1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/lib/CodeGen/RegAllocPBQP.cpp
Michael Gottesman d274826780 [block-freq] Refactor LiveInterals::getSpillWeight to use the new MachineBlockFrequencyInfo methods.
This is slightly more interesting than the previous batch of changes.
Specifically:

1. We refactor getSpillWeight to take a MachineBlockFrequencyInfo (MBFI)
object. This enables us to completely encapsulate the actual manner we
use the MachineBlockFrequencyInfo to get our spill weights. This yields
cleaner code since one does not need to fetch the actual block frequency
before getting the spill weight if all one wants it the spill weight. It
also gives us access to entry frequency which we need for our
computation.

2. Instead of having getSpillWeight take a MachineBasicBlock (as one
might think) to look up the block frequency via the MBFI object, we
instead take in a MachineInstr object. The reason for this is that the
method is supposed to return the spill weight for an instruction
according to the comments around the function.

llvm-svn: 197296
2013-12-14 00:53:32 +00:00

641 lines
21 KiB
C++

//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
// register allocator for LLVM. This allocator works by constructing a PBQP
// problem representing the register allocation problem under consideration,
// solving this using a PBQP solver, and mapping the solution back to a
// register assignment. If any variables are selected for spilling then spill
// code is inserted and the process repeated.
//
// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
// for register allocation. For more information on PBQP for register
// allocation, see the following papers:
//
// (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
// PBQP. In Proceedings of the 7th Joint Modular Languages Conference
// (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
//
// (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
// architectures. In Proceedings of the Joint Conference on Languages,
// Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
// NY, USA, 139-148.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "llvm/CodeGen/RegAllocPBQP.h"
#include "RegisterCoalescer.h"
#include "Spiller.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveRangeEdit.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PBQP/Graph.h"
#include "llvm/CodeGen/PBQP/HeuristicSolver.h"
#include "llvm/CodeGen/PBQP/Heuristics/Briggs.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include <limits>
#include <memory>
#include <set>
#include <sstream>
#include <vector>
using namespace llvm;
static RegisterRegAlloc
registerPBQPRepAlloc("pbqp", "PBQP register allocator",
createDefaultPBQPRegisterAllocator);
static cl::opt<bool>
pbqpCoalescing("pbqp-coalescing",
cl::desc("Attempt coalescing during PBQP register allocation."),
cl::init(false), cl::Hidden);
#ifndef NDEBUG
static cl::opt<bool>
pbqpDumpGraphs("pbqp-dump-graphs",
cl::desc("Dump graphs for each function/round in the compilation unit."),
cl::init(false), cl::Hidden);
#endif
namespace {
///
/// PBQP based allocators solve the register allocation problem by mapping
/// register allocation problems to Partitioned Boolean Quadratic
/// Programming problems.
class RegAllocPBQP : public MachineFunctionPass {
public:
static char ID;
/// Construct a PBQP register allocator.
RegAllocPBQP(OwningPtr<PBQPBuilder> &b, char *cPassID=0)
: MachineFunctionPass(ID), builder(b.take()), customPassID(cPassID) {
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
initializeLiveStacksPass(*PassRegistry::getPassRegistry());
initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
}
/// Return the pass name.
virtual const char* getPassName() const {
return "PBQP Register Allocator";
}
/// PBQP analysis usage.
virtual void getAnalysisUsage(AnalysisUsage &au) const;
/// Perform register allocation
virtual bool runOnMachineFunction(MachineFunction &MF);
private:
typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
typedef std::vector<const LiveInterval*> Node2LIMap;
typedef std::vector<unsigned> AllowedSet;
typedef std::vector<AllowedSet> AllowedSetMap;
typedef std::pair<unsigned, unsigned> RegPair;
typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
typedef std::set<unsigned> RegSet;
OwningPtr<PBQPBuilder> builder;
char *customPassID;
MachineFunction *mf;
const TargetMachine *tm;
const TargetRegisterInfo *tri;
const TargetInstrInfo *tii;
MachineRegisterInfo *mri;
const MachineBlockFrequencyInfo *mbfi;
OwningPtr<Spiller> spiller;
LiveIntervals *lis;
LiveStacks *lss;
VirtRegMap *vrm;
RegSet vregsToAlloc, emptyIntervalVRegs;
/// \brief Finds the initial set of vreg intervals to allocate.
void findVRegIntervalsToAlloc();
/// \brief Given a solved PBQP problem maps this solution back to a register
/// assignment.
bool mapPBQPToRegAlloc(const PBQPRAProblem &problem,
const PBQP::Solution &solution);
/// \brief Postprocessing before final spilling. Sets basic block "live in"
/// variables.
void finalizeAlloc() const;
};
char RegAllocPBQP::ID = 0;
} // End anonymous namespace.
unsigned PBQPRAProblem::getVRegForNode(PBQP::Graph::NodeId node) const {
Node2VReg::const_iterator vregItr = node2VReg.find(node);
assert(vregItr != node2VReg.end() && "No vreg for node.");
return vregItr->second;
}
PBQP::Graph::NodeId PBQPRAProblem::getNodeForVReg(unsigned vreg) const {
VReg2Node::const_iterator nodeItr = vreg2Node.find(vreg);
assert(nodeItr != vreg2Node.end() && "No node for vreg.");
return nodeItr->second;
}
const PBQPRAProblem::AllowedSet&
PBQPRAProblem::getAllowedSet(unsigned vreg) const {
AllowedSetMap::const_iterator allowedSetItr = allowedSets.find(vreg);
assert(allowedSetItr != allowedSets.end() && "No pregs for vreg.");
const AllowedSet &allowedSet = allowedSetItr->second;
return allowedSet;
}
unsigned PBQPRAProblem::getPRegForOption(unsigned vreg, unsigned option) const {
assert(isPRegOption(vreg, option) && "Not a preg option.");
const AllowedSet& allowedSet = getAllowedSet(vreg);
assert(option <= allowedSet.size() && "Option outside allowed set.");
return allowedSet[option - 1];
}
PBQPRAProblem *PBQPBuilder::build(MachineFunction *mf, const LiveIntervals *lis,
const MachineBlockFrequencyInfo *mbfi,
const RegSet &vregs) {
LiveIntervals *LIS = const_cast<LiveIntervals*>(lis);
MachineRegisterInfo *mri = &mf->getRegInfo();
const TargetRegisterInfo *tri = mf->getTarget().getRegisterInfo();
OwningPtr<PBQPRAProblem> p(new PBQPRAProblem());
PBQP::Graph &g = p->getGraph();
RegSet pregs;
// Collect the set of preg intervals, record that they're used in the MF.
for (unsigned Reg = 1, e = tri->getNumRegs(); Reg != e; ++Reg) {
if (mri->def_empty(Reg))
continue;
pregs.insert(Reg);
mri->setPhysRegUsed(Reg);
}
// Iterate over vregs.
for (RegSet::const_iterator vregItr = vregs.begin(), vregEnd = vregs.end();
vregItr != vregEnd; ++vregItr) {
unsigned vreg = *vregItr;
const TargetRegisterClass *trc = mri->getRegClass(vreg);
LiveInterval *vregLI = &LIS->getInterval(vreg);
// Record any overlaps with regmask operands.
BitVector regMaskOverlaps;
LIS->checkRegMaskInterference(*vregLI, regMaskOverlaps);
// Compute an initial allowed set for the current vreg.
typedef std::vector<unsigned> VRAllowed;
VRAllowed vrAllowed;
ArrayRef<uint16_t> rawOrder = trc->getRawAllocationOrder(*mf);
for (unsigned i = 0; i != rawOrder.size(); ++i) {
unsigned preg = rawOrder[i];
if (mri->isReserved(preg))
continue;
// vregLI crosses a regmask operand that clobbers preg.
if (!regMaskOverlaps.empty() && !regMaskOverlaps.test(preg))
continue;
// vregLI overlaps fixed regunit interference.
bool Interference = false;
for (MCRegUnitIterator Units(preg, tri); Units.isValid(); ++Units) {
if (vregLI->overlaps(LIS->getRegUnit(*Units))) {
Interference = true;
break;
}
}
if (Interference)
continue;
// preg is usable for this virtual register.
vrAllowed.push_back(preg);
}
// Construct the node.
PBQP::Graph::NodeId node =
g.addNode(PBQP::Vector(vrAllowed.size() + 1, 0));
// Record the mapping and allowed set in the problem.
p->recordVReg(vreg, node, vrAllowed.begin(), vrAllowed.end());
PBQP::PBQPNum spillCost = (vregLI->weight != 0.0) ?
vregLI->weight : std::numeric_limits<PBQP::PBQPNum>::min();
addSpillCosts(g.getNodeCosts(node), spillCost);
}
for (RegSet::const_iterator vr1Itr = vregs.begin(), vrEnd = vregs.end();
vr1Itr != vrEnd; ++vr1Itr) {
unsigned vr1 = *vr1Itr;
const LiveInterval &l1 = lis->getInterval(vr1);
const PBQPRAProblem::AllowedSet &vr1Allowed = p->getAllowedSet(vr1);
for (RegSet::const_iterator vr2Itr = llvm::next(vr1Itr);
vr2Itr != vrEnd; ++vr2Itr) {
unsigned vr2 = *vr2Itr;
const LiveInterval &l2 = lis->getInterval(vr2);
const PBQPRAProblem::AllowedSet &vr2Allowed = p->getAllowedSet(vr2);
assert(!l2.empty() && "Empty interval in vreg set?");
if (l1.overlaps(l2)) {
PBQP::Graph::EdgeId edge =
g.addEdge(p->getNodeForVReg(vr1), p->getNodeForVReg(vr2),
PBQP::Matrix(vr1Allowed.size()+1, vr2Allowed.size()+1, 0));
addInterferenceCosts(g.getEdgeCosts(edge), vr1Allowed, vr2Allowed, tri);
}
}
}
return p.take();
}
void PBQPBuilder::addSpillCosts(PBQP::Vector &costVec,
PBQP::PBQPNum spillCost) {
costVec[0] = spillCost;
}
void PBQPBuilder::addInterferenceCosts(
PBQP::Matrix &costMat,
const PBQPRAProblem::AllowedSet &vr1Allowed,
const PBQPRAProblem::AllowedSet &vr2Allowed,
const TargetRegisterInfo *tri) {
assert(costMat.getRows() == vr1Allowed.size() + 1 && "Matrix height mismatch.");
assert(costMat.getCols() == vr2Allowed.size() + 1 && "Matrix width mismatch.");
for (unsigned i = 0; i != vr1Allowed.size(); ++i) {
unsigned preg1 = vr1Allowed[i];
for (unsigned j = 0; j != vr2Allowed.size(); ++j) {
unsigned preg2 = vr2Allowed[j];
if (tri->regsOverlap(preg1, preg2)) {
costMat[i + 1][j + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
}
}
}
}
PBQPRAProblem *PBQPBuilderWithCoalescing::build(MachineFunction *mf,
const LiveIntervals *lis,
const MachineBlockFrequencyInfo *mbfi,
const RegSet &vregs) {
OwningPtr<PBQPRAProblem> p(PBQPBuilder::build(mf, lis, mbfi, vregs));
PBQP::Graph &g = p->getGraph();
const TargetMachine &tm = mf->getTarget();
CoalescerPair cp(*tm.getRegisterInfo());
// Scan the machine function and add a coalescing cost whenever CoalescerPair
// gives the Ok.
for (MachineFunction::const_iterator mbbItr = mf->begin(),
mbbEnd = mf->end();
mbbItr != mbbEnd; ++mbbItr) {
const MachineBasicBlock *mbb = &*mbbItr;
for (MachineBasicBlock::const_iterator miItr = mbb->begin(),
miEnd = mbb->end();
miItr != miEnd; ++miItr) {
const MachineInstr *mi = &*miItr;
if (!cp.setRegisters(mi)) {
continue; // Not coalescable.
}
if (cp.getSrcReg() == cp.getDstReg()) {
continue; // Already coalesced.
}
unsigned dst = cp.getDstReg(),
src = cp.getSrcReg();
const float copyFactor = 0.5; // Cost of copy relative to load. Current
// value plucked randomly out of the air.
PBQP::PBQPNum cBenefit =
copyFactor * LiveIntervals::getSpillWeight(false, true, mbfi, mi);
if (cp.isPhys()) {
if (!mf->getRegInfo().isAllocatable(dst)) {
continue;
}
const PBQPRAProblem::AllowedSet &allowed = p->getAllowedSet(src);
unsigned pregOpt = 0;
while (pregOpt < allowed.size() && allowed[pregOpt] != dst) {
++pregOpt;
}
if (pregOpt < allowed.size()) {
++pregOpt; // +1 to account for spill option.
PBQP::Graph::NodeId node = p->getNodeForVReg(src);
addPhysRegCoalesce(g.getNodeCosts(node), pregOpt, cBenefit);
}
} else {
const PBQPRAProblem::AllowedSet *allowed1 = &p->getAllowedSet(dst);
const PBQPRAProblem::AllowedSet *allowed2 = &p->getAllowedSet(src);
PBQP::Graph::NodeId node1 = p->getNodeForVReg(dst);
PBQP::Graph::NodeId node2 = p->getNodeForVReg(src);
PBQP::Graph::EdgeId edge = g.findEdge(node1, node2);
if (edge == g.invalidEdgeId()) {
edge = g.addEdge(node1, node2, PBQP::Matrix(allowed1->size() + 1,
allowed2->size() + 1,
0));
} else {
if (g.getEdgeNode1(edge) == node2) {
std::swap(node1, node2);
std::swap(allowed1, allowed2);
}
}
addVirtRegCoalesce(g.getEdgeCosts(edge), *allowed1, *allowed2,
cBenefit);
}
}
}
return p.take();
}
void PBQPBuilderWithCoalescing::addPhysRegCoalesce(PBQP::Vector &costVec,
unsigned pregOption,
PBQP::PBQPNum benefit) {
costVec[pregOption] += -benefit;
}
void PBQPBuilderWithCoalescing::addVirtRegCoalesce(
PBQP::Matrix &costMat,
const PBQPRAProblem::AllowedSet &vr1Allowed,
const PBQPRAProblem::AllowedSet &vr2Allowed,
PBQP::PBQPNum benefit) {
assert(costMat.getRows() == vr1Allowed.size() + 1 && "Size mismatch.");
assert(costMat.getCols() == vr2Allowed.size() + 1 && "Size mismatch.");
for (unsigned i = 0; i != vr1Allowed.size(); ++i) {
unsigned preg1 = vr1Allowed[i];
for (unsigned j = 0; j != vr2Allowed.size(); ++j) {
unsigned preg2 = vr2Allowed[j];
if (preg1 == preg2) {
costMat[i + 1][j + 1] += -benefit;
}
}
}
}
void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
au.setPreservesCFG();
au.addRequired<AliasAnalysis>();
au.addPreserved<AliasAnalysis>();
au.addRequired<SlotIndexes>();
au.addPreserved<SlotIndexes>();
au.addRequired<LiveIntervals>();
au.addPreserved<LiveIntervals>();
//au.addRequiredID(SplitCriticalEdgesID);
if (customPassID)
au.addRequiredID(*customPassID);
au.addRequired<LiveStacks>();
au.addPreserved<LiveStacks>();
au.addRequired<MachineBlockFrequencyInfo>();
au.addPreserved<MachineBlockFrequencyInfo>();
au.addRequired<MachineLoopInfo>();
au.addPreserved<MachineLoopInfo>();
au.addRequired<MachineDominatorTree>();
au.addPreserved<MachineDominatorTree>();
au.addRequired<VirtRegMap>();
au.addPreserved<VirtRegMap>();
MachineFunctionPass::getAnalysisUsage(au);
}
void RegAllocPBQP::findVRegIntervalsToAlloc() {
// Iterate over all live ranges.
for (unsigned i = 0, e = mri->getNumVirtRegs(); i != e; ++i) {
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
if (mri->reg_nodbg_empty(Reg))
continue;
LiveInterval *li = &lis->getInterval(Reg);
// If this live interval is non-empty we will use pbqp to allocate it.
// Empty intervals we allocate in a simple post-processing stage in
// finalizeAlloc.
if (!li->empty()) {
vregsToAlloc.insert(li->reg);
} else {
emptyIntervalVRegs.insert(li->reg);
}
}
}
bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAProblem &problem,
const PBQP::Solution &solution) {
// Set to true if we have any spills
bool anotherRoundNeeded = false;
// Clear the existing allocation.
vrm->clearAllVirt();
const PBQP::Graph &g = problem.getGraph();
// Iterate over the nodes mapping the PBQP solution to a register
// assignment.
for (PBQP::Graph::NodeItr nodeItr = g.nodesBegin(),
nodeEnd = g.nodesEnd();
nodeItr != nodeEnd; ++nodeItr) {
unsigned vreg = problem.getVRegForNode(*nodeItr);
unsigned alloc = solution.getSelection(*nodeItr);
if (problem.isPRegOption(vreg, alloc)) {
unsigned preg = problem.getPRegForOption(vreg, alloc);
DEBUG(dbgs() << "VREG " << PrintReg(vreg, tri) << " -> "
<< tri->getName(preg) << "\n");
assert(preg != 0 && "Invalid preg selected.");
vrm->assignVirt2Phys(vreg, preg);
} else if (problem.isSpillOption(vreg, alloc)) {
vregsToAlloc.erase(vreg);
SmallVector<unsigned, 8> newSpills;
LiveRangeEdit LRE(&lis->getInterval(vreg), newSpills, *mf, *lis, vrm);
spiller->spill(LRE);
DEBUG(dbgs() << "VREG " << PrintReg(vreg, tri) << " -> SPILLED (Cost: "
<< LRE.getParent().weight << ", New vregs: ");
// Copy any newly inserted live intervals into the list of regs to
// allocate.
for (LiveRangeEdit::iterator itr = LRE.begin(), end = LRE.end();
itr != end; ++itr) {
LiveInterval &li = lis->getInterval(*itr);
assert(!li.empty() && "Empty spill range.");
DEBUG(dbgs() << PrintReg(li.reg, tri) << " ");
vregsToAlloc.insert(li.reg);
}
DEBUG(dbgs() << ")\n");
// We need another round if spill intervals were added.
anotherRoundNeeded |= !LRE.empty();
} else {
llvm_unreachable("Unknown allocation option.");
}
}
return !anotherRoundNeeded;
}
void RegAllocPBQP::finalizeAlloc() const {
// First allocate registers for the empty intervals.
for (RegSet::const_iterator
itr = emptyIntervalVRegs.begin(), end = emptyIntervalVRegs.end();
itr != end; ++itr) {
LiveInterval *li = &lis->getInterval(*itr);
unsigned physReg = mri->getSimpleHint(li->reg);
if (physReg == 0) {
const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
physReg = liRC->getRawAllocationOrder(*mf).front();
}
vrm->assignVirt2Phys(li->reg, physReg);
}
}
bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
mf = &MF;
tm = &mf->getTarget();
tri = tm->getRegisterInfo();
tii = tm->getInstrInfo();
mri = &mf->getRegInfo();
lis = &getAnalysis<LiveIntervals>();
lss = &getAnalysis<LiveStacks>();
mbfi = &getAnalysis<MachineBlockFrequencyInfo>();
calculateSpillWeightsAndHints(*lis, MF, getAnalysis<MachineLoopInfo>(),
*mbfi);
vrm = &getAnalysis<VirtRegMap>();
spiller.reset(createInlineSpiller(*this, MF, *vrm));
mri->freezeReservedRegs(MF);
DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getName() << "\n");
// Allocator main loop:
//
// * Map current regalloc problem to a PBQP problem
// * Solve the PBQP problem
// * Map the solution back to a register allocation
// * Spill if necessary
//
// This process is continued till no more spills are generated.
// Find the vreg intervals in need of allocation.
findVRegIntervalsToAlloc();
#ifndef NDEBUG
const Function* func = mf->getFunction();
std::string fqn =
func->getParent()->getModuleIdentifier() + "." +
func->getName().str();
#endif
// If there are non-empty intervals allocate them using pbqp.
if (!vregsToAlloc.empty()) {
bool pbqpAllocComplete = false;
unsigned round = 0;
while (!pbqpAllocComplete) {
DEBUG(dbgs() << " PBQP Regalloc round " << round << ":\n");
OwningPtr<PBQPRAProblem> problem(
builder->build(mf, lis, mbfi, vregsToAlloc));
#ifndef NDEBUG
if (pbqpDumpGraphs) {
std::ostringstream rs;
rs << round;
std::string graphFileName(fqn + "." + rs.str() + ".pbqpgraph");
std::string tmp;
raw_fd_ostream os(graphFileName.c_str(), tmp);
DEBUG(dbgs() << "Dumping graph for round " << round << " to \""
<< graphFileName << "\"\n");
problem->getGraph().dump(os);
}
#endif
PBQP::Solution solution =
PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(
problem->getGraph());
pbqpAllocComplete = mapPBQPToRegAlloc(*problem, solution);
++round;
}
}
// Finalise allocation, allocate empty ranges.
finalizeAlloc();
vregsToAlloc.clear();
emptyIntervalVRegs.clear();
DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
return true;
}
FunctionPass* llvm::createPBQPRegisterAllocator(
OwningPtr<PBQPBuilder> &builder,
char *customPassID) {
return new RegAllocPBQP(builder, customPassID);
}
FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
OwningPtr<PBQPBuilder> Builder;
if (pbqpCoalescing)
Builder.reset(new PBQPBuilderWithCoalescing());
else
Builder.reset(new PBQPBuilder());
return createPBQPRegisterAllocator(Builder);
}
#undef DEBUG_TYPE