%not_zero<latch><exiting>
; CHECK-NOT: irce: in function test_02: constrained Loop
define void @test_01() {
; CHECK-LABEL: test_01
entry:
%indvars.iv.next467 = add nuw nsw i64 2, 1
%length.i167 = load i32, i32 addrspace(1)* undef, align 8
%tmp21 = zext i32 %length.i167 to i64
%tmp34 = load atomic i32, i32 addrspace(1)* undef unordered, align 4
%tmp35 = add i32 %tmp34, -9581
%tmp36 = icmp ugt i32 %length.i167, 1
br i1 %tmp36, label %preheader, label %exit
exit: ; preds = %in_bounds, %loop, %not_zero, %entry
ret void
preheader: ; preds = %entry
; CHECK: preheader:
; CHECK-NEXT: %length_gep.i146 = getelementptr inbounds i8, i8 addrspace(1)* undef, i64 8
; CHECK-NEXT: %length_gep_typed.i147 = bitcast i8 addrspace(1)* undef to i32 addrspace(1)*
; CHECK-NEXT: %tmp43 = icmp ult i64 %indvars.iv.next467, %tmp21
; CHECK-NEXT: [[C0:%[^ ]+]] = icmp ugt i64 %tmp21, 1
; CHECK-NEXT: %exit.mainloop.at = select i1 [[C0]], i64 %tmp21, i64 1
; CHECK-NEXT: [[C1:%[^ ]+]] = icmp ult i64 1, %exit.mainloop.at
; CHECK-NEXT: br i1 [[C1]], label %loop.preheader, label %main.pseudo.exit
%length_gep.i146 = getelementptr inbounds i8, i8 addrspace(1)* undef, i64 8
%length_gep_typed.i147 = bitcast i8 addrspace(1)* undef to i32 addrspace(1)*
%tmp43 = icmp ult i64 %indvars.iv.next467, %tmp21
br label %loop
not_zero: ; preds = %in_bounds
; CHECK: not_zero:
; CHECK: %tmp56 = icmp ult i64 %indvars.iv.next, %tmp21
; CHECK-NEXT: [[COND:%[^ ]+]] = icmp ult i64 %indvars.iv.next, %exit.mainloop.at
; CHECK-NEXT: br i1 [[COND]], label %loop, label %main.exit.selector
%tmp51 = trunc i64 %indvars.iv.next to i32
%tmp53 = mul i32 %tmp51, %tmp51
%tmp54 = add i32 %tmp53, -9582
%tmp55 = add i32 %tmp54, %tmp62
%tmp56 = icmp ult i64 %indvars.iv.next, %tmp21
br i1 %tmp56, label %loop, label %exit
loop: ; preds = %not_zero, %preheader
%tmp62 = phi i32 [ 1, %preheader ], [ %tmp55, %not_zero ]
%indvars.iv750 = phi i64 [ 1, %preheader ], [ %indvars.iv.next, %not_zero ]
%length.i148 = load i32, i32 addrspace(1)* %length_gep_typed.i147, align 8
%tmp68 = zext i32 %length.i148 to i64
%tmp97 = icmp ult i64 2, %tmp68
%or.cond = and i1 %tmp43, %tmp97
%tmp99 = icmp ult i64 %indvars.iv750, %tmp21
%or.cond1 = and i1 %or.cond, %tmp99
br i1 %or.cond1, label %in_bounds, label %exit
in_bounds: ; preds = %loop
%indvars.iv.next = add nuw nsw i64 %indvars.iv750, 3
%tmp107 = icmp ult i64 %indvars.iv.next, 2
br i1 %tmp107, label %not_zero, label %exit
}
define void @test_02() {
; Now IRCE is smart enough to understand that the safe range here is empty.
; Previously it executed the entire loop in safe preloop and never actually
; entered the main loop.
entry:
br label %loop
loop: ; preds = %in_bounds, %entry
%iv1 = phi i64 [ 3, %entry ], [ %iv1.next, %in_bounds ]
%iv2 = phi i64 [ 4294967295, %entry ], [ %iv2.next, %in_bounds ]
%iv2.offset = add i64 %iv2, 1
%rc = icmp ult i64 %iv2.offset, 400
br i1 %rc, label %in_bounds, label %bci_321
bci_321: ; preds = %in_bounds, %loop
ret void
in_bounds: ; preds = %loop
%iv1.next = add nuw nsw i64 %iv1, 2
%iv2.next = add nuw nsw i64 %iv2, 2
%cond = icmp ugt i64 %iv1, 204
br i1 %cond, label %bci_321, label %loop
}