1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00
llvm-mirror/lib/Target/Hexagon/HexagonHardwareLoops.cpp
David Blaikie e01dc73ad2 Fix a bunch more layering of CodeGen headers that are in Target
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).

llvm-svn: 318490
2017-11-17 01:07:10 +00:00

2008 lines
70 KiB
C++

//===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass identifies loops where we can generate the Hexagon hardware
// loop instruction. The hardware loop can perform loop branches with a
// zero-cycle overhead.
//
// The pattern that defines the induction variable can changed depending on
// prior optimizations. For example, the IndVarSimplify phase run by 'opt'
// normalizes induction variables, and the Loop Strength Reduction pass
// run by 'llc' may also make changes to the induction variable.
// The pattern detected by this phase is due to running Strength Reduction.
//
// Criteria for hardware loops:
// - Countable loops (w/ ind. var for a trip count)
// - Assumes loops are normalized by IndVarSimplify
// - Try inner-most loops first
// - No function calls in loops.
//
//===----------------------------------------------------------------------===//
#include "HexagonInstrInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <map>
#include <set>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "hwloops"
#ifndef NDEBUG
static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1));
// Option to create preheader only for a specific function.
static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden,
cl::init(""));
#endif
// Option to create a preheader if one doesn't exist.
static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader",
cl::Hidden, cl::init(true),
cl::desc("Add a preheader to a hardware loop if one doesn't exist"));
// Turn it off by default. If a preheader block is not created here, the
// software pipeliner may be unable to find a block suitable to serve as
// a preheader. In that case SWP will not run.
static cl::opt<bool> SpecPreheader("hwloop-spec-preheader", cl::init(false),
cl::Hidden, cl::ZeroOrMore, cl::desc("Allow speculation of preheader "
"instructions"));
STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");
namespace llvm {
FunctionPass *createHexagonHardwareLoops();
void initializeHexagonHardwareLoopsPass(PassRegistry&);
} // end namespace llvm
namespace {
class CountValue;
struct HexagonHardwareLoops : public MachineFunctionPass {
MachineLoopInfo *MLI;
MachineRegisterInfo *MRI;
MachineDominatorTree *MDT;
const HexagonInstrInfo *TII;
const HexagonRegisterInfo *TRI;
#ifndef NDEBUG
static int Counter;
#endif
public:
static char ID;
HexagonHardwareLoops() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override { return "Hexagon Hardware Loops"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
using LoopFeederMap = std::map<unsigned, MachineInstr *>;
/// Kinds of comparisons in the compare instructions.
struct Comparison {
enum Kind {
EQ = 0x01,
NE = 0x02,
L = 0x04,
G = 0x08,
U = 0x40,
LTs = L,
LEs = L | EQ,
GTs = G,
GEs = G | EQ,
LTu = L | U,
LEu = L | EQ | U,
GTu = G | U,
GEu = G | EQ | U
};
static Kind getSwappedComparison(Kind Cmp) {
assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator");
if ((Cmp & L) || (Cmp & G))
return (Kind)(Cmp ^ (L|G));
return Cmp;
}
static Kind getNegatedComparison(Kind Cmp) {
if ((Cmp & L) || (Cmp & G))
return (Kind)((Cmp ^ (L | G)) ^ EQ);
if ((Cmp & NE) || (Cmp & EQ))
return (Kind)(Cmp ^ (EQ | NE));
return (Kind)0;
}
static bool isSigned(Kind Cmp) {
return (Cmp & (L | G) && !(Cmp & U));
}
static bool isUnsigned(Kind Cmp) {
return (Cmp & U);
}
};
/// \brief Find the register that contains the loop controlling
/// induction variable.
/// If successful, it will return true and set the \p Reg, \p IVBump
/// and \p IVOp arguments. Otherwise it will return false.
/// The returned induction register is the register R that follows the
/// following induction pattern:
/// loop:
/// R = phi ..., [ R.next, LatchBlock ]
/// R.next = R + #bump
/// if (R.next < #N) goto loop
/// IVBump is the immediate value added to R, and IVOp is the instruction
/// "R.next = R + #bump".
bool findInductionRegister(MachineLoop *L, unsigned &Reg,
int64_t &IVBump, MachineInstr *&IVOp) const;
/// \brief Return the comparison kind for the specified opcode.
Comparison::Kind getComparisonKind(unsigned CondOpc,
MachineOperand *InitialValue,
const MachineOperand *Endvalue,
int64_t IVBump) const;
/// \brief Analyze the statements in a loop to determine if the loop
/// has a computable trip count and, if so, return a value that represents
/// the trip count expression.
CountValue *getLoopTripCount(MachineLoop *L,
SmallVectorImpl<MachineInstr *> &OldInsts);
/// \brief Return the expression that represents the number of times
/// a loop iterates. The function takes the operands that represent the
/// loop start value, loop end value, and induction value. Based upon
/// these operands, the function attempts to compute the trip count.
/// If the trip count is not directly available (as an immediate value,
/// or a register), the function will attempt to insert computation of it
/// to the loop's preheader.
CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start,
const MachineOperand *End, unsigned IVReg,
int64_t IVBump, Comparison::Kind Cmp) const;
/// \brief Return true if the instruction is not valid within a hardware
/// loop.
bool isInvalidLoopOperation(const MachineInstr *MI,
bool IsInnerHWLoop) const;
/// \brief Return true if the loop contains an instruction that inhibits
/// using the hardware loop.
bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const;
/// \brief Given a loop, check if we can convert it to a hardware loop.
/// If so, then perform the conversion and return true.
bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used);
/// \brief Return true if the instruction is now dead.
bool isDead(const MachineInstr *MI,
SmallVectorImpl<MachineInstr *> &DeadPhis) const;
/// \brief Remove the instruction if it is now dead.
void removeIfDead(MachineInstr *MI);
/// \brief Make sure that the "bump" instruction executes before the
/// compare. We need that for the IV fixup, so that the compare
/// instruction would not use a bumped value that has not yet been
/// defined. If the instructions are out of order, try to reorder them.
bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI);
/// \brief Return true if MO and MI pair is visited only once. If visited
/// more than once, this indicates there is recursion. In such a case,
/// return false.
bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI,
const MachineOperand *MO,
LoopFeederMap &LoopFeederPhi) const;
/// \brief Return true if the Phi may generate a value that may underflow,
/// or may wrap.
bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal,
MachineBasicBlock *MBB, MachineLoop *L,
LoopFeederMap &LoopFeederPhi) const;
/// \brief Return true if the induction variable may underflow an unsigned
/// value in the first iteration.
bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal,
const MachineOperand *EndVal,
MachineBasicBlock *MBB, MachineLoop *L,
LoopFeederMap &LoopFeederPhi) const;
/// \brief Check if the given operand has a compile-time known constant
/// value. Return true if yes, and false otherwise. When returning true, set
/// Val to the corresponding constant value.
bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const;
/// \brief Check if the operand has a compile-time known constant value.
bool isImmediate(const MachineOperand &MO) const {
int64_t V;
return checkForImmediate(MO, V);
}
/// \brief Return the immediate for the specified operand.
int64_t getImmediate(const MachineOperand &MO) const {
int64_t V;
if (!checkForImmediate(MO, V))
llvm_unreachable("Invalid operand");
return V;
}
/// \brief Reset the given machine operand to now refer to a new immediate
/// value. Assumes that the operand was already referencing an immediate
/// value, either directly, or via a register.
void setImmediate(MachineOperand &MO, int64_t Val);
/// \brief Fix the data flow of the induction variable.
/// The desired flow is: phi ---> bump -+-> comparison-in-latch.
/// |
/// +-> back to phi
/// where "bump" is the increment of the induction variable:
/// iv = iv + #const.
/// Due to some prior code transformations, the actual flow may look
/// like this:
/// phi -+-> bump ---> back to phi
/// |
/// +-> comparison-in-latch (against upper_bound-bump),
/// i.e. the comparison that controls the loop execution may be using
/// the value of the induction variable from before the increment.
///
/// Return true if the loop's flow is the desired one (i.e. it's
/// either been fixed, or no fixing was necessary).
/// Otherwise, return false. This can happen if the induction variable
/// couldn't be identified, or if the value in the latch's comparison
/// cannot be adjusted to reflect the post-bump value.
bool fixupInductionVariable(MachineLoop *L);
/// \brief Given a loop, if it does not have a preheader, create one.
/// Return the block that is the preheader.
MachineBasicBlock *createPreheaderForLoop(MachineLoop *L);
};
char HexagonHardwareLoops::ID = 0;
#ifndef NDEBUG
int HexagonHardwareLoops::Counter = 0;
#endif
/// \brief Abstraction for a trip count of a loop. A smaller version
/// of the MachineOperand class without the concerns of changing the
/// operand representation.
class CountValue {
public:
enum CountValueType {
CV_Register,
CV_Immediate
};
private:
CountValueType Kind;
union Values {
struct {
unsigned Reg;
unsigned Sub;
} R;
unsigned ImmVal;
} Contents;
public:
explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) {
Kind = t;
if (Kind == CV_Register) {
Contents.R.Reg = v;
Contents.R.Sub = u;
} else {
Contents.ImmVal = v;
}
}
bool isReg() const { return Kind == CV_Register; }
bool isImm() const { return Kind == CV_Immediate; }
unsigned getReg() const {
assert(isReg() && "Wrong CountValue accessor");
return Contents.R.Reg;
}
unsigned getSubReg() const {
assert(isReg() && "Wrong CountValue accessor");
return Contents.R.Sub;
}
unsigned getImm() const {
assert(isImm() && "Wrong CountValue accessor");
return Contents.ImmVal;
}
void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const {
if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); }
if (isImm()) { OS << Contents.ImmVal; }
}
};
} // end anonymous namespace
INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops",
"Hexagon Hardware Loops", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops",
"Hexagon Hardware Loops", false, false)
FunctionPass *llvm::createHexagonHardwareLoops() {
return new HexagonHardwareLoops();
}
bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
if (skipFunction(*MF.getFunction()))
return false;
bool Changed = false;
MLI = &getAnalysis<MachineLoopInfo>();
MRI = &MF.getRegInfo();
MDT = &getAnalysis<MachineDominatorTree>();
const HexagonSubtarget &HST = MF.getSubtarget<HexagonSubtarget>();
TII = HST.getInstrInfo();
TRI = HST.getRegisterInfo();
for (auto &L : *MLI)
if (!L->getParentLoop()) {
bool L0Used = false;
bool L1Used = false;
Changed |= convertToHardwareLoop(L, L0Used, L1Used);
}
return Changed;
}
bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
unsigned &Reg,
int64_t &IVBump,
MachineInstr *&IVOp
) const {
MachineBasicBlock *Header = L->getHeader();
MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
MachineBasicBlock *Latch = L->getLoopLatch();
MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
if (!Header || !Preheader || !Latch || !ExitingBlock)
return false;
// This pair represents an induction register together with an immediate
// value that will be added to it in each loop iteration.
using RegisterBump = std::pair<unsigned, int64_t>;
// Mapping: R.next -> (R, bump), where R, R.next and bump are derived
// from an induction operation
// R.next = R + bump
// where bump is an immediate value.
using InductionMap = std::map<unsigned, RegisterBump>;
InductionMap IndMap;
using instr_iterator = MachineBasicBlock::instr_iterator;
for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
I != E && I->isPHI(); ++I) {
MachineInstr *Phi = &*I;
// Have a PHI instruction. Get the operand that corresponds to the
// latch block, and see if is a result of an addition of form "reg+imm",
// where the "reg" is defined by the PHI node we are looking at.
for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
if (Phi->getOperand(i+1).getMBB() != Latch)
continue;
unsigned PhiOpReg = Phi->getOperand(i).getReg();
MachineInstr *DI = MRI->getVRegDef(PhiOpReg);
if (DI->getDesc().isAdd()) {
// If the register operand to the add is the PHI we're looking at, this
// meets the induction pattern.
unsigned IndReg = DI->getOperand(1).getReg();
MachineOperand &Opnd2 = DI->getOperand(2);
int64_t V;
if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
unsigned UpdReg = DI->getOperand(0).getReg();
IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
}
}
} // for (i)
} // for (instr)
SmallVector<MachineOperand,2> Cond;
MachineBasicBlock *TB = nullptr, *FB = nullptr;
bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
if (NotAnalyzed)
return false;
unsigned PredR, PredPos, PredRegFlags;
if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags))
return false;
MachineInstr *PredI = MRI->getVRegDef(PredR);
if (!PredI->isCompare())
return false;
unsigned CmpReg1 = 0, CmpReg2 = 0;
int CmpImm = 0, CmpMask = 0;
bool CmpAnalyzed =
TII->analyzeCompare(*PredI, CmpReg1, CmpReg2, CmpMask, CmpImm);
// Fail if the compare was not analyzed, or it's not comparing a register
// with an immediate value. Not checking the mask here, since we handle
// the individual compare opcodes (including A4_cmpb*) later on.
if (!CmpAnalyzed)
return false;
// Exactly one of the input registers to the comparison should be among
// the induction registers.
InductionMap::iterator IndMapEnd = IndMap.end();
InductionMap::iterator F = IndMapEnd;
if (CmpReg1 != 0) {
InductionMap::iterator F1 = IndMap.find(CmpReg1);
if (F1 != IndMapEnd)
F = F1;
}
if (CmpReg2 != 0) {
InductionMap::iterator F2 = IndMap.find(CmpReg2);
if (F2 != IndMapEnd) {
if (F != IndMapEnd)
return false;
F = F2;
}
}
if (F == IndMapEnd)
return false;
Reg = F->second.first;
IVBump = F->second.second;
IVOp = MRI->getVRegDef(F->first);
return true;
}
// Return the comparison kind for the specified opcode.
HexagonHardwareLoops::Comparison::Kind
HexagonHardwareLoops::getComparisonKind(unsigned CondOpc,
MachineOperand *InitialValue,
const MachineOperand *EndValue,
int64_t IVBump) const {
Comparison::Kind Cmp = (Comparison::Kind)0;
switch (CondOpc) {
case Hexagon::C2_cmpeq:
case Hexagon::C2_cmpeqi:
case Hexagon::C2_cmpeqp:
Cmp = Comparison::EQ;
break;
case Hexagon::C4_cmpneq:
case Hexagon::C4_cmpneqi:
Cmp = Comparison::NE;
break;
case Hexagon::C2_cmplt:
Cmp = Comparison::LTs;
break;
case Hexagon::C2_cmpltu:
Cmp = Comparison::LTu;
break;
case Hexagon::C4_cmplte:
case Hexagon::C4_cmpltei:
Cmp = Comparison::LEs;
break;
case Hexagon::C4_cmplteu:
case Hexagon::C4_cmplteui:
Cmp = Comparison::LEu;
break;
case Hexagon::C2_cmpgt:
case Hexagon::C2_cmpgti:
case Hexagon::C2_cmpgtp:
Cmp = Comparison::GTs;
break;
case Hexagon::C2_cmpgtu:
case Hexagon::C2_cmpgtui:
case Hexagon::C2_cmpgtup:
Cmp = Comparison::GTu;
break;
case Hexagon::C2_cmpgei:
Cmp = Comparison::GEs;
break;
case Hexagon::C2_cmpgeui:
Cmp = Comparison::GEs;
break;
default:
return (Comparison::Kind)0;
}
return Cmp;
}
/// \brief Analyze the statements in a loop to determine if the loop has
/// a computable trip count and, if so, return a value that represents
/// the trip count expression.
///
/// This function iterates over the phi nodes in the loop to check for
/// induction variable patterns that are used in the calculation for
/// the number of time the loop is executed.
CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
SmallVectorImpl<MachineInstr *> &OldInsts) {
MachineBasicBlock *TopMBB = L->getTopBlock();
MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
assert(PI != TopMBB->pred_end() &&
"Loop must have more than one incoming edge!");
MachineBasicBlock *Backedge = *PI++;
if (PI == TopMBB->pred_end()) // dead loop?
return nullptr;
MachineBasicBlock *Incoming = *PI++;
if (PI != TopMBB->pred_end()) // multiple backedges?
return nullptr;
// Make sure there is one incoming and one backedge and determine which
// is which.
if (L->contains(Incoming)) {
if (L->contains(Backedge))
return nullptr;
std::swap(Incoming, Backedge);
} else if (!L->contains(Backedge))
return nullptr;
// Look for the cmp instruction to determine if we can get a useful trip
// count. The trip count can be either a register or an immediate. The
// location of the value depends upon the type (reg or imm).
MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
if (!ExitingBlock)
return nullptr;
unsigned IVReg = 0;
int64_t IVBump = 0;
MachineInstr *IVOp;
bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp);
if (!FoundIV)
return nullptr;
MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
MachineOperand *InitialValue = nullptr;
MachineInstr *IV_Phi = MRI->getVRegDef(IVReg);
MachineBasicBlock *Latch = L->getLoopLatch();
for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) {
MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB();
if (MBB == Preheader)
InitialValue = &IV_Phi->getOperand(i);
else if (MBB == Latch)
IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump.
}
if (!InitialValue)
return nullptr;
SmallVector<MachineOperand,2> Cond;
MachineBasicBlock *TB = nullptr, *FB = nullptr;
bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
if (NotAnalyzed)
return nullptr;
MachineBasicBlock *Header = L->getHeader();
// TB must be non-null. If FB is also non-null, one of them must be
// the header. Otherwise, branch to TB could be exiting the loop, and
// the fall through can go to the header.
assert (TB && "Exit block without a branch?");
if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
MachineBasicBlock *LTB = nullptr, *LFB = nullptr;
SmallVector<MachineOperand,2> LCond;
bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false);
if (NotAnalyzed)
return nullptr;
if (TB == Latch)
TB = (LTB == Header) ? LTB : LFB;
else
FB = (LTB == Header) ? LTB: LFB;
}
assert ((!FB || TB == Header || FB == Header) && "Branches not to header?");
if (!TB || (FB && TB != Header && FB != Header))
return nullptr;
// Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch
// to put imm(0), followed by P in the vector Cond.
// If TB is not the header, it means that the "not-taken" path must lead
// to the header.
bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header);
unsigned PredReg, PredPos, PredRegFlags;
if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags))
return nullptr;
MachineInstr *CondI = MRI->getVRegDef(PredReg);
unsigned CondOpc = CondI->getOpcode();
unsigned CmpReg1 = 0, CmpReg2 = 0;
int Mask = 0, ImmValue = 0;
bool AnalyzedCmp =
TII->analyzeCompare(*CondI, CmpReg1, CmpReg2, Mask, ImmValue);
if (!AnalyzedCmp)
return nullptr;
// The comparison operator type determines how we compute the loop
// trip count.
OldInsts.push_back(CondI);
OldInsts.push_back(IVOp);
// Sadly, the following code gets information based on the position
// of the operands in the compare instruction. This has to be done
// this way, because the comparisons check for a specific relationship
// between the operands (e.g. is-less-than), rather than to find out
// what relationship the operands are in (as on PPC).
Comparison::Kind Cmp;
bool isSwapped = false;
const MachineOperand &Op1 = CondI->getOperand(1);
const MachineOperand &Op2 = CondI->getOperand(2);
const MachineOperand *EndValue = nullptr;
if (Op1.isReg()) {
if (Op2.isImm() || Op1.getReg() == IVReg)
EndValue = &Op2;
else {
EndValue = &Op1;
isSwapped = true;
}
}
if (!EndValue)
return nullptr;
Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump);
if (!Cmp)
return nullptr;
if (Negated)
Cmp = Comparison::getNegatedComparison(Cmp);
if (isSwapped)
Cmp = Comparison::getSwappedComparison(Cmp);
if (InitialValue->isReg()) {
unsigned R = InitialValue->getReg();
MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
if (!MDT->properlyDominates(DefBB, Header)) {
int64_t V;
if (!checkForImmediate(*InitialValue, V))
return nullptr;
}
OldInsts.push_back(MRI->getVRegDef(R));
}
if (EndValue->isReg()) {
unsigned R = EndValue->getReg();
MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
if (!MDT->properlyDominates(DefBB, Header)) {
int64_t V;
if (!checkForImmediate(*EndValue, V))
return nullptr;
}
OldInsts.push_back(MRI->getVRegDef(R));
}
return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp);
}
/// \brief Helper function that returns the expression that represents the
/// number of times a loop iterates. The function takes the operands that
/// represent the loop start value, loop end value, and induction value.
/// Based upon these operands, the function attempts to compute the trip count.
CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
const MachineOperand *Start,
const MachineOperand *End,
unsigned IVReg,
int64_t IVBump,
Comparison::Kind Cmp) const {
// Cannot handle comparison EQ, i.e. while (A == B).
if (Cmp == Comparison::EQ)
return nullptr;
// Check if either the start or end values are an assignment of an immediate.
// If so, use the immediate value rather than the register.
if (Start->isReg()) {
const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg());
if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi ||
StartValInstr->getOpcode() == Hexagon::A2_tfrpi))
Start = &StartValInstr->getOperand(1);
}
if (End->isReg()) {
const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi ||
EndValInstr->getOpcode() == Hexagon::A2_tfrpi))
End = &EndValInstr->getOperand(1);
}
if (!Start->isReg() && !Start->isImm())
return nullptr;
if (!End->isReg() && !End->isImm())
return nullptr;
bool CmpLess = Cmp & Comparison::L;
bool CmpGreater = Cmp & Comparison::G;
bool CmpHasEqual = Cmp & Comparison::EQ;
// Avoid certain wrap-arounds. This doesn't detect all wrap-arounds.
if (CmpLess && IVBump < 0)
// Loop going while iv is "less" with the iv value going down. Must wrap.
return nullptr;
if (CmpGreater && IVBump > 0)
// Loop going while iv is "greater" with the iv value going up. Must wrap.
return nullptr;
// Phis that may feed into the loop.
LoopFeederMap LoopFeederPhi;
// Check if the initial value may be zero and can be decremented in the first
// iteration. If the value is zero, the endloop instruction will not decrement
// the loop counter, so we shouldn't generate a hardware loop in this case.
if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop,
LoopFeederPhi))
return nullptr;
if (Start->isImm() && End->isImm()) {
// Both, start and end are immediates.
int64_t StartV = Start->getImm();
int64_t EndV = End->getImm();
int64_t Dist = EndV - StartV;
if (Dist == 0)
return nullptr;
bool Exact = (Dist % IVBump) == 0;
if (Cmp == Comparison::NE) {
if (!Exact)
return nullptr;
if ((Dist < 0) ^ (IVBump < 0))
return nullptr;
}
// For comparisons that include the final value (i.e. include equality
// with the final value), we need to increase the distance by 1.
if (CmpHasEqual)
Dist = Dist > 0 ? Dist+1 : Dist-1;
// For the loop to iterate, CmpLess should imply Dist > 0. Similarly,
// CmpGreater should imply Dist < 0. These conditions could actually
// fail, for example, in unreachable code (which may still appear to be
// reachable in the CFG).
if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0))
return nullptr;
// "Normalized" distance, i.e. with the bump set to +-1.
int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump - 1)) / IVBump
: (-Dist + (-IVBump - 1)) / (-IVBump);
assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign.");
uint64_t Count = Dist1;
if (Count > 0xFFFFFFFFULL)
return nullptr;
return new CountValue(CountValue::CV_Immediate, Count);
}
// A general case: Start and End are some values, but the actual
// iteration count may not be available. If it is not, insert
// a computation of it into the preheader.
// If the induction variable bump is not a power of 2, quit.
// Othwerise we'd need a general integer division.
if (!isPowerOf2_64(std::abs(IVBump)))
return nullptr;
MachineBasicBlock *PH = MLI->findLoopPreheader(Loop, SpecPreheader);
assert (PH && "Should have a preheader by now");
MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator();
DebugLoc DL;
if (InsertPos != PH->end())
DL = InsertPos->getDebugLoc();
// If Start is an immediate and End is a register, the trip count
// will be "reg - imm". Hexagon's "subtract immediate" instruction
// is actually "reg + -imm".
// If the loop IV is going downwards, i.e. if the bump is negative,
// then the iteration count (computed as End-Start) will need to be
// negated. To avoid the negation, just swap Start and End.
if (IVBump < 0) {
std::swap(Start, End);
IVBump = -IVBump;
}
// Cmp may now have a wrong direction, e.g. LEs may now be GEs.
// Signedness, and "including equality" are preserved.
bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm)
bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg)
int64_t StartV = 0, EndV = 0;
if (Start->isImm())
StartV = Start->getImm();
if (End->isImm())
EndV = End->getImm();
int64_t AdjV = 0;
// To compute the iteration count, we would need this computation:
// Count = (End - Start + (IVBump-1)) / IVBump
// or, when CmpHasEqual:
// Count = (End - Start + (IVBump-1)+1) / IVBump
// The "IVBump-1" part is the adjustment (AdjV). We can avoid
// generating an instruction specifically to add it if we can adjust
// the immediate values for Start or End.
if (CmpHasEqual) {
// Need to add 1 to the total iteration count.
if (Start->isImm())
StartV--;
else if (End->isImm())
EndV++;
else
AdjV += 1;
}
if (Cmp != Comparison::NE) {
if (Start->isImm())
StartV -= (IVBump-1);
else if (End->isImm())
EndV += (IVBump-1);
else
AdjV += (IVBump-1);
}
unsigned R = 0, SR = 0;
if (Start->isReg()) {
R = Start->getReg();
SR = Start->getSubReg();
} else {
R = End->getReg();
SR = End->getSubReg();
}
const TargetRegisterClass *RC = MRI->getRegClass(R);
// Hardware loops cannot handle 64-bit registers. If it's a double
// register, it has to have a subregister.
if (!SR && RC == &Hexagon::DoubleRegsRegClass)
return nullptr;
const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
// Compute DistR (register with the distance between Start and End).
unsigned DistR, DistSR;
// Avoid special case, where the start value is an imm(0).
if (Start->isImm() && StartV == 0) {
DistR = End->getReg();
DistSR = End->getSubReg();
} else {
const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) :
(RegToImm ? TII->get(Hexagon::A2_subri) :
TII->get(Hexagon::A2_addi));
if (RegToReg || RegToImm) {
unsigned SubR = MRI->createVirtualRegister(IntRC);
MachineInstrBuilder SubIB =
BuildMI(*PH, InsertPos, DL, SubD, SubR);
if (RegToReg)
SubIB.addReg(End->getReg(), 0, End->getSubReg())
.addReg(Start->getReg(), 0, Start->getSubReg());
else
SubIB.addImm(EndV)
.addReg(Start->getReg(), 0, Start->getSubReg());
DistR = SubR;
} else {
// If the loop has been unrolled, we should use the original loop count
// instead of recalculating the value. This will avoid additional
// 'Add' instruction.
const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
if (EndValInstr->getOpcode() == Hexagon::A2_addi &&
EndValInstr->getOperand(2).getImm() == StartV) {
DistR = EndValInstr->getOperand(1).getReg();
} else {
unsigned SubR = MRI->createVirtualRegister(IntRC);
MachineInstrBuilder SubIB =
BuildMI(*PH, InsertPos, DL, SubD, SubR);
SubIB.addReg(End->getReg(), 0, End->getSubReg())
.addImm(-StartV);
DistR = SubR;
}
}
DistSR = 0;
}
// From DistR, compute AdjR (register with the adjusted distance).
unsigned AdjR, AdjSR;
if (AdjV == 0) {
AdjR = DistR;
AdjSR = DistSR;
} else {
// Generate CountR = ADD DistR, AdjVal
unsigned AddR = MRI->createVirtualRegister(IntRC);
MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi);
BuildMI(*PH, InsertPos, DL, AddD, AddR)
.addReg(DistR, 0, DistSR)
.addImm(AdjV);
AdjR = AddR;
AdjSR = 0;
}
// From AdjR, compute CountR (register with the final count).
unsigned CountR, CountSR;
if (IVBump == 1) {
CountR = AdjR;
CountSR = AdjSR;
} else {
// The IV bump is a power of two. Log_2(IV bump) is the shift amount.
unsigned Shift = Log2_32(IVBump);
// Generate NormR = LSR DistR, Shift.
unsigned LsrR = MRI->createVirtualRegister(IntRC);
const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r);
BuildMI(*PH, InsertPos, DL, LsrD, LsrR)
.addReg(AdjR, 0, AdjSR)
.addImm(Shift);
CountR = LsrR;
CountSR = 0;
}
return new CountValue(CountValue::CV_Register, CountR, CountSR);
}
/// \brief Return true if the operation is invalid within hardware loop.
bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI,
bool IsInnerHWLoop) const {
// Call is not allowed because the callee may use a hardware loop except for
// the case when the call never returns.
if (MI->getDesc().isCall())
return !TII->doesNotReturn(*MI);
// Check if the instruction defines a hardware loop register.
using namespace Hexagon;
static const unsigned Regs01[] = { LC0, SA0, LC1, SA1 };
static const unsigned Regs1[] = { LC1, SA1 };
auto CheckRegs = IsInnerHWLoop ? makeArrayRef(Regs01, array_lengthof(Regs01))
: makeArrayRef(Regs1, array_lengthof(Regs1));
for (unsigned R : CheckRegs)
if (MI->modifiesRegister(R, TRI))
return true;
return false;
}
/// \brief Return true if the loop contains an instruction that inhibits
/// the use of the hardware loop instruction.
bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L,
bool IsInnerHWLoop) const {
const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks();
DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber(););
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
MachineBasicBlock *MBB = Blocks[i];
for (MachineBasicBlock::iterator
MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
const MachineInstr *MI = &*MII;
if (isInvalidLoopOperation(MI, IsInnerHWLoop)) {
DEBUG(dbgs()<< "\nCannot convert to hw_loop due to:"; MI->dump(););
return true;
}
}
}
return false;
}
/// \brief Returns true if the instruction is dead. This was essentially
/// copied from DeadMachineInstructionElim::isDead, but with special cases
/// for inline asm, physical registers and instructions with side effects
/// removed.
bool HexagonHardwareLoops::isDead(const MachineInstr *MI,
SmallVectorImpl<MachineInstr *> &DeadPhis) const {
// Examine each operand.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isDef())
continue;
unsigned Reg = MO.getReg();
if (MRI->use_nodbg_empty(Reg))
continue;
using use_nodbg_iterator = MachineRegisterInfo::use_nodbg_iterator;
// This instruction has users, but if the only user is the phi node for the
// parent block, and the only use of that phi node is this instruction, then
// this instruction is dead: both it (and the phi node) can be removed.
use_nodbg_iterator I = MRI->use_nodbg_begin(Reg);
use_nodbg_iterator End = MRI->use_nodbg_end();
if (std::next(I) != End || !I->getParent()->isPHI())
return false;
MachineInstr *OnePhi = I->getParent();
for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) {
const MachineOperand &OPO = OnePhi->getOperand(j);
if (!OPO.isReg() || !OPO.isDef())
continue;
unsigned OPReg = OPO.getReg();
use_nodbg_iterator nextJ;
for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg);
J != End; J = nextJ) {
nextJ = std::next(J);
MachineOperand &Use = *J;
MachineInstr *UseMI = Use.getParent();
// If the phi node has a user that is not MI, bail.
if (MI != UseMI)
return false;
}
}
DeadPhis.push_back(OnePhi);
}
// If there are no defs with uses, the instruction is dead.
return true;
}
void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) {
// This procedure was essentially copied from DeadMachineInstructionElim.
SmallVector<MachineInstr*, 1> DeadPhis;
if (isDead(MI, DeadPhis)) {
DEBUG(dbgs() << "HW looping will remove: " << *MI);
// It is possible that some DBG_VALUE instructions refer to this
// instruction. Examine each def operand for such references;
// if found, mark the DBG_VALUE as undef (but don't delete it).
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isDef())
continue;
unsigned Reg = MO.getReg();
MachineRegisterInfo::use_iterator nextI;
for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg),
E = MRI->use_end(); I != E; I = nextI) {
nextI = std::next(I); // I is invalidated by the setReg
MachineOperand &Use = *I;
MachineInstr *UseMI = I->getParent();
if (UseMI == MI)
continue;
if (Use.isDebug())
UseMI->getOperand(0).setReg(0U);
}
}
MI->eraseFromParent();
for (unsigned i = 0; i < DeadPhis.size(); ++i)
DeadPhis[i]->eraseFromParent();
}
}
/// \brief Check if the loop is a candidate for converting to a hardware
/// loop. If so, then perform the transformation.
///
/// This function works on innermost loops first. A loop can be converted
/// if it is a counting loop; either a register value or an immediate.
///
/// The code makes several assumptions about the representation of the loop
/// in llvm.
bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L,
bool &RecL0used,
bool &RecL1used) {
// This is just for sanity.
assert(L->getHeader() && "Loop without a header?");
bool Changed = false;
bool L0Used = false;
bool L1Used = false;
// Process nested loops first.
for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
Changed |= convertToHardwareLoop(*I, RecL0used, RecL1used);
L0Used |= RecL0used;
L1Used |= RecL1used;
}
// If a nested loop has been converted, then we can't convert this loop.
if (Changed && L0Used && L1Used)
return Changed;
unsigned LOOP_i;
unsigned LOOP_r;
unsigned ENDLOOP;
// Flag used to track loopN instruction:
// 1 - Hardware loop is being generated for the inner most loop.
// 0 - Hardware loop is being generated for the outer loop.
unsigned IsInnerHWLoop = 1;
if (L0Used) {
LOOP_i = Hexagon::J2_loop1i;
LOOP_r = Hexagon::J2_loop1r;
ENDLOOP = Hexagon::ENDLOOP1;
IsInnerHWLoop = 0;
} else {
LOOP_i = Hexagon::J2_loop0i;
LOOP_r = Hexagon::J2_loop0r;
ENDLOOP = Hexagon::ENDLOOP0;
}
#ifndef NDEBUG
// Stop trying after reaching the limit (if any).
int Limit = HWLoopLimit;
if (Limit >= 0) {
if (Counter >= HWLoopLimit)
return false;
Counter++;
}
#endif
// Does the loop contain any invalid instructions?
if (containsInvalidInstruction(L, IsInnerHWLoop))
return false;
MachineBasicBlock *LastMBB = L->findLoopControlBlock();
// Don't generate hw loop if the loop has more than one exit.
if (!LastMBB)
return false;
MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
if (LastI == LastMBB->end())
return false;
// Is the induction variable bump feeding the latch condition?
if (!fixupInductionVariable(L))
return false;
// Ensure the loop has a preheader: the loop instruction will be
// placed there.
MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
if (!Preheader) {
Preheader = createPreheaderForLoop(L);
if (!Preheader)
return false;
}
MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
SmallVector<MachineInstr*, 2> OldInsts;
// Are we able to determine the trip count for the loop?
CountValue *TripCount = getLoopTripCount(L, OldInsts);
if (!TripCount)
return false;
// Is the trip count available in the preheader?
if (TripCount->isReg()) {
// There will be a use of the register inserted into the preheader,
// so make sure that the register is actually defined at that point.
MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg());
MachineBasicBlock *BBDef = TCDef->getParent();
if (!MDT->dominates(BBDef, Preheader))
return false;
}
// Determine the loop start.
MachineBasicBlock *TopBlock = L->getTopBlock();
MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
MachineBasicBlock *LoopStart = nullptr;
if (ExitingBlock != L->getLoopLatch()) {
MachineBasicBlock *TB = nullptr, *FB = nullptr;
SmallVector<MachineOperand, 2> Cond;
if (TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false))
return false;
if (L->contains(TB))
LoopStart = TB;
else if (L->contains(FB))
LoopStart = FB;
else
return false;
}
else
LoopStart = TopBlock;
// Convert the loop to a hardware loop.
DEBUG(dbgs() << "Change to hardware loop at "; L->dump());
DebugLoc DL;
if (InsertPos != Preheader->end())
DL = InsertPos->getDebugLoc();
if (TripCount->isReg()) {
// Create a copy of the loop count register.
unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg)
.addReg(TripCount->getReg(), 0, TripCount->getSubReg());
// Add the Loop instruction to the beginning of the loop.
BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart)
.addReg(CountReg);
} else {
assert(TripCount->isImm() && "Expecting immediate value for trip count");
// Add the Loop immediate instruction to the beginning of the loop,
// if the immediate fits in the instructions. Otherwise, we need to
// create a new virtual register.
int64_t CountImm = TripCount->getImm();
if (!TII->isValidOffset(LOOP_i, CountImm, TRI)) {
unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg)
.addImm(CountImm);
BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r))
.addMBB(LoopStart).addReg(CountReg);
} else
BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i))
.addMBB(LoopStart).addImm(CountImm);
}
// Make sure the loop start always has a reference in the CFG. We need
// to create a BlockAddress operand to get this mechanism to work both the
// MachineBasicBlock and BasicBlock objects need the flag set.
LoopStart->setHasAddressTaken();
// This line is needed to set the hasAddressTaken flag on the BasicBlock
// object.
BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));
// Replace the loop branch with an endloop instruction.
DebugLoc LastIDL = LastI->getDebugLoc();
BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart);
// The loop ends with either:
// - a conditional branch followed by an unconditional branch, or
// - a conditional branch to the loop start.
if (LastI->getOpcode() == Hexagon::J2_jumpt ||
LastI->getOpcode() == Hexagon::J2_jumpf) {
// Delete one and change/add an uncond. branch to out of the loop.
MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
LastI = LastMBB->erase(LastI);
if (!L->contains(BranchTarget)) {
if (LastI != LastMBB->end())
LastI = LastMBB->erase(LastI);
SmallVector<MachineOperand, 0> Cond;
TII->insertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL);
}
} else {
// Conditional branch to loop start; just delete it.
LastMBB->erase(LastI);
}
delete TripCount;
// The induction operation and the comparison may now be
// unneeded. If these are unneeded, then remove them.
for (unsigned i = 0; i < OldInsts.size(); ++i)
removeIfDead(OldInsts[i]);
++NumHWLoops;
// Set RecL1used and RecL0used only after hardware loop has been
// successfully generated. Doing it earlier can cause wrong loop instruction
// to be used.
if (L0Used) // Loop0 was already used. So, the correct loop must be loop1.
RecL1used = true;
else
RecL0used = true;
return true;
}
bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
MachineInstr *CmpI) {
assert (BumpI != CmpI && "Bump and compare in the same instruction?");
MachineBasicBlock *BB = BumpI->getParent();
if (CmpI->getParent() != BB)
return false;
using instr_iterator = MachineBasicBlock::instr_iterator;
// Check if things are in order to begin with.
for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I)
if (&*I == CmpI)
return true;
// Out of order.
unsigned PredR = CmpI->getOperand(0).getReg();
bool FoundBump = false;
instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt);
for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) {
MachineInstr *In = &*I;
for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) {
MachineOperand &MO = In->getOperand(i);
if (MO.isReg() && MO.isUse()) {
if (MO.getReg() == PredR) // Found an intervening use of PredR.
return false;
}
}
if (In == BumpI) {
BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator());
FoundBump = true;
break;
}
}
assert (FoundBump && "Cannot determine instruction order");
return FoundBump;
}
/// This function is required to break recursion. Visiting phis in a loop may
/// result in recursion during compilation. We break the recursion by making
/// sure that we visit a MachineOperand and its definition in a
/// MachineInstruction only once. If we attempt to visit more than once, then
/// there is recursion, and will return false.
bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A,
MachineInstr *MI,
const MachineOperand *MO,
LoopFeederMap &LoopFeederPhi) const {
if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) {
const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks();
DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber(););
// Ignore all BBs that form Loop.
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
MachineBasicBlock *MBB = Blocks[i];
if (A == MBB)
return false;
}
MachineInstr *Def = MRI->getVRegDef(MO->getReg());
LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def));
return true;
} else
// Already visited node.
return false;
}
/// Return true if a Phi may generate a value that can underflow.
/// This function calls loopCountMayWrapOrUnderFlow for each Phi operand.
bool HexagonHardwareLoops::phiMayWrapOrUnderflow(
MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB,
MachineLoop *L, LoopFeederMap &LoopFeederPhi) const {
assert(Phi->isPHI() && "Expecting a Phi.");
// Walk through each Phi, and its used operands. Make sure that
// if there is recursion in Phi, we won't generate hardware loops.
for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2)
if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi))
if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal,
Phi->getParent(), L, LoopFeederPhi))
return true;
return false;
}
/// Return true if the induction variable can underflow in the first iteration.
/// An example, is an initial unsigned value that is 0 and is decrement in the
/// first itertion of a do-while loop. In this case, we cannot generate a
/// hardware loop because the endloop instruction does not decrement the loop
/// counter if it is <= 1. We only need to perform this analysis if the
/// initial value is a register.
///
/// This function assumes the initial value may underfow unless proven
/// otherwise. If the type is signed, then we don't care because signed
/// underflow is undefined. We attempt to prove the initial value is not
/// zero by perfoming a crude analysis of the loop counter. This function
/// checks if the initial value is used in any comparison prior to the loop
/// and, if so, assumes the comparison is a range check. This is inexact,
/// but will catch the simple cases.
bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow(
const MachineOperand *InitVal, const MachineOperand *EndVal,
MachineBasicBlock *MBB, MachineLoop *L,
LoopFeederMap &LoopFeederPhi) const {
// Only check register values since they are unknown.
if (!InitVal->isReg())
return false;
if (!EndVal->isImm())
return false;
// A register value that is assigned an immediate is a known value, and it
// won't underflow in the first iteration.
int64_t Imm;
if (checkForImmediate(*InitVal, Imm))
return (EndVal->getImm() == Imm);
unsigned Reg = InitVal->getReg();
// We don't know the value of a physical register.
if (!TargetRegisterInfo::isVirtualRegister(Reg))
return true;
MachineInstr *Def = MRI->getVRegDef(Reg);
if (!Def)
return true;
// If the initial value is a Phi or copy and the operands may not underflow,
// then the definition cannot be underflow either.
if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(),
L, LoopFeederPhi))
return false;
if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)),
EndVal, Def->getParent(),
L, LoopFeederPhi))
return false;
// Iterate over the uses of the initial value. If the initial value is used
// in a compare, then we assume this is a range check that ensures the loop
// doesn't underflow. This is not an exact test and should be improved.
for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg),
E = MRI->use_instr_nodbg_end(); I != E; ++I) {
MachineInstr *MI = &*I;
unsigned CmpReg1 = 0, CmpReg2 = 0;
int CmpMask = 0, CmpValue = 0;
if (!TII->analyzeCompare(*MI, CmpReg1, CmpReg2, CmpMask, CmpValue))
continue;
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
SmallVector<MachineOperand, 2> Cond;
if (TII->analyzeBranch(*MI->getParent(), TBB, FBB, Cond, false))
continue;
Comparison::Kind Cmp =
getComparisonKind(MI->getOpcode(), nullptr, nullptr, 0);
if (Cmp == 0)
continue;
if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB))
Cmp = Comparison::getNegatedComparison(Cmp);
if (CmpReg2 != 0 && CmpReg2 == Reg)
Cmp = Comparison::getSwappedComparison(Cmp);
// Signed underflow is undefined.
if (Comparison::isSigned(Cmp))
return false;
// Check if there is a comparison of the initial value. If the initial value
// is greater than or not equal to another value, then assume this is a
// range check.
if ((Cmp & Comparison::G) || Cmp == Comparison::NE)
return false;
}
// OK - this is a hack that needs to be improved. We really need to analyze
// the instructions performed on the initial value. This works on the simplest
// cases only.
if (!Def->isCopy() && !Def->isPHI())
return false;
return true;
}
bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO,
int64_t &Val) const {
if (MO.isImm()) {
Val = MO.getImm();
return true;
}
if (!MO.isReg())
return false;
// MO is a register. Check whether it is defined as an immediate value,
// and if so, get the value of it in TV. That value will then need to be
// processed to handle potential subregisters in MO.
int64_t TV;
unsigned R = MO.getReg();
if (!TargetRegisterInfo::isVirtualRegister(R))
return false;
MachineInstr *DI = MRI->getVRegDef(R);
unsigned DOpc = DI->getOpcode();
switch (DOpc) {
case TargetOpcode::COPY:
case Hexagon::A2_tfrsi:
case Hexagon::A2_tfrpi:
case Hexagon::CONST32:
case Hexagon::CONST64:
// Call recursively to avoid an extra check whether operand(1) is
// indeed an immediate (it could be a global address, for example),
// plus we can handle COPY at the same time.
if (!checkForImmediate(DI->getOperand(1), TV))
return false;
break;
case Hexagon::A2_combineii:
case Hexagon::A4_combineir:
case Hexagon::A4_combineii:
case Hexagon::A4_combineri:
case Hexagon::A2_combinew: {
const MachineOperand &S1 = DI->getOperand(1);
const MachineOperand &S2 = DI->getOperand(2);
int64_t V1, V2;
if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2))
return false;
TV = V2 | (static_cast<uint64_t>(V1) << 32);
break;
}
case TargetOpcode::REG_SEQUENCE: {
const MachineOperand &S1 = DI->getOperand(1);
const MachineOperand &S3 = DI->getOperand(3);
int64_t V1, V3;
if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3))
return false;
unsigned Sub2 = DI->getOperand(2).getImm();
unsigned Sub4 = DI->getOperand(4).getImm();
if (Sub2 == Hexagon::isub_lo && Sub4 == Hexagon::isub_hi)
TV = V1 | (V3 << 32);
else if (Sub2 == Hexagon::isub_hi && Sub4 == Hexagon::isub_lo)
TV = V3 | (V1 << 32);
else
llvm_unreachable("Unexpected form of REG_SEQUENCE");
break;
}
default:
return false;
}
// By now, we should have successfully obtained the immediate value defining
// the register referenced in MO. Handle a potential use of a subregister.
switch (MO.getSubReg()) {
case Hexagon::isub_lo:
Val = TV & 0xFFFFFFFFULL;
break;
case Hexagon::isub_hi:
Val = (TV >> 32) & 0xFFFFFFFFULL;
break;
default:
Val = TV;
break;
}
return true;
}
void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) {
if (MO.isImm()) {
MO.setImm(Val);
return;
}
assert(MO.isReg());
unsigned R = MO.getReg();
MachineInstr *DI = MRI->getVRegDef(R);
const TargetRegisterClass *RC = MRI->getRegClass(R);
unsigned NewR = MRI->createVirtualRegister(RC);
MachineBasicBlock &B = *DI->getParent();
DebugLoc DL = DI->getDebugLoc();
BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val);
MO.setReg(NewR);
}
static bool isImmValidForOpcode(unsigned CmpOpc, int64_t Imm) {
// These two instructions are not extendable.
if (CmpOpc == Hexagon::A4_cmpbeqi)
return isUInt<8>(Imm);
if (CmpOpc == Hexagon::A4_cmpbgti)
return isInt<8>(Imm);
// The rest of the comparison-with-immediate instructions are extendable.
return true;
}
bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
MachineBasicBlock *Header = L->getHeader();
MachineBasicBlock *Latch = L->getLoopLatch();
MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
if (!(Header && Latch && ExitingBlock))
return false;
// These data structures follow the same concept as the corresponding
// ones in findInductionRegister (where some comments are).
using RegisterBump = std::pair<unsigned, int64_t>;
using RegisterInduction = std::pair<unsigned, RegisterBump>;
using RegisterInductionSet = std::set<RegisterInduction>;
// Register candidates for induction variables, with their associated bumps.
RegisterInductionSet IndRegs;
// Look for induction patterns:
// vreg1 = PHI ..., [ latch, vreg2 ]
// vreg2 = ADD vreg1, imm
using instr_iterator = MachineBasicBlock::instr_iterator;
for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
I != E && I->isPHI(); ++I) {
MachineInstr *Phi = &*I;
// Have a PHI instruction.
for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
if (Phi->getOperand(i+1).getMBB() != Latch)
continue;
unsigned PhiReg = Phi->getOperand(i).getReg();
MachineInstr *DI = MRI->getVRegDef(PhiReg);
if (DI->getDesc().isAdd()) {
// If the register operand to the add/sub is the PHI we are looking
// at, this meets the induction pattern.
unsigned IndReg = DI->getOperand(1).getReg();
MachineOperand &Opnd2 = DI->getOperand(2);
int64_t V;
if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
unsigned UpdReg = DI->getOperand(0).getReg();
IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
}
}
} // for (i)
} // for (instr)
if (IndRegs.empty())
return false;
MachineBasicBlock *TB = nullptr, *FB = nullptr;
SmallVector<MachineOperand,2> Cond;
// AnalyzeBranch returns true if it fails to analyze branch.
bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
if (NotAnalyzed || Cond.empty())
return false;
if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
MachineBasicBlock *LTB = nullptr, *LFB = nullptr;
SmallVector<MachineOperand,2> LCond;
bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false);
if (NotAnalyzed)
return false;
// Since latch is not the exiting block, the latch branch should be an
// unconditional branch to the loop header.
if (TB == Latch)
TB = (LTB == Header) ? LTB : LFB;
else
FB = (LTB == Header) ? LTB : LFB;
}
if (TB != Header) {
if (FB != Header) {
// The latch/exit block does not go back to the header.
return false;
}
// FB is the header (i.e., uncond. jump to branch header)
// In this case, the LoopBody -> TB should not be a back edge otherwise
// it could result in an infinite loop after conversion to hw_loop.
// This case can happen when the Latch has two jumps like this:
// Jmp_c OuterLoopHeader <-- TB
// Jmp InnerLoopHeader <-- FB
if (MDT->dominates(TB, FB))
return false;
}
// Expecting a predicate register as a condition. It won't be a hardware
// predicate register at this point yet, just a vreg.
// HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0)
// into Cond, followed by the predicate register. For non-negated branches
// it's just the register.
unsigned CSz = Cond.size();
if (CSz != 1 && CSz != 2)
return false;
if (!Cond[CSz-1].isReg())
return false;
unsigned P = Cond[CSz-1].getReg();
MachineInstr *PredDef = MRI->getVRegDef(P);
if (!PredDef->isCompare())
return false;
SmallSet<unsigned,2> CmpRegs;
MachineOperand *CmpImmOp = nullptr;
// Go over all operands to the compare and look for immediate and register
// operands. Assume that if the compare has a single register use and a
// single immediate operand, then the register is being compared with the
// immediate value.
for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
MachineOperand &MO = PredDef->getOperand(i);
if (MO.isReg()) {
// Skip all implicit references. In one case there was:
// %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use>
if (MO.isImplicit())
continue;
if (MO.isUse()) {
if (!isImmediate(MO)) {
CmpRegs.insert(MO.getReg());
continue;
}
// Consider the register to be the "immediate" operand.
if (CmpImmOp)
return false;
CmpImmOp = &MO;
}
} else if (MO.isImm()) {
if (CmpImmOp) // A second immediate argument? Confusing. Bail out.
return false;
CmpImmOp = &MO;
}
}
if (CmpRegs.empty())
return false;
// Check if the compared register follows the order we want. Fix if needed.
for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end();
I != E; ++I) {
// This is a success. If the register used in the comparison is one that
// we have identified as a bumped (updated) induction register, there is
// nothing to do.
if (CmpRegs.count(I->first))
return true;
// Otherwise, if the register being compared comes out of a PHI node,
// and has been recognized as following the induction pattern, and is
// compared against an immediate, we can fix it.
const RegisterBump &RB = I->second;
if (CmpRegs.count(RB.first)) {
if (!CmpImmOp) {
// If both operands to the compare instruction are registers, see if
// it can be changed to use induction register as one of the operands.
MachineInstr *IndI = nullptr;
MachineInstr *nonIndI = nullptr;
MachineOperand *IndMO = nullptr;
MachineOperand *nonIndMO = nullptr;
for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) {
MachineOperand &MO = PredDef->getOperand(i);
if (MO.isReg() && MO.getReg() == RB.first) {
DEBUG(dbgs() << "\n DefMI(" << i << ") = "
<< *(MRI->getVRegDef(I->first)));
if (IndI)
return false;
IndI = MRI->getVRegDef(I->first);
IndMO = &MO;
} else if (MO.isReg()) {
DEBUG(dbgs() << "\n DefMI(" << i << ") = "
<< *(MRI->getVRegDef(MO.getReg())));
if (nonIndI)
return false;
nonIndI = MRI->getVRegDef(MO.getReg());
nonIndMO = &MO;
}
}
if (IndI && nonIndI &&
nonIndI->getOpcode() == Hexagon::A2_addi &&
nonIndI->getOperand(2).isImm() &&
nonIndI->getOperand(2).getImm() == - RB.second) {
bool Order = orderBumpCompare(IndI, PredDef);
if (Order) {
IndMO->setReg(I->first);
nonIndMO->setReg(nonIndI->getOperand(1).getReg());
return true;
}
}
return false;
}
// It is not valid to do this transformation on an unsigned comparison
// because it may underflow.
Comparison::Kind Cmp =
getComparisonKind(PredDef->getOpcode(), nullptr, nullptr, 0);
if (!Cmp || Comparison::isUnsigned(Cmp))
return false;
// If the register is being compared against an immediate, try changing
// the compare instruction to use induction register and adjust the
// immediate operand.
int64_t CmpImm = getImmediate(*CmpImmOp);
int64_t V = RB.second;
// Handle Overflow (64-bit).
if (((V > 0) && (CmpImm > INT64_MAX - V)) ||
((V < 0) && (CmpImm < INT64_MIN - V)))
return false;
CmpImm += V;
// Most comparisons of register against an immediate value allow
// the immediate to be constant-extended. There are some exceptions
// though. Make sure the new combination will work.
if (CmpImmOp->isImm())
if (!isImmValidForOpcode(PredDef->getOpcode(), CmpImm))
return false;
// Make sure that the compare happens after the bump. Otherwise,
// after the fixup, the compare would use a yet-undefined register.
MachineInstr *BumpI = MRI->getVRegDef(I->first);
bool Order = orderBumpCompare(BumpI, PredDef);
if (!Order)
return false;
// Finally, fix the compare instruction.
setImmediate(*CmpImmOp, CmpImm);
for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
MachineOperand &MO = PredDef->getOperand(i);
if (MO.isReg() && MO.getReg() == RB.first) {
MO.setReg(I->first);
return true;
}
}
}
}
return false;
}
/// createPreheaderForLoop - Create a preheader for a given loop.
MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
MachineLoop *L) {
if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpecPreheader))
return TmpPH;
if (!HWCreatePreheader)
return nullptr;
MachineBasicBlock *Header = L->getHeader();
MachineBasicBlock *Latch = L->getLoopLatch();
MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
MachineFunction *MF = Header->getParent();
DebugLoc DL;
#ifndef NDEBUG
if ((!PHFn.empty()) && (PHFn != MF->getName()))
return nullptr;
#endif
if (!Latch || !ExitingBlock || Header->hasAddressTaken())
return nullptr;
using instr_iterator = MachineBasicBlock::instr_iterator;
// Verify that all existing predecessors have analyzable branches
// (or no branches at all).
using MBBVector = std::vector<MachineBasicBlock *>;
MBBVector Preds(Header->pred_begin(), Header->pred_end());
SmallVector<MachineOperand,2> Tmp1;
MachineBasicBlock *TB = nullptr, *FB = nullptr;
if (TII->analyzeBranch(*ExitingBlock, TB, FB, Tmp1, false))
return nullptr;
for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
MachineBasicBlock *PB = *I;
bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp1, false);
if (NotAnalyzed)
return nullptr;
}
MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock();
MF->insert(Header->getIterator(), NewPH);
if (Header->pred_size() > 2) {
// Ensure that the header has only two predecessors: the preheader and
// the loop latch. Any additional predecessors of the header should
// join at the newly created preheader. Inspect all PHI nodes from the
// header and create appropriate corresponding PHI nodes in the preheader.
for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
I != E && I->isPHI(); ++I) {
MachineInstr *PN = &*I;
const MCInstrDesc &PD = TII->get(TargetOpcode::PHI);
MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL);
NewPH->insert(NewPH->end(), NewPN);
unsigned PR = PN->getOperand(0).getReg();
const TargetRegisterClass *RC = MRI->getRegClass(PR);
unsigned NewPR = MRI->createVirtualRegister(RC);
NewPN->addOperand(MachineOperand::CreateReg(NewPR, true));
// Copy all non-latch operands of a header's PHI node to the newly
// created PHI node in the preheader.
for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
unsigned PredR = PN->getOperand(i).getReg();
unsigned PredRSub = PN->getOperand(i).getSubReg();
MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
if (PredB == Latch)
continue;
MachineOperand MO = MachineOperand::CreateReg(PredR, false);
MO.setSubReg(PredRSub);
NewPN->addOperand(MO);
NewPN->addOperand(MachineOperand::CreateMBB(PredB));
}
// Remove copied operands from the old PHI node and add the value
// coming from the preheader's PHI.
for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
if (PredB != Latch) {
PN->RemoveOperand(i+1);
PN->RemoveOperand(i);
}
}
PN->addOperand(MachineOperand::CreateReg(NewPR, false));
PN->addOperand(MachineOperand::CreateMBB(NewPH));
}
} else {
assert(Header->pred_size() == 2);
// The header has only two predecessors, but the non-latch predecessor
// is not a preheader (e.g. it has other successors, etc.)
// In such a case we don't need any extra PHI nodes in the new preheader,
// all we need is to adjust existing PHIs in the header to now refer to
// the new preheader.
for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
I != E && I->isPHI(); ++I) {
MachineInstr *PN = &*I;
for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
MachineOperand &MO = PN->getOperand(i+1);
if (MO.getMBB() != Latch)
MO.setMBB(NewPH);
}
}
}
// "Reroute" the CFG edges to link in the new preheader.
// If any of the predecessors falls through to the header, insert a branch
// to the new preheader in that place.
SmallVector<MachineOperand,1> Tmp2;
SmallVector<MachineOperand,1> EmptyCond;
TB = FB = nullptr;
for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
MachineBasicBlock *PB = *I;
if (PB != Latch) {
Tmp2.clear();
bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp2, false);
(void)NotAnalyzed; // suppress compiler warning
assert (!NotAnalyzed && "Should be analyzable!");
if (TB != Header && (Tmp2.empty() || FB != Header))
TII->insertBranch(*PB, NewPH, nullptr, EmptyCond, DL);
PB->ReplaceUsesOfBlockWith(Header, NewPH);
}
}
// It can happen that the latch block will fall through into the header.
// Insert an unconditional branch to the header.
TB = FB = nullptr;
bool LatchNotAnalyzed = TII->analyzeBranch(*Latch, TB, FB, Tmp2, false);
(void)LatchNotAnalyzed; // suppress compiler warning
assert (!LatchNotAnalyzed && "Should be analyzable!");
if (!TB && !FB)
TII->insertBranch(*Latch, Header, nullptr, EmptyCond, DL);
// Finally, the branch from the preheader to the header.
TII->insertBranch(*NewPH, Header, nullptr, EmptyCond, DL);
NewPH->addSuccessor(Header);
MachineLoop *ParentLoop = L->getParentLoop();
if (ParentLoop)
ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase());
// Update the dominator information with the new preheader.
if (MDT) {
if (MachineDomTreeNode *HN = MDT->getNode(Header)) {
if (MachineDomTreeNode *DHN = HN->getIDom()) {
MDT->addNewBlock(NewPH, DHN->getBlock());
MDT->changeImmediateDominator(Header, NewPH);
}
}
}
return NewPH;
}