1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 11:13:28 +01:00
llvm-mirror/test/CodeGen/SystemZ/risbg-01.ll
Jonas Paulsson b3c888286c [SystemZ] set 'guessInstructionProperties = 0' and set flags as needed.
This has proven a healthy exercise, as many cases of incorrect instruction
flags were corrected in the process. As part of this, IntrWriteMem was added
to several SystemZ instrinsics.

Furthermore, a bug was exposed in TwoAddress with this change (as incorrect
hasSideEffects flags were removed and instructions could now be sunk), and
the test case for that bugfix (r319646) is included here as
test/CodeGen/SystemZ/twoaddr-sink.ll.

One temporary test regression (one extra copy) which will hopefully go away
in upcoming patches for similar cases:
test/CodeGen/SystemZ/vec-trunc-to-i1.ll

Review: Ulrich Weigand.
https://reviews.llvm.org/D40437

llvm-svn: 319756
2017-12-05 11:24:39 +00:00

506 lines
12 KiB
LLVM

; Test sequences that can use RISBG with a zeroed first operand.
; The tests here assume that RISBLG isn't available.
;
; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z10 | FileCheck %s
; Test an extraction of bit 0 from a right-shifted value.
define i32 @f1(i32 %foo) {
; CHECK-LABEL: f1:
; CHECK: risbg %r2, %r2, 63, 191, 54
; CHECK: br %r14
%shr = lshr i32 %foo, 10
%and = and i32 %shr, 1
ret i32 %and
}
; ...and again with i64.
define i64 @f2(i64 %foo) {
; CHECK-LABEL: f2:
; CHECK: risbg %r2, %r2, 63, 191, 54
; CHECK: br %r14
%shr = lshr i64 %foo, 10
%and = and i64 %shr, 1
ret i64 %and
}
; Test an extraction of other bits from a right-shifted value.
define i32 @f3(i32 %foo) {
; CHECK-LABEL: f3:
; CHECK: risbg %r2, %r2, 60, 189, 42
; CHECK: br %r14
%shr = lshr i32 %foo, 22
%and = and i32 %shr, 12
ret i32 %and
}
; ...and again with i64.
define i64 @f4(i64 %foo) {
; CHECK-LABEL: f4:
; CHECK: risbg %r2, %r2, 60, 189, 42
; CHECK: br %r14
%shr = lshr i64 %foo, 22
%and = and i64 %shr, 12
ret i64 %and
}
; Test an extraction of most bits from a right-shifted value.
; The range should be reduced to exclude the zeroed high bits.
define i32 @f5(i32 %foo) {
; CHECK-LABEL: f5:
; CHECK: risbg %r2, %r2, 34, 188, 62
; CHECK: br %r14
%shr = lshr i32 %foo, 2
%and = and i32 %shr, -8
ret i32 %and
}
; ...and again with i64.
define i64 @f6(i64 %foo) {
; CHECK-LABEL: f6:
; CHECK: risbg %r2, %r2, 2, 188, 62
; CHECK: br %r14
%shr = lshr i64 %foo, 2
%and = and i64 %shr, -8
ret i64 %and
}
; Try the next value up (mask ....1111001). This needs a separate shift
; and mask.
define i32 @f7(i32 %foo) {
; CHECK-LABEL: f7:
; CHECK: srl %r2, 2
; CHECK: nill %r2, 65529
; CHECK: br %r14
%shr = lshr i32 %foo, 2
%and = and i32 %shr, -7
ret i32 %and
}
; ...and again with i64.
define i64 @f8(i64 %foo) {
; CHECK-LABEL: f8:
; CHECK: srlg %r2, %r2, 2
; CHECK: nill %r2, 65529
; CHECK: br %r14
%shr = lshr i64 %foo, 2
%and = and i64 %shr, -7
ret i64 %and
}
; Test an extraction of bits from a left-shifted value. The range should
; be reduced to exclude the zeroed low bits.
define i32 @f9(i32 %foo) {
; CHECK-LABEL: f9:
; CHECK: risbg %r2, %r2, 56, 189, 2
; CHECK: br %r14
%shr = shl i32 %foo, 2
%and = and i32 %shr, 255
ret i32 %and
}
; ...and again with i64.
define i64 @f10(i64 %foo) {
; CHECK-LABEL: f10:
; CHECK: risbg %r2, %r2, 56, 189, 2
; CHECK: br %r14
%shr = shl i64 %foo, 2
%and = and i64 %shr, 255
ret i64 %and
}
; Try a wrap-around mask (mask ....111100001111). This needs a separate shift
; and mask.
define i32 @f11(i32 %foo) {
; CHECK-LABEL: f11:
; CHECK: sll %r2, 2
; CHECK: nill %r2, 65295
; CHECK: br %r14
%shr = shl i32 %foo, 2
%and = and i32 %shr, -241
ret i32 %and
}
; ...and again with i64.
define i64 @f12(i64 %foo) {
; CHECK-LABEL: f12:
; CHECK: sllg %r2, %r2, 2
; CHECK: nill %r2, 65295
; CHECK: br %r14
%shr = shl i64 %foo, 2
%and = and i64 %shr, -241
ret i64 %and
}
; Test an extraction from a rotated value, no mask wraparound.
; This is equivalent to the lshr case, because the bits from the
; shl are not used.
define i32 @f13(i32 %foo) {
; CHECK-LABEL: f13:
; CHECK: risbg %r2, %r2, 56, 188, 46
; CHECK: br %r14
%parta = shl i32 %foo, 14
%partb = lshr i32 %foo, 18
%rotl = or i32 %parta, %partb
%and = and i32 %rotl, 248
ret i32 %and
}
; ...and again with i64.
define i64 @f14(i64 %foo) {
; CHECK-LABEL: f14:
; CHECK: risbg %r2, %r2, 56, 188, 14
; CHECK: br %r14
%parta = shl i64 %foo, 14
%partb = lshr i64 %foo, 50
%rotl = or i64 %parta, %partb
%and = and i64 %rotl, 248
ret i64 %and
}
; Try a case in which only the bits from the shl are used.
define i32 @f15(i32 %foo) {
; CHECK-LABEL: f15:
; CHECK: risbg %r2, %r2, 47, 177, 14
; CHECK: br %r14
%parta = shl i32 %foo, 14
%partb = lshr i32 %foo, 18
%rotl = or i32 %parta, %partb
%and = and i32 %rotl, 114688
ret i32 %and
}
; ...and again with i64.
define i64 @f16(i64 %foo) {
; CHECK-LABEL: f16:
; CHECK: risbg %r2, %r2, 47, 177, 14
; CHECK: br %r14
%parta = shl i64 %foo, 14
%partb = lshr i64 %foo, 50
%rotl = or i64 %parta, %partb
%and = and i64 %rotl, 114688
ret i64 %and
}
; Test a 32-bit rotate in which both parts of the OR are needed.
; This needs a separate shift and mask.
define i32 @f17(i32 %foo) {
; CHECK-LABEL: f17:
; CHECK: rll %r2, %r2, 4
; CHECK: nilf %r2, 126
; CHECK: br %r14
%parta = shl i32 %foo, 4
%partb = lshr i32 %foo, 28
%rotl = or i32 %parta, %partb
%and = and i32 %rotl, 126
ret i32 %and
}
; ...and for i64, where RISBG should do the rotate too.
define i64 @f18(i64 %foo) {
; CHECK-LABEL: f18:
; CHECK: risbg %r2, %r2, 57, 190, 4
; CHECK: br %r14
%parta = shl i64 %foo, 4
%partb = lshr i64 %foo, 60
%rotl = or i64 %parta, %partb
%and = and i64 %rotl, 126
ret i64 %and
}
; Test an arithmetic shift right in which some of the sign bits are kept.
; This needs a separate shift and mask.
define i32 @f19(i32 %foo) {
; CHECK-LABEL: f19:
; CHECK: sra %r2, 28
; CHECK: nilf %r2, 30
; CHECK: br %r14
%shr = ashr i32 %foo, 28
%and = and i32 %shr, 30
ret i32 %and
}
; ...and again with i64. In this case RISBG is the best way of doing the AND.
define i64 @f20(i64 %foo) {
; CHECK-LABEL: f20:
; CHECK: srag [[REG:%r[0-5]]], %r2, 60
; CHECK: risbg %r2, [[REG]], 59, 190, 0
; CHECK: br %r14
%shr = ashr i64 %foo, 60
%and = and i64 %shr, 30
ret i64 %and
}
; Now try an arithmetic right shift in which the sign bits aren't needed.
; Introduce a second use of %shr so that the ashr doesn't decompose to
; an lshr.
; NOTE: the extra move to %r2 should not be needed (temporary FAIL)
define i32 @f21(i32 %foo, i32 *%dest) {
; CHECK-LABEL: f21:
; CHECK: risbg %r0, %r2, 60, 190, 36
; CHECK: lr %r2, %r0
; CHECK: br %r14
%shr = ashr i32 %foo, 28
store i32 %shr, i32 *%dest
%and = and i32 %shr, 14
ret i32 %and
}
; ...and again with i64.
define i64 @f22(i64 %foo, i64 *%dest) {
; CHECK-LABEL: f22:
; CHECK: risbg %r2, %r2, 60, 190, 4
; CHECK: br %r14
%shr = ashr i64 %foo, 60
store i64 %shr, i64 *%dest
%and = and i64 %shr, 14
ret i64 %and
}
; Check that we use RISBG for shifted values even if the AND is a
; natural zero extension.
define i64 @f23(i64 %foo) {
; CHECK-LABEL: f23:
; CHECK: risbg %r2, %r2, 56, 191, 62
; CHECK: br %r14
%shr = lshr i64 %foo, 2
%and = and i64 %shr, 255
ret i64 %and
}
; Test a case where the AND comes before a rotate. This needs a separate
; mask and rotate.
define i32 @f24(i32 %foo) {
; CHECK-LABEL: f24:
; CHECK: nilf %r2, 254
; CHECK: rll %r2, %r2, 29
; CHECK: br %r14
%and = and i32 %foo, 254
%parta = lshr i32 %and, 3
%partb = shl i32 %and, 29
%rotl = or i32 %parta, %partb
ret i32 %rotl
}
; ...and again with i64, where a single RISBG is enough.
define i64 @f25(i64 %foo) {
; CHECK-LABEL: f25:
; CHECK: risbg %r2, %r2, 57, 187, 3
; CHECK: br %r14
%and = and i64 %foo, 14
%parta = shl i64 %and, 3
%partb = lshr i64 %and, 61
%rotl = or i64 %parta, %partb
ret i64 %rotl
}
; Test a wrap-around case in which the AND comes before a rotate.
; This again needs a separate mask and rotate.
define i32 @f26(i32 %foo) {
; CHECK-LABEL: f26:
; CHECK: rll %r2, %r2, 5
; CHECK: br %r14
%and = and i32 %foo, -49
%parta = shl i32 %and, 5
%partb = lshr i32 %and, 27
%rotl = or i32 %parta, %partb
ret i32 %rotl
}
; ...and again with i64, where a single RISBG is OK.
define i64 @f27(i64 %foo) {
; CHECK-LABEL: f27:
; CHECK: risbg %r2, %r2, 55, 180, 5
; CHECK: br %r14
%and = and i64 %foo, -49
%parta = shl i64 %and, 5
%partb = lshr i64 %and, 59
%rotl = or i64 %parta, %partb
ret i64 %rotl
}
; Test a case where the AND comes before a shift left.
define i32 @f28(i32 %foo) {
; CHECK-LABEL: f28:
; CHECK: risbg %r2, %r2, 32, 173, 17
; CHECK: br %r14
%and = and i32 %foo, 32766
%shl = shl i32 %and, 17
ret i32 %shl
}
; ...and again with i64.
define i64 @f29(i64 %foo) {
; CHECK-LABEL: f29:
; CHECK: risbg %r2, %r2, 0, 141, 49
; CHECK: br %r14
%and = and i64 %foo, 32766
%shl = shl i64 %and, 49
ret i64 %shl
}
; Test the next shift up from f28, in which the mask should get shortened.
define i32 @f30(i32 %foo) {
; CHECK-LABEL: f30:
; CHECK: risbg %r2, %r2, 32, 172, 18
; CHECK: br %r14
%and = and i32 %foo, 32766
%shl = shl i32 %and, 18
ret i32 %shl
}
; ...and again with i64.
define i64 @f31(i64 %foo) {
; CHECK-LABEL: f31:
; CHECK: risbg %r2, %r2, 0, 140, 50
; CHECK: br %r14
%and = and i64 %foo, 32766
%shl = shl i64 %and, 50
ret i64 %shl
}
; Test a wrap-around case in which the shift left comes after the AND.
; We can't use RISBG for the shift in that case.
define i32 @f32(i32 %foo) {
; CHECK-LABEL: f32:
; CHECK: sll %r2
; CHECK: br %r14
%and = and i32 %foo, -7
%shl = shl i32 %and, 10
ret i32 %shl
}
; ...and again with i64.
define i64 @f33(i64 %foo) {
; CHECK-LABEL: f33:
; CHECK: sllg %r2
; CHECK: br %r14
%and = and i64 %foo, -7
%shl = shl i64 %and, 10
ret i64 %shl
}
; Test a case where the AND comes before a shift right.
define i32 @f34(i32 %foo) {
; CHECK-LABEL: f34:
; CHECK: risbg %r2, %r2, 57, 191, 55
; CHECK: br %r14
%and = and i32 %foo, 65535
%shl = lshr i32 %and, 9
ret i32 %shl
}
; ...and again with i64.
define i64 @f35(i64 %foo) {
; CHECK-LABEL: f35:
; CHECK: risbg %r2, %r2, 57, 191, 55
; CHECK: br %r14
%and = and i64 %foo, 65535
%shl = lshr i64 %and, 9
ret i64 %shl
}
; Test a wrap-around case where the AND comes before a shift right.
; We can't use RISBG for the shift in that case.
define i32 @f36(i32 %foo) {
; CHECK-LABEL: f36:
; CHECK: srl %r2
; CHECK: br %r14
%and = and i32 %foo, -25
%shl = lshr i32 %and, 1
ret i32 %shl
}
; ...and again with i64.
define i64 @f37(i64 %foo) {
; CHECK-LABEL: f37:
; CHECK: srlg %r2
; CHECK: br %r14
%and = and i64 %foo, -25
%shl = lshr i64 %and, 1
ret i64 %shl
}
; Test a combination involving a large ASHR and a shift left. We can't
; use RISBG there.
define i64 @f38(i64 %foo) {
; CHECK-LABEL: f38:
; CHECK: srag {{%r[0-5]}}
; CHECK: sllg {{%r[0-5]}}
; CHECK: br %r14
%ashr = ashr i64 %foo, 32
%shl = shl i64 %ashr, 5
ret i64 %shl
}
; Try a similar thing in which no shifted sign bits are kept.
define i64 @f39(i64 %foo, i64 *%dest) {
; CHECK-LABEL: f39:
; CHECK: srag [[REG:%r[01345]]], %r2, 35
; CHECK: risbg %r2, %r2, 33, 189, 31
; CHECK: br %r14
%ashr = ashr i64 %foo, 35
store i64 %ashr, i64 *%dest
%shl = shl i64 %ashr, 2
%and = and i64 %shl, 2147483647
ret i64 %and
}
; ...and again with the next highest shift value, where one sign bit is kept.
define i64 @f40(i64 %foo, i64 *%dest) {
; CHECK-LABEL: f40:
; CHECK: srag [[REG:%r[01345]]], %r2, 36
; CHECK: risbg %r2, [[REG]], 33, 189, 2
; CHECK: br %r14
%ashr = ashr i64 %foo, 36
store i64 %ashr, i64 *%dest
%shl = shl i64 %ashr, 2
%and = and i64 %shl, 2147483647
ret i64 %and
}
; Check a case where the result is zero-extended.
define i64 @f41(i32 %a) {
; CHECK-LABEL: f41
; CHECK: risbg %r2, %r2, 36, 191, 62
; CHECK: br %r14
%shl = shl i32 %a, 2
%shr = lshr i32 %shl, 4
%ext = zext i32 %shr to i64
ret i64 %ext
}
; In this case the sign extension is converted to a pair of 32-bit shifts,
; which is then extended to 64 bits. We previously used the wrong bit size
; when testing whether the shifted-in bits of the shift right were significant.
define i64 @f42(i1 %x) {
; CHECK-LABEL: f42:
; CHECK: nilf %r2, 1
; CHECK: lcr %r0, %r2
; CHECK: llgcr %r2, %r0
; CHECK: br %r14
%ext = sext i1 %x to i8
%ext2 = zext i8 %ext to i64
ret i64 %ext2
}
; Check that we get the case where a 64-bit shift is used by a 32-bit and.
define signext i32 @f43(i64 %x) {
; CHECK-LABEL: f43:
; CHECK: risbg [[REG:%r[0-5]]], %r2, 32, 189, 52
; CHECK: lgfr %r2, [[REG]]
%shr3 = lshr i64 %x, 12
%shr3.tr = trunc i64 %shr3 to i32
%conv = and i32 %shr3.tr, -4
ret i32 %conv
}
; Check that we don't get the case where the 32-bit and mask is not contiguous
define signext i32 @f44(i64 %x) {
; CHECK-LABEL: f44:
; CHECK: srlg [[REG:%r[0-5]]], %r2, 12
%shr4 = lshr i64 %x, 12
%conv = trunc i64 %shr4 to i32
%and = and i32 %conv, 10
ret i32 %and
}