1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-30 07:22:55 +01:00
llvm-mirror/lib/Target/X86/X86RegisterInfo.td
2005-01-05 16:09:16 +00:00

111 lines
4.6 KiB
C++

//===- X86RegisterInfo.td - Describe the X86 Register File ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 Register file, defining the registers themselves,
// aliases between the registers, and the register classes built out of the
// registers.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Register definitions...
//
let Namespace = "X86" in {
// In the register alias definitions below, we define which registers alias
// which others. We only specify which registers the small registers alias,
// because the register file generator is smart enough to figure out that
// AL aliases AX if we tell it that AX aliased AL (for example).
// 32-bit registers
def EAX : Register<"EAX">; def ECX : Register<"ECX">;
def EDX : Register<"EDX">; def EBX : Register<"EBX">;
def ESP : Register<"ESP">; def EBP : Register<"EBP">;
def ESI : Register<"ESI">; def EDI : Register<"EDI">;
// 16-bit registers
def AX : RegisterGroup<"AX", [EAX]>; def CX : RegisterGroup<"CX", [ECX]>;
def DX : RegisterGroup<"DX", [EDX]>; def BX : RegisterGroup<"BX", [EBX]>;
def SP : RegisterGroup<"SP", [ESP]>; def BP : RegisterGroup<"BP", [EBP]>;
def SI : RegisterGroup<"SI", [ESI]>; def DI : RegisterGroup<"DI", [EDI]>;
// 8-bit registers
def AL : RegisterGroup<"AL", [AX,EAX]>; def CL : RegisterGroup<"CL",[CX,ECX]>;
def DL : RegisterGroup<"DL", [DX,EDX]>; def BL : RegisterGroup<"BL",[BX,EBX]>;
def AH : RegisterGroup<"AH", [AX,EAX]>; def CH : RegisterGroup<"CH",[CX,ECX]>;
def DH : RegisterGroup<"DH", [DX,EDX]>; def BH : RegisterGroup<"BH",[BX,EBX]>;
// Pseudo Floating Point registers
def FP0 : Register<"FP0">; def FP1 : Register<"FP1">;
def FP2 : Register<"FP2">; def FP3 : Register<"FP3">;
def FP4 : Register<"FP4">; def FP5 : Register<"FP5">;
def FP6 : Register<"FP6">;
// Floating point stack registers
def ST0 : Register<"ST(0)">; def ST1 : Register<"ST(1)">;
def ST2 : Register<"ST(2)">; def ST3 : Register<"ST(3)">;
def ST4 : Register<"ST(4)">; def ST5 : Register<"ST(5)">;
def ST6 : Register<"ST(6)">; def ST7 : Register<"ST(7)">;
// Flags, Segment registers, etc...
}
//===----------------------------------------------------------------------===//
// Register Class Definitions... now that we have all of the pieces, define the
// top-level register classes. The order specified in the register list is
// implicitly defined to be the register allocation order.
//
// List AL,CL,DL before AH,CH,DH, as X86 processors often suffer from false
// dependences between upper and lower parts of the register. BL and BH are
// last because they are call clobbered. Both Athlon and P4 chips suffer this
// issue.
def R8 : RegisterClass<i8, 8, [AL, CL, DL, AH, CH, DH, BL, BH]>;
def R16 : RegisterClass<i16, 16, [AX, CX, DX, SI, DI, BX, BP, SP]> {
let Methods = [{
iterator allocation_order_end(MachineFunction &MF) const {
if (hasFP(MF)) // Does the function dedicate EBP to being a frame ptr?
return end()-2; // If so, don't allocate SP or BP
else
return end()-1; // If not, just don't allocate SP
}
}];
}
def R32 : RegisterClass<i32, 32, [EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP]> {
let Methods = [{
iterator allocation_order_end(MachineFunction &MF) const {
if (hasFP(MF)) // Does the function dedicate EBP to being a frame ptr?
return end()-2; // If so, don't allocate ESP or EBP
else
return end()-1; // If not, just don't allocate ESP
}
}];
}
// FIXME: This sets up the floating point register files as though they are f64
// values, though they really are f80 values. This will cause us to spill
// values as 64-bit quantities instead of 80-bit quantities, which is much much
// faster on common hardware. In reality, this should be controlled by a
// command line option or something.
def RFP : RegisterClass<f64, 32, [FP0, FP1, FP2, FP3, FP4, FP5, FP6]>;
// Floating point stack registers (these are not allocatable by the
// register allocator - the floating point stackifier is responsible
// for transforming FPn allocations to STn registers)
def RST : RegisterClass<f64, 32, [ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7]> {
let Methods = [{
iterator allocation_order_end(MachineFunction &MF) const {
return begin();
}
}];
}