1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00
llvm-mirror/lib/AsmParser/llvmAsmParser.y
Chris Lattner cb5f22396e - Fix bug: Assembler/2002-10-15-NameClash.ll
- Clean up code a bit, s/Method/Function/

llvm-svn: 4188
2002-10-15 21:41:14 +00:00

1738 lines
60 KiB
Plaintext

//===-- llvmAsmParser.y - Parser for llvm assembly files ---------*- C++ -*--=//
//
// This file implements the bison parser for LLVM assembly languages files.
//
//===------------------------------------------------------------------------=//
%{
#include "ParserInternals.h"
#include "llvm/SymbolTable.h"
#include "llvm/Module.h"
#include "llvm/iTerminators.h"
#include "llvm/iMemory.h"
#include "llvm/iOperators.h"
#include "llvm/iPHINode.h"
#include "Support/STLExtras.h"
#include "Support/DepthFirstIterator.h"
#include <list>
#include <utility>
#include <algorithm>
using std::list;
using std::vector;
using std::pair;
using std::map;
using std::pair;
using std::make_pair;
using std::string;
int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit
int yylex(); // declaration" of xxx warnings.
int yyparse();
static Module *ParserResult;
string CurFilename;
// DEBUG_UPREFS - Define this symbol if you want to enable debugging output
// relating to upreferences in the input stream.
//
//#define DEBUG_UPREFS 1
#ifdef DEBUG_UPREFS
#define UR_OUT(X) std::cerr << X
#else
#define UR_OUT(X)
#endif
#define YYERROR_VERBOSE 1
// HACK ALERT: This variable is used to implement the automatic conversion of
// load/store instructions with indexes into a load/store + getelementptr pair
// of instructions. When this compatiblity "Feature" is removed, this should be
// too.
//
static BasicBlock *CurBB;
// This contains info used when building the body of a function. It is
// destroyed when the function is completed.
//
typedef vector<Value *> ValueList; // Numbered defs
static void ResolveDefinitions(vector<ValueList> &LateResolvers,
vector<ValueList> *FutureLateResolvers = 0);
static struct PerModuleInfo {
Module *CurrentModule;
vector<ValueList> Values; // Module level numbered definitions
vector<ValueList> LateResolveValues;
vector<PATypeHolder> Types;
map<ValID, PATypeHolder> LateResolveTypes;
// GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
// references to global values. Global values may be referenced before they
// are defined, and if so, the temporary object that they represent is held
// here. This is used for forward references of ConstantPointerRefs.
//
typedef map<pair<const PointerType *, ValID>, GlobalVariable*> GlobalRefsType;
GlobalRefsType GlobalRefs;
void ModuleDone() {
// If we could not resolve some functions at function compilation time
// (calls to functions before they are defined), resolve them now... Types
// are resolved when the constant pool has been completely parsed.
//
ResolveDefinitions(LateResolveValues);
// Check to make sure that all global value forward references have been
// resolved!
//
if (!GlobalRefs.empty()) {
string UndefinedReferences = "Unresolved global references exist:\n";
for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
I != E; ++I) {
UndefinedReferences += " " + I->first.first->getDescription() + " " +
I->first.second.getName() + "\n";
}
ThrowException(UndefinedReferences);
}
Values.clear(); // Clear out function local definitions
Types.clear();
CurrentModule = 0;
}
// DeclareNewGlobalValue - Called every time a new GV has been defined. This
// is used to remove things from the forward declaration map, resolving them
// to the correct thing as needed.
//
void DeclareNewGlobalValue(GlobalValue *GV, ValID D) {
// Check to see if there is a forward reference to this global variable...
// if there is, eliminate it and patch the reference to use the new def'n.
GlobalRefsType::iterator I = GlobalRefs.find(make_pair(GV->getType(), D));
if (I != GlobalRefs.end()) {
GlobalVariable *OldGV = I->second; // Get the placeholder...
I->first.second.destroy(); // Free string memory if neccesary
// Loop over all of the uses of the GlobalValue. The only thing they are
// allowed to be is ConstantPointerRef's.
assert(OldGV->use_size() == 1 && "Only one reference should exist!");
User *U = OldGV->use_back(); // Must be a ConstantPointerRef...
ConstantPointerRef *CPR = cast<ConstantPointerRef>(U);
// Change the const pool reference to point to the real global variable
// now. This should drop a use from the OldGV.
CPR->mutateReferences(OldGV, GV);
assert(OldGV->use_empty() && "All uses should be gone now!");
// Remove OldGV from the module...
CurrentModule->getGlobalList().remove(OldGV);
delete OldGV; // Delete the old placeholder
// Remove the map entry for the global now that it has been created...
GlobalRefs.erase(I);
}
}
} CurModule;
static struct PerFunctionInfo {
Function *CurrentFunction; // Pointer to current function being created
vector<ValueList> Values; // Keep track of numbered definitions
vector<ValueList> LateResolveValues;
vector<PATypeHolder> Types;
map<ValID, PATypeHolder> LateResolveTypes;
bool isDeclare; // Is this function a forward declararation?
inline PerFunctionInfo() {
CurrentFunction = 0;
isDeclare = false;
}
inline ~PerFunctionInfo() {}
inline void FunctionStart(Function *M) {
CurrentFunction = M;
}
void FunctionDone() {
// If we could not resolve some blocks at parsing time (forward branches)
// resolve the branches now...
ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
Values.clear(); // Clear out function local definitions
Types.clear();
CurrentFunction = 0;
isDeclare = false;
}
} CurMeth; // Info for the current function...
static bool inFunctionScope() { return CurMeth.CurrentFunction != 0; }
//===----------------------------------------------------------------------===//
// Code to handle definitions of all the types
//===----------------------------------------------------------------------===//
static int InsertValue(Value *D, vector<ValueList> &ValueTab = CurMeth.Values) {
if (D->hasName()) return -1; // Is this a numbered definition?
// Yes, insert the value into the value table...
unsigned type = D->getType()->getUniqueID();
if (ValueTab.size() <= type)
ValueTab.resize(type+1, ValueList());
//printf("Values[%d][%d] = %d\n", type, ValueTab[type].size(), D);
ValueTab[type].push_back(D);
return ValueTab[type].size()-1;
}
// TODO: FIXME when Type are not const
static void InsertType(const Type *Ty, vector<PATypeHolder> &Types) {
Types.push_back(Ty);
}
static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) {
switch (D.Type) {
case ValID::NumberVal: { // Is it a numbered definition?
unsigned Num = (unsigned)D.Num;
// Module constants occupy the lowest numbered slots...
if (Num < CurModule.Types.size())
return CurModule.Types[Num];
Num -= CurModule.Types.size();
// Check that the number is within bounds...
if (Num <= CurMeth.Types.size())
return CurMeth.Types[Num];
break;
}
case ValID::NameVal: { // Is it a named definition?
string Name(D.Name);
SymbolTable *SymTab = 0;
if (inFunctionScope()) SymTab = CurMeth.CurrentFunction->getSymbolTable();
Value *N = SymTab ? SymTab->lookup(Type::TypeTy, Name) : 0;
if (N == 0) {
// Symbol table doesn't automatically chain yet... because the function
// hasn't been added to the module...
//
SymTab = CurModule.CurrentModule->getSymbolTable();
if (SymTab)
N = SymTab->lookup(Type::TypeTy, Name);
if (N == 0) break;
}
D.destroy(); // Free old strdup'd memory...
return cast<const Type>(N);
}
default:
ThrowException("Internal parser error: Invalid symbol type reference!");
}
// If we reached here, we referenced either a symbol that we don't know about
// or an id number that hasn't been read yet. We may be referencing something
// forward, so just create an entry to be resolved later and get to it...
//
if (DoNotImprovise) return 0; // Do we just want a null to be returned?
map<ValID, PATypeHolder> &LateResolver = inFunctionScope() ?
CurMeth.LateResolveTypes : CurModule.LateResolveTypes;
map<ValID, PATypeHolder>::iterator I = LateResolver.find(D);
if (I != LateResolver.end()) {
return I->second;
}
Type *Typ = OpaqueType::get();
LateResolver.insert(make_pair(D, Typ));
return Typ;
}
static Value *lookupInSymbolTable(const Type *Ty, const string &Name) {
SymbolTable *SymTab =
inFunctionScope() ? CurMeth.CurrentFunction->getSymbolTable() :
CurModule.CurrentModule->getSymbolTable();
return SymTab ? SymTab->lookup(Ty, Name) : 0;
}
// getValNonImprovising - Look up the value specified by the provided type and
// the provided ValID. If the value exists and has already been defined, return
// it. Otherwise return null.
//
static Value *getValNonImprovising(const Type *Ty, const ValID &D) {
if (isa<FunctionType>(Ty))
ThrowException("Functions are not values and "
"must be referenced as pointers");
switch (D.Type) {
case ValID::NumberVal: { // Is it a numbered definition?
unsigned type = Ty->getUniqueID();
unsigned Num = (unsigned)D.Num;
// Module constants occupy the lowest numbered slots...
if (type < CurModule.Values.size()) {
if (Num < CurModule.Values[type].size())
return CurModule.Values[type][Num];
Num -= CurModule.Values[type].size();
}
// Make sure that our type is within bounds
if (CurMeth.Values.size() <= type) return 0;
// Check that the number is within bounds...
if (CurMeth.Values[type].size() <= Num) return 0;
return CurMeth.Values[type][Num];
}
case ValID::NameVal: { // Is it a named definition?
Value *N = lookupInSymbolTable(Ty, string(D.Name));
if (N == 0) return 0;
D.destroy(); // Free old strdup'd memory...
return N;
}
// Check to make sure that "Ty" is an integral type, and that our
// value will fit into the specified type...
case ValID::ConstSIntVal: // Is it a constant pool reference??
if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64))
ThrowException("Signed integral constant '" +
itostr(D.ConstPool64) + "' is invalid for type '" +
Ty->getDescription() + "'!");
return ConstantSInt::get(Ty, D.ConstPool64);
case ValID::ConstUIntVal: // Is it an unsigned const pool reference?
if (!ConstantUInt::isValueValidForType(Ty, D.UConstPool64)) {
if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64)) {
ThrowException("Integral constant '" + utostr(D.UConstPool64) +
"' is invalid or out of range!");
} else { // This is really a signed reference. Transmogrify.
return ConstantSInt::get(Ty, D.ConstPool64);
}
} else {
return ConstantUInt::get(Ty, D.UConstPool64);
}
case ValID::ConstFPVal: // Is it a floating point const pool reference?
if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP))
ThrowException("FP constant invalid for type!!");
return ConstantFP::get(Ty, D.ConstPoolFP);
case ValID::ConstNullVal: // Is it a null value?
if (!isa<PointerType>(Ty))
ThrowException("Cannot create a a non pointer null!");
return ConstantPointerNull::get(cast<PointerType>(Ty));
case ValID::ConstantVal: // Fully resolved constant?
if (D.ConstantValue->getType() != Ty)
ThrowException("Constant expression type different from required type!");
return D.ConstantValue;
default:
assert(0 && "Unhandled case!");
return 0;
} // End of switch
assert(0 && "Unhandled case!");
return 0;
}
// getVal - This function is identical to getValNonImprovising, except that if a
// value is not already defined, it "improvises" by creating a placeholder var
// that looks and acts just like the requested variable. When the value is
// defined later, all uses of the placeholder variable are replaced with the
// real thing.
//
static Value *getVal(const Type *Ty, const ValID &D) {
assert(Ty != Type::TypeTy && "Should use getTypeVal for types!");
// See if the value has already been defined...
Value *V = getValNonImprovising(Ty, D);
if (V) return V;
// If we reached here, we referenced either a symbol that we don't know about
// or an id number that hasn't been read yet. We may be referencing something
// forward, so just create an entry to be resolved later and get to it...
//
Value *d = 0;
switch (Ty->getPrimitiveID()) {
case Type::LabelTyID: d = new BBPlaceHolder(Ty, D); break;
default: d = new ValuePlaceHolder(Ty, D); break;
}
assert(d != 0 && "How did we not make something?");
if (inFunctionScope())
InsertValue(d, CurMeth.LateResolveValues);
else
InsertValue(d, CurModule.LateResolveValues);
return d;
}
//===----------------------------------------------------------------------===//
// Code to handle forward references in instructions
//===----------------------------------------------------------------------===//
//
// This code handles the late binding needed with statements that reference
// values not defined yet... for example, a forward branch, or the PHI node for
// a loop body.
//
// This keeps a table (CurMeth.LateResolveValues) of all such forward references
// and back patchs after we are done.
//
// ResolveDefinitions - If we could not resolve some defs at parsing
// time (forward branches, phi functions for loops, etc...) resolve the
// defs now...
//
static void ResolveDefinitions(vector<ValueList> &LateResolvers,
vector<ValueList> *FutureLateResolvers) {
// Loop over LateResolveDefs fixing up stuff that couldn't be resolved
for (unsigned ty = 0; ty < LateResolvers.size(); ty++) {
while (!LateResolvers[ty].empty()) {
Value *V = LateResolvers[ty].back();
assert(!isa<Type>(V) && "Types should be in LateResolveTypes!");
LateResolvers[ty].pop_back();
ValID &DID = getValIDFromPlaceHolder(V);
Value *TheRealValue = getValNonImprovising(Type::getUniqueIDType(ty),DID);
if (TheRealValue) {
V->replaceAllUsesWith(TheRealValue);
delete V;
} else if (FutureLateResolvers) {
// Functions have their unresolved items forwarded to the module late
// resolver table
InsertValue(V, *FutureLateResolvers);
} else {
if (DID.Type == ValID::NameVal)
ThrowException("Reference to an invalid definition: '" +DID.getName()+
"' of type '" + V->getType()->getDescription() + "'",
getLineNumFromPlaceHolder(V));
else
ThrowException("Reference to an invalid definition: #" +
itostr(DID.Num) + " of type '" +
V->getType()->getDescription() + "'",
getLineNumFromPlaceHolder(V));
}
}
}
LateResolvers.clear();
}
// ResolveTypeTo - A brand new type was just declared. This means that (if
// name is not null) things referencing Name can be resolved. Otherwise, things
// refering to the number can be resolved. Do this now.
//
static void ResolveTypeTo(char *Name, const Type *ToTy) {
vector<PATypeHolder> &Types = inFunctionScope() ?
CurMeth.Types : CurModule.Types;
ValID D;
if (Name) D = ValID::create(Name);
else D = ValID::create((int)Types.size());
map<ValID, PATypeHolder> &LateResolver = inFunctionScope() ?
CurMeth.LateResolveTypes : CurModule.LateResolveTypes;
map<ValID, PATypeHolder>::iterator I = LateResolver.find(D);
if (I != LateResolver.end()) {
((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy);
LateResolver.erase(I);
}
}
// ResolveTypes - At this point, all types should be resolved. Any that aren't
// are errors.
//
static void ResolveTypes(map<ValID, PATypeHolder> &LateResolveTypes) {
if (!LateResolveTypes.empty()) {
const ValID &DID = LateResolveTypes.begin()->first;
if (DID.Type == ValID::NameVal)
ThrowException("Reference to an invalid type: '" +DID.getName() + "'");
else
ThrowException("Reference to an invalid type: #" + itostr(DID.Num));
}
}
// setValueName - Set the specified value to the name given. The name may be
// null potentially, in which case this is a noop. The string passed in is
// assumed to be a malloc'd string buffer, and is freed by this function.
//
// This function returns true if the value has already been defined, but is
// allowed to be redefined in the specified context. If the name is a new name
// for the typeplane, false is returned.
//
static bool setValueName(Value *V, char *NameStr) {
if (NameStr == 0) return false;
string Name(NameStr); // Copy string
free(NameStr); // Free old string
if (V->getType() == Type::VoidTy)
ThrowException("Can't assign name '" + Name +
"' to a null valued instruction!");
SymbolTable *ST = inFunctionScope() ?
CurMeth.CurrentFunction->getSymbolTableSure() :
CurModule.CurrentModule->getSymbolTableSure();
Value *Existing = ST->lookup(V->getType(), Name);
if (Existing) { // Inserting a name that is already defined???
// There is only one case where this is allowed: when we are refining an
// opaque type. In this case, Existing will be an opaque type.
if (const Type *Ty = dyn_cast<const Type>(Existing)) {
if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Ty)) {
// We ARE replacing an opaque type!
((OpaqueType*)OpTy)->refineAbstractTypeTo(cast<Type>(V));
return true;
}
}
// Otherwise, we are a simple redefinition of a value, check to see if it
// is defined the same as the old one...
if (const Type *Ty = dyn_cast<const Type>(Existing)) {
if (Ty == cast<const Type>(V)) return true; // Yes, it's equal.
// std::cerr << "Type: " << Ty->getDescription() << " != "
// << cast<const Type>(V)->getDescription() << "!\n";
} else if (GlobalVariable *EGV = dyn_cast<GlobalVariable>(Existing)) {
// We are allowed to redefine a global variable in two circumstances:
// 1. If at least one of the globals is uninitialized or
// 2. If both initializers have the same value.
//
// This can only be done if the const'ness of the vars is the same.
//
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
if (EGV->isConstant() == GV->isConstant() &&
(!EGV->hasInitializer() || !GV->hasInitializer() ||
EGV->getInitializer() == GV->getInitializer())) {
// Make sure the existing global version gets the initializer!
if (GV->hasInitializer() && !EGV->hasInitializer())
EGV->setInitializer(GV->getInitializer());
delete GV; // Destroy the duplicate!
return true; // They are equivalent!
}
}
}
ThrowException("Redefinition of value named '" + Name + "' in the '" +
V->getType()->getDescription() + "' type plane!");
}
V->setName(Name, ST);
return false;
}
//===----------------------------------------------------------------------===//
// Code for handling upreferences in type names...
//
// TypeContains - Returns true if Ty contains E in it.
//
static bool TypeContains(const Type *Ty, const Type *E) {
return find(df_begin(Ty), df_end(Ty), E) != df_end(Ty);
}
static vector<pair<unsigned, OpaqueType *> > UpRefs;
static PATypeHolder HandleUpRefs(const Type *ty) {
PATypeHolder Ty(ty);
UR_OUT("Type '" << ty->getDescription() <<
"' newly formed. Resolving upreferences.\n" <<
UpRefs.size() << " upreferences active!\n");
for (unsigned i = 0; i < UpRefs.size(); ) {
UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
<< UpRefs[i].second->getDescription() << ") = "
<< (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << endl);
if (TypeContains(Ty, UpRefs[i].second)) {
unsigned Level = --UpRefs[i].first; // Decrement level of upreference
UR_OUT(" Uplevel Ref Level = " << Level << endl);
if (Level == 0) { // Upreference should be resolved!
UR_OUT(" * Resolving upreference for "
<< UpRefs[i].second->getDescription() << endl;
string OldName = UpRefs[i].second->getDescription());
UpRefs[i].second->refineAbstractTypeTo(Ty);
UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list...
UR_OUT(" * Type '" << OldName << "' refined upreference to: "
<< (const void*)Ty << ", " << Ty->getDescription() << endl);
continue;
}
}
++i; // Otherwise, no resolve, move on...
}
// FIXME: TODO: this should return the updated type
return Ty;
}
//===----------------------------------------------------------------------===//
// RunVMAsmParser - Define an interface to this parser
//===----------------------------------------------------------------------===//
//
Module *RunVMAsmParser(const string &Filename, FILE *F) {
llvmAsmin = F;
CurFilename = Filename;
llvmAsmlineno = 1; // Reset the current line number...
CurModule.CurrentModule = new Module(); // Allocate a new module to read
yyparse(); // Parse the file.
Module *Result = ParserResult;
llvmAsmin = stdin; // F is about to go away, don't use it anymore...
ParserResult = 0;
return Result;
}
%}
%union {
Module *ModuleVal;
Function *FunctionVal;
std::pair<PATypeHolder*, char*> *ArgVal;
BasicBlock *BasicBlockVal;
TerminatorInst *TermInstVal;
Instruction *InstVal;
Constant *ConstVal;
const Type *PrimType;
PATypeHolder *TypeVal;
Value *ValueVal;
std::vector<std::pair<PATypeHolder*,char*> > *ArgList;
std::vector<Value*> *ValueList;
std::list<PATypeHolder> *TypeList;
std::list<std::pair<Value*,
BasicBlock*> > *PHIList; // Represent the RHS of PHI node
std::vector<std::pair<Constant*, BasicBlock*> > *JumpTable;
std::vector<Constant*> *ConstVector;
int64_t SInt64Val;
uint64_t UInt64Val;
int SIntVal;
unsigned UIntVal;
double FPVal;
bool BoolVal;
char *StrVal; // This memory is strdup'd!
ValID ValIDVal; // strdup'd memory maybe!
Instruction::BinaryOps BinaryOpVal;
Instruction::TermOps TermOpVal;
Instruction::MemoryOps MemOpVal;
Instruction::OtherOps OtherOpVal;
}
%type <ModuleVal> Module FunctionList
%type <FunctionVal> Function FunctionProto FunctionHeader BasicBlockList
%type <BasicBlockVal> BasicBlock InstructionList
%type <TermInstVal> BBTerminatorInst
%type <InstVal> Inst InstVal MemoryInst
%type <ConstVal> ConstVal ConstExpr
%type <ConstVector> ConstVector
%type <ArgList> ArgList ArgListH
%type <ArgVal> ArgVal
%type <PHIList> PHIList
%type <ValueList> ValueRefList ValueRefListE // For call param lists
%type <ValueList> IndexList // For GEP derived indices
%type <TypeList> TypeListI ArgTypeListI
%type <JumpTable> JumpTable
%type <BoolVal> GlobalType OptInternal // GLOBAL or CONSTANT? Intern?
// ValueRef - Unresolved reference to a definition or BB
%type <ValIDVal> ValueRef ConstValueRef SymbolicValueRef
%type <ValueVal> ResolvedVal // <type> <valref> pair
// Tokens and types for handling constant integer values
//
// ESINT64VAL - A negative number within long long range
%token <SInt64Val> ESINT64VAL
// EUINT64VAL - A positive number within uns. long long range
%token <UInt64Val> EUINT64VAL
%type <SInt64Val> EINT64VAL
%token <SIntVal> SINTVAL // Signed 32 bit ints...
%token <UIntVal> UINTVAL // Unsigned 32 bit ints...
%type <SIntVal> INTVAL
%token <FPVal> FPVAL // Float or Double constant
// Built in types...
%type <TypeVal> Types TypesV UpRTypes UpRTypesV
%type <PrimType> SIntType UIntType IntType FPType PrimType // Classifications
%token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG
%token <PrimType> FLOAT DOUBLE TYPE LABEL
%token <StrVal> VAR_ID LABELSTR STRINGCONSTANT
%type <StrVal> OptVAR_ID OptAssign FuncName
%token IMPLEMENTATION TRUE FALSE BEGINTOK ENDTOK DECLARE GLOBAL CONSTANT
%token TO EXCEPT DOTDOTDOT NULL_TOK CONST INTERNAL OPAQUE NOT EXTERNAL
// Basic Block Terminating Operators
%token <TermOpVal> RET BR SWITCH
// Binary Operators
%type <BinaryOpVal> BinaryOps // all the binary operators
%type <BinaryOpVal> ArithmeticOps LogicalOps SetCondOps // Binops Subcatagories
%token <BinaryOpVal> ADD SUB MUL DIV REM AND OR XOR
%token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE // Binary Comarators
// Memory Instructions
%token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
// Other Operators
%type <OtherOpVal> ShiftOps
%token <OtherOpVal> PHI CALL INVOKE CAST SHL SHR
%start Module
%%
// Handle constant integer size restriction and conversion...
//
INTVAL : SINTVAL;
INTVAL : UINTVAL {
if ($1 > (uint32_t)INT32_MAX) // Outside of my range!
ThrowException("Value too large for type!");
$$ = (int32_t)$1;
};
EINT64VAL : ESINT64VAL; // These have same type and can't cause problems...
EINT64VAL : EUINT64VAL {
if ($1 > (uint64_t)INT64_MAX) // Outside of my range!
ThrowException("Value too large for type!");
$$ = (int64_t)$1;
};
// Operations that are notably excluded from this list include:
// RET, BR, & SWITCH because they end basic blocks and are treated specially.
//
ArithmeticOps: ADD | SUB | MUL | DIV | REM;
LogicalOps : AND | OR | XOR;
SetCondOps : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE;
BinaryOps : ArithmeticOps | LogicalOps | SetCondOps;
ShiftOps : SHL | SHR;
// These are some types that allow classification if we only want a particular
// thing... for example, only a signed, unsigned, or integral type.
SIntType : LONG | INT | SHORT | SBYTE;
UIntType : ULONG | UINT | USHORT | UBYTE;
IntType : SIntType | UIntType;
FPType : FLOAT | DOUBLE;
// OptAssign - Value producing statements have an optional assignment component
OptAssign : VAR_ID '=' {
$$ = $1;
}
| /*empty*/ {
$$ = 0;
};
OptInternal : INTERNAL { $$ = true; } | /*empty*/ { $$ = false; };
//===----------------------------------------------------------------------===//
// Types includes all predefined types... except void, because it can only be
// used in specific contexts (function returning void for example). To have
// access to it, a user must explicitly use TypesV.
//
// TypesV includes all of 'Types', but it also includes the void type.
TypesV : Types | VOID { $$ = new PATypeHolder($1); };
UpRTypesV : UpRTypes | VOID { $$ = new PATypeHolder($1); };
Types : UpRTypes {
if (UpRefs.size())
ThrowException("Invalid upreference in type: " + (*$1)->getDescription());
$$ = $1;
};
// Derived types are added later...
//
PrimType : BOOL | SBYTE | UBYTE | SHORT | USHORT | INT | UINT ;
PrimType : LONG | ULONG | FLOAT | DOUBLE | TYPE | LABEL;
UpRTypes : OPAQUE {
$$ = new PATypeHolder(OpaqueType::get());
}
| PrimType {
$$ = new PATypeHolder($1);
};
UpRTypes : SymbolicValueRef { // Named types are also simple types...
$$ = new PATypeHolder(getTypeVal($1));
};
// Include derived types in the Types production.
//
UpRTypes : '\\' EUINT64VAL { // Type UpReference
if ($2 > (uint64_t)INT64_MAX) ThrowException("Value out of range!");
OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder
UpRefs.push_back(make_pair((unsigned)$2, OT)); // Add to vector...
$$ = new PATypeHolder(OT);
UR_OUT("New Upreference!\n");
}
| UpRTypesV '(' ArgTypeListI ')' { // Function derived type?
vector<const Type*> Params;
mapto($3->begin(), $3->end(), std::back_inserter(Params),
std::mem_fun_ref(&PATypeHandle<Type>::get));
bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
if (isVarArg) Params.pop_back();
$$ = new PATypeHolder(HandleUpRefs(FunctionType::get(*$1,Params,isVarArg)));
delete $3; // Delete the argument list
delete $1; // Delete the old type handle
}
| '[' EUINT64VAL 'x' UpRTypes ']' { // Sized array type?
$$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2)));
delete $4;
}
| '{' TypeListI '}' { // Structure type?
vector<const Type*> Elements;
mapto($2->begin(), $2->end(), std::back_inserter(Elements),
std::mem_fun_ref(&PATypeHandle<Type>::get));
$$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements)));
delete $2;
}
| '{' '}' { // Empty structure type?
$$ = new PATypeHolder(StructType::get(vector<const Type*>()));
}
| UpRTypes '*' { // Pointer type?
$$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1)));
delete $1;
};
// TypeList - Used for struct declarations and as a basis for function type
// declaration type lists
//
TypeListI : UpRTypes {
$$ = new list<PATypeHolder>();
$$->push_back(*$1); delete $1;
}
| TypeListI ',' UpRTypes {
($$=$1)->push_back(*$3); delete $3;
};
// ArgTypeList - List of types for a function type declaration...
ArgTypeListI : TypeListI
| TypeListI ',' DOTDOTDOT {
($$=$1)->push_back(Type::VoidTy);
}
| DOTDOTDOT {
($$ = new list<PATypeHolder>())->push_back(Type::VoidTy);
}
| /*empty*/ {
$$ = new list<PATypeHolder>();
};
// ConstVal - The various declarations that go into the constant pool. This
// production is used ONLY to represent constants that show up AFTER a 'const',
// 'constant' or 'global' token at global scope. Constants that can be inlined
// into other expressions (such as integers and constexprs) are handled by the
// ResolvedVal, ValueRef and ConstValueRef productions.
//
ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
const ArrayType *ATy = dyn_cast<const ArrayType>($1->get());
if (ATy == 0)
ThrowException("Cannot make array constant with type: '" +
(*$1)->getDescription() + "'!");
const Type *ETy = ATy->getElementType();
int NumElements = ATy->getNumElements();
// Verify that we have the correct size...
if (NumElements != -1 && NumElements != (int)$3->size())
ThrowException("Type mismatch: constant sized array initialized with " +
utostr($3->size()) + " arguments, but has size of " +
itostr(NumElements) + "!");
// Verify all elements are correct type!
for (unsigned i = 0; i < $3->size(); i++) {
if (ETy != (*$3)[i]->getType())
ThrowException("Element #" + utostr(i) + " is not of type '" +
ETy->getDescription() +"' as required!\nIt is of type '"+
(*$3)[i]->getType()->getDescription() + "'.");
}
$$ = ConstantArray::get(ATy, *$3);
delete $1; delete $3;
}
| Types '[' ']' {
const ArrayType *ATy = dyn_cast<const ArrayType>($1->get());
if (ATy == 0)
ThrowException("Cannot make array constant with type: '" +
(*$1)->getDescription() + "'!");
int NumElements = ATy->getNumElements();
if (NumElements != -1 && NumElements != 0)
ThrowException("Type mismatch: constant sized array initialized with 0"
" arguments, but has size of " + itostr(NumElements) +"!");
$$ = ConstantArray::get(ATy, vector<Constant*>());
delete $1;
}
| Types 'c' STRINGCONSTANT {
const ArrayType *ATy = dyn_cast<const ArrayType>($1->get());
if (ATy == 0)
ThrowException("Cannot make array constant with type: '" +
(*$1)->getDescription() + "'!");
int NumElements = ATy->getNumElements();
const Type *ETy = ATy->getElementType();
char *EndStr = UnEscapeLexed($3, true);
if (NumElements != -1 && NumElements != (EndStr-$3))
ThrowException("Can't build string constant of size " +
itostr((int)(EndStr-$3)) +
" when array has size " + itostr(NumElements) + "!");
vector<Constant*> Vals;
if (ETy == Type::SByteTy) {
for (char *C = $3; C != EndStr; ++C)
Vals.push_back(ConstantSInt::get(ETy, *C));
} else if (ETy == Type::UByteTy) {
for (char *C = $3; C != EndStr; ++C)
Vals.push_back(ConstantUInt::get(ETy, *C));
} else {
free($3);
ThrowException("Cannot build string arrays of non byte sized elements!");
}
free($3);
$$ = ConstantArray::get(ATy, Vals);
delete $1;
}
| Types '{' ConstVector '}' {
const StructType *STy = dyn_cast<const StructType>($1->get());
if (STy == 0)
ThrowException("Cannot make struct constant with type: '" +
(*$1)->getDescription() + "'!");
// FIXME: TODO: Check to see that the constants are compatible with the type
// initializer!
$$ = ConstantStruct::get(STy, *$3);
delete $1; delete $3;
}
| Types NULL_TOK {
const PointerType *PTy = dyn_cast<const PointerType>($1->get());
if (PTy == 0)
ThrowException("Cannot make null pointer constant with type: '" +
(*$1)->getDescription() + "'!");
$$ = ConstantPointerNull::get(PTy);
delete $1;
}
| Types SymbolicValueRef {
const PointerType *Ty = dyn_cast<const PointerType>($1->get());
if (Ty == 0)
ThrowException("Global const reference must be a pointer type!");
// ConstExprs can exist in the body of a function, thus creating
// ConstantPointerRefs whenever they refer to a variable. Because we are in
// the context of a function, getValNonImprovising will search the functions
// symbol table instead of the module symbol table for the global symbol,
// which throws things all off. To get around this, we just tell
// getValNonImprovising that we are at global scope here.
//
Function *SavedCurFn = CurMeth.CurrentFunction;
CurMeth.CurrentFunction = 0;
Value *V = getValNonImprovising(Ty, $2);
CurMeth.CurrentFunction = SavedCurFn;
// If this is an initializer for a constant pointer, which is referencing a
// (currently) undefined variable, create a stub now that shall be replaced
// in the future with the right type of variable.
//
if (V == 0) {
assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!");
const PointerType *PT = cast<PointerType>(Ty);
// First check to see if the forward references value is already created!
PerModuleInfo::GlobalRefsType::iterator I =
CurModule.GlobalRefs.find(make_pair(PT, $2));
if (I != CurModule.GlobalRefs.end()) {
V = I->second; // Placeholder already exists, use it...
} else {
// TODO: Include line number info by creating a subclass of
// TODO: GlobalVariable here that includes the said information!
// Create a placeholder for the global variable reference...
GlobalVariable *GV = new GlobalVariable(PT->getElementType(),
false, true);
// Keep track of the fact that we have a forward ref to recycle it
CurModule.GlobalRefs.insert(make_pair(make_pair(PT, $2), GV));
// Must temporarily push this value into the module table...
CurModule.CurrentModule->getGlobalList().push_back(GV);
V = GV;
}
}
GlobalValue *GV = cast<GlobalValue>(V);
$$ = ConstantPointerRef::get(GV);
delete $1; // Free the type handle
}
| Types ConstExpr {
if ($1->get() != $2->getType())
ThrowException("Mismatched types for constant expression!");
$$ = $2;
delete $1;
};
ConstVal : SIntType EINT64VAL { // integral constants
if (!ConstantSInt::isValueValidForType($1, $2))
ThrowException("Constant value doesn't fit in type!");
$$ = ConstantSInt::get($1, $2);
}
| UIntType EUINT64VAL { // integral constants
if (!ConstantUInt::isValueValidForType($1, $2))
ThrowException("Constant value doesn't fit in type!");
$$ = ConstantUInt::get($1, $2);
}
| BOOL TRUE { // Boolean constants
$$ = ConstantBool::True;
}
| BOOL FALSE { // Boolean constants
$$ = ConstantBool::False;
}
| FPType FPVAL { // Float & Double constants
$$ = ConstantFP::get($1, $2);
};
ConstExpr: CAST '(' ConstVal TO Types ')' {
$$ = ConstantExpr::getCast($3, $5->get());
delete $5;
}
| GETELEMENTPTR '(' ConstVal IndexList ')' {
if (!isa<PointerType>($3->getType()))
ThrowException("GetElementPtr requires a pointer operand!");
const Type *IdxTy =
GetElementPtrInst::getIndexedType($3->getType(), *$4, true);
if (!IdxTy)
ThrowException("Index list invalid for constant getelementptr!");
vector<Constant*> IdxVec;
for (unsigned i = 0, e = $4->size(); i != e; ++i)
if (Constant *C = dyn_cast<Constant>((*$4)[i]))
IdxVec.push_back(C);
else
ThrowException("Indices to constant getelementptr must be constants!");
delete $4;
$$ = ConstantExpr::getGetElementPtr($3, IdxVec);
}
| BinaryOps '(' ConstVal ',' ConstVal ')' {
if ($3->getType() != $5->getType())
ThrowException("Binary operator types must match!");
$$ = ConstantExpr::get($1, $3, $5);
}
| ShiftOps '(' ConstVal ',' ConstVal ')' {
if ($5->getType() != Type::UByteTy)
ThrowException("Shift count for shift constant must be unsigned byte!");
$$ = ConstantExpr::get($1, $3, $5);
};
// ConstVector - A list of comma seperated constants.
ConstVector : ConstVector ',' ConstVal {
($$ = $1)->push_back($3);
}
| ConstVal {
$$ = new vector<Constant*>();
$$->push_back($1);
};
// GlobalType - Match either GLOBAL or CONSTANT for global declarations...
GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; };
//===----------------------------------------------------------------------===//
// Rules to match Modules
//===----------------------------------------------------------------------===//
// Module rule: Capture the result of parsing the whole file into a result
// variable...
//
Module : FunctionList {
$$ = ParserResult = $1;
CurModule.ModuleDone();
};
// FunctionList - A list of functions, preceeded by a constant pool.
//
FunctionList : FunctionList Function {
$$ = $1;
assert($2->getParent() == 0 && "Function already in module!");
$1->getFunctionList().push_back($2);
CurMeth.FunctionDone();
}
| FunctionList FunctionProto {
$$ = $1;
}
| FunctionList IMPLEMENTATION {
$$ = $1;
}
| ConstPool {
$$ = CurModule.CurrentModule;
// Resolve circular types before we parse the body of the module
ResolveTypes(CurModule.LateResolveTypes);
};
// ConstPool - Constants with optional names assigned to them.
ConstPool : ConstPool OptAssign CONST ConstVal {
if (setValueName($4, $2)) { assert(0 && "No redefinitions allowed!"); }
InsertValue($4);
}
| ConstPool OptAssign TYPE TypesV { // Types can be defined in the const pool
// Eagerly resolve types. This is not an optimization, this is a
// requirement that is due to the fact that we could have this:
//
// %list = type { %list * }
// %list = type { %list * } ; repeated type decl
//
// If types are not resolved eagerly, then the two types will not be
// determined to be the same type!
//
ResolveTypeTo($2, $4->get());
// TODO: FIXME when Type are not const
if (!setValueName(const_cast<Type*>($4->get()), $2)) {
// If this is not a redefinition of a type...
if (!$2) {
InsertType($4->get(),
inFunctionScope() ? CurMeth.Types : CurModule.Types);
}
}
delete $4;
}
| ConstPool FunctionProto { // Function prototypes can be in const pool
}
| ConstPool OptAssign OptInternal GlobalType ConstVal {
const Type *Ty = $5->getType();
// Global declarations appear in Constant Pool
Constant *Initializer = $5;
if (Initializer == 0)
ThrowException("Global value initializer is not a constant!");
GlobalVariable *GV = new GlobalVariable(Ty, $4, $3, Initializer);
if (!setValueName(GV, $2)) { // If not redefining...
CurModule.CurrentModule->getGlobalList().push_back(GV);
int Slot = InsertValue(GV, CurModule.Values);
if (Slot != -1) {
CurModule.DeclareNewGlobalValue(GV, ValID::create(Slot));
} else {
CurModule.DeclareNewGlobalValue(GV, ValID::create(
(char*)GV->getName().c_str()));
}
}
}
| ConstPool OptAssign OptInternal EXTERNAL GlobalType Types {
const Type *Ty = *$6;
// Global declarations appear in Constant Pool
GlobalVariable *GV = new GlobalVariable(Ty, $5, $3);
if (!setValueName(GV, $2)) { // If not redefining...
CurModule.CurrentModule->getGlobalList().push_back(GV);
int Slot = InsertValue(GV, CurModule.Values);
if (Slot != -1) {
CurModule.DeclareNewGlobalValue(GV, ValID::create(Slot));
} else {
assert(GV->hasName() && "Not named and not numbered!?");
CurModule.DeclareNewGlobalValue(GV, ValID::create(
(char*)GV->getName().c_str()));
}
}
delete $6;
}
| /* empty: end of list */ {
};
//===----------------------------------------------------------------------===//
// Rules to match Function Headers
//===----------------------------------------------------------------------===//
OptVAR_ID : VAR_ID | /*empty*/ { $$ = 0; };
ArgVal : Types OptVAR_ID {
if (*$1 == Type::VoidTy)
ThrowException("void typed arguments are invalid!");
$$ = new pair<PATypeHolder*, char*>($1, $2);
};
ArgListH : ArgListH ',' ArgVal {
$$ = $1;
$1->push_back(*$3);
delete $3;
}
| ArgVal {
$$ = new vector<pair<PATypeHolder*,char*> >();
$$->push_back(*$1);
delete $1;
};
ArgList : ArgListH {
$$ = $1;
}
| ArgListH ',' DOTDOTDOT {
$$ = $1;
$$->push_back(pair<PATypeHolder*, char*>(new PATypeHolder(Type::VoidTy),0));
}
| DOTDOTDOT {
$$ = new vector<pair<PATypeHolder*,char*> >();
$$->push_back(pair<PATypeHolder*, char*>(new PATypeHolder(Type::VoidTy),0));
}
| /* empty */ {
$$ = 0;
};
FuncName : VAR_ID | STRINGCONSTANT;
FunctionHeaderH : OptInternal TypesV FuncName '(' ArgList ')' {
UnEscapeLexed($3);
string FunctionName($3);
vector<const Type*> ParamTypeList;
if ($5) { // If there are arguments...
for (vector<pair<PATypeHolder*,char*> >::iterator I = $5->begin();
I != $5->end(); ++I)
ParamTypeList.push_back(I->first->get());
}
bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy;
if (isVarArg) ParamTypeList.pop_back();
const FunctionType *FT = FunctionType::get(*$2, ParamTypeList, isVarArg);
const PointerType *PFT = PointerType::get(FT);
delete $2;
Function *Fn = 0;
// Is the function already in symtab?
if ((Fn = CurModule.CurrentModule->getFunction(FunctionName, FT))) {
// Yes it is. If this is the case, either we need to be a forward decl,
// or it needs to be.
if (!CurMeth.isDeclare && !Fn->isExternal())
ThrowException("Redefinition of function '" + FunctionName + "'!");
// Make sure that we keep track of the internal marker, even if there was
// a previous "declare".
if ($1)
Fn->setInternalLinkage(true);
// If we found a preexisting function prototype, remove it from the
// module, so that we don't get spurious conflicts with global & local
// variables.
//
CurModule.CurrentModule->getFunctionList().remove(Fn);
// Make sure to strip off any argument names so we can't get conflicts...
for (Function::aiterator AI = Fn->abegin(), AE = Fn->aend(); AI != AE; ++AI)
AI->setName("");
} else { // Not already defined?
Fn = new Function(FT, $1, FunctionName);
InsertValue(Fn, CurModule.Values);
CurModule.DeclareNewGlobalValue(Fn, ValID::create($3));
}
free($3); // Free strdup'd memory!
CurMeth.FunctionStart(Fn);
// Add all of the arguments we parsed to the function...
if ($5) { // Is null if empty...
if (isVarArg) { // Nuke the last entry
assert($5->back().first->get() == Type::VoidTy && $5->back().second == 0&&
"Not a varargs marker!");
delete $5->back().first;
$5->pop_back(); // Delete the last entry
}
Function::aiterator ArgIt = Fn->abegin();
for (vector<pair<PATypeHolder*, char*> >::iterator I = $5->begin();
I != $5->end(); ++I, ++ArgIt) {
delete I->first; // Delete the typeholder...
if (setValueName(ArgIt, I->second)) // Insert arg into symtab...
assert(0 && "No arg redef allowed!");
InsertValue(ArgIt);
}
delete $5; // We're now done with the argument list
}
};
BEGIN : BEGINTOK | '{'; // Allow BEGIN or '{' to start a function
FunctionHeader : FunctionHeaderH BEGIN {
$$ = CurMeth.CurrentFunction;
// Resolve circular types before we parse the body of the function.
ResolveTypes(CurMeth.LateResolveTypes);
};
END : ENDTOK | '}'; // Allow end of '}' to end a function
Function : BasicBlockList END {
$$ = $1;
};
FunctionProto : DECLARE { CurMeth.isDeclare = true; } FunctionHeaderH {
$$ = CurMeth.CurrentFunction;
assert($$->getParent() == 0 && "Function already in module!");
CurModule.CurrentModule->getFunctionList().push_back($$);
CurMeth.FunctionDone();
};
//===----------------------------------------------------------------------===//
// Rules to match Basic Blocks
//===----------------------------------------------------------------------===//
ConstValueRef : ESINT64VAL { // A reference to a direct constant
$$ = ValID::create($1);
}
| EUINT64VAL {
$$ = ValID::create($1);
}
| FPVAL { // Perhaps it's an FP constant?
$$ = ValID::create($1);
}
| TRUE {
$$ = ValID::create(ConstantBool::True);
}
| FALSE {
$$ = ValID::create(ConstantBool::False);
}
| NULL_TOK {
$$ = ValID::createNull();
}
| ConstExpr {
$$ = ValID::create($1);
};
// SymbolicValueRef - Reference to one of two ways of symbolically refering to
// another value.
//
SymbolicValueRef : INTVAL { // Is it an integer reference...?
$$ = ValID::create($1);
}
| VAR_ID { // Is it a named reference...?
$$ = ValID::create($1);
};
// ValueRef - A reference to a definition... either constant or symbolic
ValueRef : SymbolicValueRef | ConstValueRef;
// ResolvedVal - a <type> <value> pair. This is used only in cases where the
// type immediately preceeds the value reference, and allows complex constant
// pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
ResolvedVal : Types ValueRef {
$$ = getVal(*$1, $2); delete $1;
};
BasicBlockList : BasicBlockList BasicBlock {
($$ = $1)->getBasicBlockList().push_back($2);
}
| FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks
($$ = $1)->getBasicBlockList().push_back($2);
};
// Basic blocks are terminated by branching instructions:
// br, br/cc, switch, ret
//
BasicBlock : InstructionList OptAssign BBTerminatorInst {
if (setValueName($3, $2)) { assert(0 && "No redefn allowed!"); }
InsertValue($3);
$1->getInstList().push_back($3);
InsertValue($1);
$$ = $1;
}
| LABELSTR InstructionList OptAssign BBTerminatorInst {
if (setValueName($4, $3)) { assert(0 && "No redefn allowed!"); }
InsertValue($4);
$2->getInstList().push_back($4);
if (setValueName($2, $1)) { assert(0 && "No label redef allowed!"); }
InsertValue($2);
$$ = $2;
};
InstructionList : InstructionList Inst {
$1->getInstList().push_back($2);
$$ = $1;
}
| /* empty */ {
$$ = CurBB = new BasicBlock();
};
BBTerminatorInst : RET ResolvedVal { // Return with a result...
$$ = new ReturnInst($2);
}
| RET VOID { // Return with no result...
$$ = new ReturnInst();
}
| BR LABEL ValueRef { // Unconditional Branch...
$$ = new BranchInst(cast<BasicBlock>(getVal(Type::LabelTy, $3)));
} // Conditional Branch...
| BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {
$$ = new BranchInst(cast<BasicBlock>(getVal(Type::LabelTy, $6)),
cast<BasicBlock>(getVal(Type::LabelTy, $9)),
getVal(Type::BoolTy, $3));
}
| SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
SwitchInst *S = new SwitchInst(getVal($2, $3),
cast<BasicBlock>(getVal(Type::LabelTy, $6)));
$$ = S;
vector<pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
E = $8->end();
for (; I != E; ++I)
S->dest_push_back(I->first, I->second);
}
| INVOKE TypesV ValueRef '(' ValueRefListE ')' TO ResolvedVal
EXCEPT ResolvedVal {
const PointerType *PFTy;
const FunctionType *Ty;
if (!(PFTy = dyn_cast<PointerType>($2->get())) ||
!(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
// Pull out the types of all of the arguments...
vector<const Type*> ParamTypes;
if ($5) {
for (vector<Value*>::iterator I = $5->begin(), E = $5->end(); I!=E; ++I)
ParamTypes.push_back((*I)->getType());
}
bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
if (isVarArg) ParamTypes.pop_back();
Ty = FunctionType::get($2->get(), ParamTypes, isVarArg);
PFTy = PointerType::get(Ty);
}
delete $2;
Value *V = getVal(PFTy, $3); // Get the function we're calling...
BasicBlock *Normal = dyn_cast<BasicBlock>($8);
BasicBlock *Except = dyn_cast<BasicBlock>($10);
if (Normal == 0 || Except == 0)
ThrowException("Invoke instruction without label destinations!");
// Create the call node...
if (!$5) { // Has no arguments?
$$ = new InvokeInst(V, Normal, Except, vector<Value*>());
} else { // Has arguments?
// Loop through FunctionType's arguments and ensure they are specified
// correctly!
//
FunctionType::ParamTypes::const_iterator I = Ty->getParamTypes().begin();
FunctionType::ParamTypes::const_iterator E = Ty->getParamTypes().end();
vector<Value*>::iterator ArgI = $5->begin(), ArgE = $5->end();
for (; ArgI != ArgE && I != E; ++ArgI, ++I)
if ((*ArgI)->getType() != *I)
ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
(*I)->getDescription() + "'!");
if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
ThrowException("Invalid number of parameters detected!");
$$ = new InvokeInst(V, Normal, Except, *$5);
}
delete $5;
};
JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
$$ = $1;
Constant *V = cast<Constant>(getValNonImprovising($2, $3));
if (V == 0)
ThrowException("May only switch on a constant pool value!");
$$->push_back(make_pair(V, cast<BasicBlock>(getVal($5, $6))));
}
| IntType ConstValueRef ',' LABEL ValueRef {
$$ = new vector<pair<Constant*, BasicBlock*> >();
Constant *V = cast<Constant>(getValNonImprovising($1, $2));
if (V == 0)
ThrowException("May only switch on a constant pool value!");
$$->push_back(make_pair(V, cast<BasicBlock>(getVal($4, $5))));
};
Inst : OptAssign InstVal {
// Is this definition named?? if so, assign the name...
if (setValueName($2, $1)) { assert(0 && "No redefin allowed!"); }
InsertValue($2);
$$ = $2;
};
PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes
$$ = new list<pair<Value*, BasicBlock*> >();
$$->push_back(make_pair(getVal(*$1, $3),
cast<BasicBlock>(getVal(Type::LabelTy, $5))));
delete $1;
}
| PHIList ',' '[' ValueRef ',' ValueRef ']' {
$$ = $1;
$1->push_back(make_pair(getVal($1->front().first->getType(), $4),
cast<BasicBlock>(getVal(Type::LabelTy, $6))));
};
ValueRefList : ResolvedVal { // Used for call statements, and memory insts...
$$ = new vector<Value*>();
$$->push_back($1);
}
| ValueRefList ',' ResolvedVal {
$$ = $1;
$1->push_back($3);
};
// ValueRefListE - Just like ValueRefList, except that it may also be empty!
ValueRefListE : ValueRefList | /*empty*/ { $$ = 0; };
InstVal : ArithmeticOps Types ValueRef ',' ValueRef {
if (!(*$2)->isInteger() && !(*$2)->isFloatingPoint())
ThrowException("Arithmetic operator requires integer or FP operands!");
$$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5));
if ($$ == 0)
ThrowException("binary operator returned null!");
delete $2;
}
| LogicalOps Types ValueRef ',' ValueRef {
if (!(*$2)->isIntegral())
ThrowException("Logical operator requires integral operands!");
$$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5));
if ($$ == 0)
ThrowException("binary operator returned null!");
delete $2;
}
| SetCondOps Types ValueRef ',' ValueRef {
$$ = new SetCondInst($1, getVal(*$2, $3), getVal(*$2, $5));
if ($$ == 0)
ThrowException("binary operator returned null!");
delete $2;
}
| NOT ResolvedVal {
std::cerr << "WARNING: Use of eliminated 'not' instruction:"
<< " Replacing with 'xor'.\n";
Value *Ones = ConstantIntegral::getAllOnesValue($2->getType());
if (Ones == 0)
ThrowException("Expected integral type for not instruction!");
$$ = BinaryOperator::create(Instruction::Xor, $2, Ones);
if ($$ == 0)
ThrowException("Could not create a xor instruction!");
}
| ShiftOps ResolvedVal ',' ResolvedVal {
if ($4->getType() != Type::UByteTy)
ThrowException("Shift amount must be ubyte!");
$$ = new ShiftInst($1, $2, $4);
}
| CAST ResolvedVal TO Types {
$$ = new CastInst($2, *$4);
delete $4;
}
| PHI PHIList {
const Type *Ty = $2->front().first->getType();
$$ = new PHINode(Ty);
while ($2->begin() != $2->end()) {
if ($2->front().first->getType() != Ty)
ThrowException("All elements of a PHI node must be of the same type!");
cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second);
$2->pop_front();
}
delete $2; // Free the list...
}
| CALL TypesV ValueRef '(' ValueRefListE ')' {
const PointerType *PFTy;
const FunctionType *Ty;
if (!(PFTy = dyn_cast<PointerType>($2->get())) ||
!(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
// Pull out the types of all of the arguments...
vector<const Type*> ParamTypes;
if ($5) {
for (vector<Value*>::iterator I = $5->begin(), E = $5->end(); I!=E; ++I)
ParamTypes.push_back((*I)->getType());
}
bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
if (isVarArg) ParamTypes.pop_back();
Ty = FunctionType::get($2->get(), ParamTypes, isVarArg);
PFTy = PointerType::get(Ty);
}
delete $2;
Value *V = getVal(PFTy, $3); // Get the function we're calling...
// Create the call node...
if (!$5) { // Has no arguments?
// Make sure no arguments is a good thing!
if (Ty->getNumParams() != 0)
ThrowException("No arguments passed to a function that "
"expects arguments!");
$$ = new CallInst(V, vector<Value*>());
} else { // Has arguments?
// Loop through FunctionType's arguments and ensure they are specified
// correctly!
//
FunctionType::ParamTypes::const_iterator I = Ty->getParamTypes().begin();
FunctionType::ParamTypes::const_iterator E = Ty->getParamTypes().end();
vector<Value*>::iterator ArgI = $5->begin(), ArgE = $5->end();
for (; ArgI != ArgE && I != E; ++ArgI, ++I)
if ((*ArgI)->getType() != *I)
ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
(*I)->getDescription() + "'!");
if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
ThrowException("Invalid number of parameters detected!");
$$ = new CallInst(V, *$5);
}
delete $5;
}
| MemoryInst {
$$ = $1;
};
// IndexList - List of indices for GEP based instructions...
IndexList : ',' ValueRefList {
$$ = $2;
} | /* empty */ {
$$ = new vector<Value*>();
};
MemoryInst : MALLOC Types {
$$ = new MallocInst(*$2);
delete $2;
}
| MALLOC Types ',' UINT ValueRef {
$$ = new MallocInst(*$2, getVal($4, $5));
delete $2;
}
| ALLOCA Types {
$$ = new AllocaInst(*$2);
delete $2;
}
| ALLOCA Types ',' UINT ValueRef {
$$ = new AllocaInst(*$2, getVal($4, $5));
delete $2;
}
| FREE ResolvedVal {
if (!isa<PointerType>($2->getType()))
ThrowException("Trying to free nonpointer type " +
$2->getType()->getDescription() + "!");
$$ = new FreeInst($2);
}
| LOAD Types ValueRef IndexList {
if (!isa<PointerType>($2->get()))
ThrowException("Can't load from nonpointer type: " +
(*$2)->getDescription());
if (GetElementPtrInst::getIndexedType(*$2, *$4) == 0)
ThrowException("Invalid indices for load instruction!");
Value *Src = getVal(*$2, $3);
if (!$4->empty()) {
std::cerr << "WARNING: Use of index load instruction:"
<< " replacing with getelementptr/load pair.\n";
// Create a getelementptr hack instruction to do the right thing for
// compatibility.
//
Instruction *I = new GetElementPtrInst(Src, *$4);
CurBB->getInstList().push_back(I);
Src = I;
}
$$ = new LoadInst(Src);
delete $4; // Free the vector...
delete $2;
}
| STORE ResolvedVal ',' Types ValueRef IndexList {
if (!isa<PointerType>($4->get()))
ThrowException("Can't store to a nonpointer type: " +
(*$4)->getDescription());
const Type *ElTy = GetElementPtrInst::getIndexedType(*$4, *$6);
if (ElTy == 0)
ThrowException("Can't store into that field list!");
if (ElTy != $2->getType())
ThrowException("Can't store '" + $2->getType()->getDescription() +
"' into space of type '" + ElTy->getDescription() + "'!");
Value *Ptr = getVal(*$4, $5);
if (!$6->empty()) {
std::cerr << "WARNING: Use of index store instruction:"
<< " replacing with getelementptr/store pair.\n";
// Create a getelementptr hack instruction to do the right thing for
// compatibility.
//
Instruction *I = new GetElementPtrInst(Ptr, *$6);
CurBB->getInstList().push_back(I);
Ptr = I;
}
$$ = new StoreInst($2, Ptr);
delete $4; delete $6;
}
| GETELEMENTPTR Types ValueRef IndexList {
for (unsigned i = 0, e = $4->size(); i != e; ++i) {
if ((*$4)[i]->getType() == Type::UIntTy) {
std::cerr << "WARNING: Use of uint type indexes to getelementptr "
<< "instruction: replacing with casts to long type.\n";
Instruction *I = new CastInst((*$4)[i], Type::LongTy);
CurBB->getInstList().push_back(I);
(*$4)[i] = I;
}
}
if (!isa<PointerType>($2->get()))
ThrowException("getelementptr insn requires pointer operand!");
if (!GetElementPtrInst::getIndexedType(*$2, *$4, true))
ThrowException("Can't get element ptr '" + (*$2)->getDescription()+ "'!");
$$ = new GetElementPtrInst(getVal(*$2, $3), *$4);
delete $2; delete $4;
};
%%
int yyerror(const char *ErrorMsg) {
string where = string((CurFilename == "-")? string("<stdin>") : CurFilename)
+ ":" + utostr((unsigned) llvmAsmlineno) + ": ";
string errMsg = string(ErrorMsg) + string("\n") + where + " while reading ";
if (yychar == YYEMPTY)
errMsg += "end-of-file.";
else
errMsg += "token: '" + string(llvmAsmtext, llvmAsmleng) + "'";
ThrowException(errMsg);
return 0;
}