mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-10-30 07:22:55 +01:00
d3b5925b38
llvm-svn: 20841
1125 lines
38 KiB
C++
1125 lines
38 KiB
C++
//===-- PPC32ISelPattern.cpp - A pattern matching inst selector for PPC32 -===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Nate Begeman and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a pattern matching instruction selector for 32 bit PowerPC.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PowerPC.h"
|
|
#include "PowerPCInstrBuilder.h"
|
|
#include "PowerPCInstrInfo.h"
|
|
#include "PPC32RegisterInfo.h"
|
|
#include "llvm/Constants.h" // FIXME: REMOVE
|
|
#include "llvm/Function.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h" // FIXME: REMOVE
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include <set>
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PPC32TargetLowering - PPC32 Implementation of the TargetLowering interface
|
|
namespace {
|
|
class PPC32TargetLowering : public TargetLowering {
|
|
int VarArgsFrameIndex; // FrameIndex for start of varargs area.
|
|
int ReturnAddrIndex; // FrameIndex for return slot.
|
|
public:
|
|
PPC32TargetLowering(TargetMachine &TM) : TargetLowering(TM) {
|
|
// Set up the TargetLowering object.
|
|
|
|
// Set up the register classes.
|
|
addRegisterClass(MVT::i32, PPC32::GPRCRegisterClass);
|
|
addRegisterClass(MVT::f32, PPC32::GPRCRegisterClass);
|
|
addRegisterClass(MVT::f64, PPC32::FPRCRegisterClass);
|
|
|
|
computeRegisterProperties();
|
|
}
|
|
|
|
/// LowerArguments - This hook must be implemented to indicate how we should
|
|
/// lower the arguments for the specified function, into the specified DAG.
|
|
virtual std::vector<SDOperand>
|
|
LowerArguments(Function &F, SelectionDAG &DAG);
|
|
|
|
/// LowerCallTo - This hook lowers an abstract call to a function into an
|
|
/// actual call.
|
|
virtual std::pair<SDOperand, SDOperand>
|
|
LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
|
|
SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
|
|
|
|
virtual std::pair<SDOperand, SDOperand>
|
|
LowerVAStart(SDOperand Chain, SelectionDAG &DAG);
|
|
|
|
virtual std::pair<SDOperand,SDOperand>
|
|
LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList,
|
|
const Type *ArgTy, SelectionDAG &DAG);
|
|
|
|
virtual std::pair<SDOperand, SDOperand>
|
|
LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
|
|
SelectionDAG &DAG);
|
|
};
|
|
}
|
|
|
|
|
|
std::vector<SDOperand>
|
|
PPC32TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
|
|
//
|
|
// add beautiful description of PPC stack frame format, or at least some docs
|
|
//
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
MachineBasicBlock& BB = MF.front();
|
|
std::vector<SDOperand> ArgValues;
|
|
|
|
// Due to the rather complicated nature of the PowerPC ABI, rather than a
|
|
// fixed size array of physical args, for the sake of simplicity let the STL
|
|
// handle tracking them for us.
|
|
std::vector<unsigned> argVR, argPR, argOp;
|
|
unsigned ArgOffset = 24;
|
|
unsigned GPR_remaining = 8;
|
|
unsigned FPR_remaining = 13;
|
|
unsigned GPR_idx = 0, FPR_idx = 0;
|
|
static const unsigned GPR[] = {
|
|
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
|
|
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
|
|
};
|
|
static const unsigned FPR[] = {
|
|
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
|
|
PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
|
|
};
|
|
|
|
// Add DAG nodes to load the arguments... On entry to a function on PPC,
|
|
// the arguments start at offset 24, although they are likely to be passed
|
|
// in registers.
|
|
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
|
|
SDOperand newroot, argt;
|
|
unsigned ObjSize;
|
|
bool needsLoad = false;
|
|
MVT::ValueType ObjectVT = getValueType(I->getType());
|
|
|
|
switch (ObjectVT) {
|
|
default: assert(0 && "Unhandled argument type!");
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
ObjSize = 4;
|
|
if (GPR_remaining > 0) {
|
|
BuildMI(&BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
|
|
unsigned virtReg =
|
|
MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i32));
|
|
argt = newroot = DAG.getCopyFromReg(virtReg, MVT::i32, DAG.getRoot());
|
|
if (ObjectVT != MVT::i32)
|
|
argt = DAG.getNode(ISD::TRUNCATE, ObjectVT, newroot);
|
|
argVR.push_back(virtReg);
|
|
argPR.push_back(GPR[GPR_idx]);
|
|
argOp.push_back(PPC::OR);
|
|
} else {
|
|
needsLoad = true;
|
|
}
|
|
break;
|
|
case MVT::i64: ObjSize = 8;
|
|
if (GPR_remaining > 1) {
|
|
BuildMI(&BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
|
|
BuildMI(&BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx+1]);
|
|
MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i32));
|
|
unsigned virtReg =
|
|
MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i32))-1;
|
|
// FIXME: is this correct?
|
|
argt = newroot = DAG.getCopyFromReg(virtReg, MVT::i32, DAG.getRoot());
|
|
argt = DAG.getCopyFromReg(virtReg+1, MVT::i32, newroot);
|
|
// Push the arguments for emitting into BB later
|
|
argVR.push_back(virtReg); argVR.push_back(virtReg+1);
|
|
argPR.push_back(GPR[GPR_idx]); argPR.push_back(GPR[GPR_idx+1]);
|
|
argOp.push_back(PPC::OR); argOp.push_back(PPC::OR);
|
|
} else {
|
|
needsLoad = true;
|
|
}
|
|
break;
|
|
case MVT::f32: ObjSize = 4;
|
|
case MVT::f64: ObjSize = 8;
|
|
if (FPR_remaining > 0) {
|
|
BuildMI(&BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
|
|
unsigned virtReg =
|
|
MF.getSSARegMap()->createVirtualRegister(getRegClassFor(ObjectVT));
|
|
argt = newroot = DAG.getCopyFromReg(virtReg, ObjectVT, DAG.getRoot());
|
|
argVR.push_back(virtReg);
|
|
argPR.push_back(FPR[FPR_idx]);
|
|
argOp.push_back(PPC::FMR);
|
|
--FPR_remaining;
|
|
++FPR_idx;
|
|
} else {
|
|
needsLoad = true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// We need to load the argument to a virtual register if we determined above
|
|
// that we ran out of physical registers of the appropriate type
|
|
if (needsLoad) {
|
|
int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
|
|
SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
|
|
argt = newroot = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN);
|
|
}
|
|
|
|
// Every 4 bytes of argument space consumes one of the GPRs available for
|
|
// argument passing.
|
|
if (GPR_remaining > 0) {
|
|
unsigned delta = (GPR_remaining > 1 && ObjSize == 8) ? 2 : 1;
|
|
GPR_remaining -= delta;
|
|
GPR_idx += delta;
|
|
}
|
|
ArgOffset += ObjSize;
|
|
|
|
DAG.setRoot(newroot.getValue(1));
|
|
ArgValues.push_back(argt);
|
|
}
|
|
|
|
for (int i = 0, count = argVR.size(); i < count; ++i) {
|
|
if (argOp[i] == PPC::FMR)
|
|
BuildMI(&BB, argOp[i], 1, argVR[i]).addReg(argPR[i]);
|
|
else
|
|
BuildMI(&BB, argOp[i], 2, argVR[i]).addReg(argPR[i]).addReg(argPR[i]);
|
|
}
|
|
|
|
// If the function takes variable number of arguments, make a frame index for
|
|
// the start of the first vararg value... for expansion of llvm.va_start.
|
|
if (F.isVarArg())
|
|
VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
|
|
|
|
return ArgValues;
|
|
}
|
|
|
|
std::pair<SDOperand, SDOperand>
|
|
PPC32TargetLowering::LowerCallTo(SDOperand Chain,
|
|
const Type *RetTy, bool isVarArg,
|
|
SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG) {
|
|
// args_to_use will accumulate outgoing args for the ISD::CALL case in
|
|
// SelectExpr to use to put the arguments in the appropriate registers.
|
|
std::vector<SDOperand> args_to_use;
|
|
|
|
// Count how many bytes are to be pushed on the stack, including the linkage
|
|
// area, and parameter passing area.
|
|
unsigned NumBytes = 24;
|
|
|
|
if (Args.empty()) {
|
|
NumBytes = 0; // Save zero bytes.
|
|
} else {
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i)
|
|
switch (getValueType(Args[i].second)) {
|
|
default: assert(0 && "Unknown value type!");
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
case MVT::f32:
|
|
NumBytes += 4;
|
|
break;
|
|
case MVT::i64:
|
|
case MVT::f64:
|
|
NumBytes += 8;
|
|
break;
|
|
}
|
|
|
|
// Just to be safe, we'll always reserve the full 24 bytes of linkage area
|
|
// plus 32 bytes of argument space in case any called code gets funky on us.
|
|
if (NumBytes < 56) NumBytes = 56;
|
|
|
|
// Adjust the stack pointer for the new arguments...
|
|
// These operations are automatically eliminated by the prolog/epilog pass
|
|
Chain = DAG.getNode(ISD::ADJCALLSTACKDOWN, MVT::Other, Chain,
|
|
DAG.getConstant(NumBytes, getPointerTy()));
|
|
|
|
// Set up a copy of the stack pointer for use loading and storing any
|
|
// arguments that may not fit in the registers available for argument
|
|
// passing.
|
|
SDOperand StackPtr = DAG.getCopyFromReg(PPC::R1, MVT::i32,
|
|
DAG.getEntryNode());
|
|
|
|
// Figure out which arguments are going to go in registers, and which in
|
|
// memory. Also, if this is a vararg function, floating point operations
|
|
// must be stored to our stack, and loaded into integer regs as well, if
|
|
// any integer regs are available for argument passing.
|
|
unsigned ArgOffset = 24;
|
|
unsigned GPR_remaining = 8;
|
|
unsigned FPR_remaining = 13;
|
|
std::vector<SDOperand> Stores;
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
|
|
// PtrOff will be used to store the current argument to the stack if a
|
|
// register cannot be found for it.
|
|
SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
|
|
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
|
|
|
|
switch (getValueType(Args[i].second)) {
|
|
default: assert(0 && "Unexpected ValueType for argument!");
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
// Promote the integer to 32 bits. If the input type is signed use a
|
|
// sign extend, otherwise use a zero extend.
|
|
if (Args[i].second->isSigned())
|
|
Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first);
|
|
else
|
|
Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first);
|
|
// FALL THROUGH
|
|
case MVT::i32:
|
|
if (GPR_remaining > 0) {
|
|
args_to_use.push_back(Args[i].first);
|
|
--GPR_remaining;
|
|
} else {
|
|
Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
|
|
Args[i].first, PtrOff));
|
|
}
|
|
ArgOffset += 4;
|
|
break;
|
|
case MVT::i64:
|
|
// If we have 2 or more GPRs, we won't do anything and let the ISD::CALL
|
|
// functionality in SelectExpr move pieces for us.
|
|
if (GPR_remaining > 1) {
|
|
args_to_use.push_back(Args[i].first);
|
|
GPR_remaining -= 2;
|
|
} else if (GPR_remaining > 0) {
|
|
args_to_use.push_back(Args[i].first);
|
|
SDOperand LowPart =
|
|
DAG.getNode(ISD::TRUNCATE, MVT::i32, Args[i].first);
|
|
SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
|
|
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
|
|
Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
|
|
LowPart, PtrOff));
|
|
--GPR_remaining;
|
|
} else {
|
|
Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
|
|
Args[i].first, PtrOff));
|
|
}
|
|
ArgOffset += 8;
|
|
break;
|
|
case MVT::f32:
|
|
if (FPR_remaining > 0 && GPR_remaining > 0 && isVarArg) {
|
|
--FPR_remaining;
|
|
ArgOffset += 4;
|
|
} else if (FPR_remaining > 0) {
|
|
--FPR_remaining;
|
|
if (GPR_remaining > 0) --GPR_remaining;
|
|
} else {
|
|
Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
|
|
Args[i].first, PtrOff));
|
|
}
|
|
ArgOffset += 4;
|
|
break;
|
|
case MVT::f64:
|
|
if (FPR_remaining > 0 && GPR_remaining > 0 && isVarArg) {
|
|
--FPR_remaining;
|
|
} else if (FPR_remaining > 0) {
|
|
--FPR_remaining;
|
|
if (GPR_remaining > 0) --GPR_remaining;
|
|
if (GPR_remaining > 0) --GPR_remaining;
|
|
} else {
|
|
Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
|
|
Args[i].first, PtrOff));
|
|
}
|
|
ArgOffset += 8;
|
|
break;
|
|
}
|
|
}
|
|
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores);
|
|
}
|
|
|
|
std::vector<MVT::ValueType> RetVals;
|
|
MVT::ValueType RetTyVT = getValueType(RetTy);
|
|
if (RetTyVT != MVT::isVoid)
|
|
RetVals.push_back(RetTyVT);
|
|
RetVals.push_back(MVT::Other);
|
|
|
|
SDOperand TheCall = SDOperand(DAG.getCall(RetVals,
|
|
Chain, Callee, args_to_use), 0);
|
|
Chain = TheCall.getValue(RetTyVT != MVT::isVoid);
|
|
Chain = DAG.getNode(ISD::ADJCALLSTACKUP, MVT::Other, Chain,
|
|
DAG.getConstant(NumBytes, getPointerTy()));
|
|
return std::make_pair(TheCall, Chain);
|
|
}
|
|
|
|
std::pair<SDOperand, SDOperand>
|
|
PPC32TargetLowering::LowerVAStart(SDOperand Chain, SelectionDAG &DAG) {
|
|
//vastart just returns the address of the VarArgsFrameIndex slot.
|
|
return std::make_pair(DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32), Chain);
|
|
}
|
|
|
|
std::pair<SDOperand,SDOperand> PPC32TargetLowering::
|
|
LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList,
|
|
const Type *ArgTy, SelectionDAG &DAG) {
|
|
MVT::ValueType ArgVT = getValueType(ArgTy);
|
|
SDOperand Result;
|
|
if (!isVANext) {
|
|
Result = DAG.getLoad(ArgVT, DAG.getEntryNode(), VAList);
|
|
} else {
|
|
unsigned Amt;
|
|
if (ArgVT == MVT::i32 || ArgVT == MVT::f32)
|
|
Amt = 4;
|
|
else {
|
|
assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) &&
|
|
"Other types should have been promoted for varargs!");
|
|
Amt = 8;
|
|
}
|
|
Result = DAG.getNode(ISD::ADD, VAList.getValueType(), VAList,
|
|
DAG.getConstant(Amt, VAList.getValueType()));
|
|
}
|
|
return std::make_pair(Result, Chain);
|
|
}
|
|
|
|
|
|
std::pair<SDOperand, SDOperand> PPC32TargetLowering::
|
|
LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth,
|
|
SelectionDAG &DAG) {
|
|
abort();
|
|
}
|
|
|
|
namespace {
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// ISel - PPC32 specific code to select PPC32 machine instructions for
|
|
/// SelectionDAG operations.
|
|
//===--------------------------------------------------------------------===//
|
|
class ISel : public SelectionDAGISel {
|
|
|
|
/// Comment Here.
|
|
PPC32TargetLowering PPC32Lowering;
|
|
|
|
/// ExprMap - As shared expressions are codegen'd, we keep track of which
|
|
/// vreg the value is produced in, so we only emit one copy of each compiled
|
|
/// tree.
|
|
std::map<SDOperand, unsigned> ExprMap;
|
|
|
|
unsigned GlobalBaseReg;
|
|
bool GlobalBaseInitialized;
|
|
|
|
public:
|
|
ISel(TargetMachine &TM) : SelectionDAGISel(PPC32Lowering), PPC32Lowering(TM)
|
|
{}
|
|
|
|
/// runOnFunction - Override this function in order to reset our per-function
|
|
/// variables.
|
|
virtual bool runOnFunction(Function &Fn) {
|
|
// Make sure we re-emit a set of the global base reg if necessary
|
|
GlobalBaseInitialized = false;
|
|
return SelectionDAGISel::runOnFunction(Fn);
|
|
}
|
|
|
|
/// InstructionSelectBasicBlock - This callback is invoked by
|
|
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
|
|
virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) {
|
|
DEBUG(BB->dump());
|
|
// Codegen the basic block.
|
|
Select(DAG.getRoot());
|
|
|
|
// Clear state used for selection.
|
|
ExprMap.clear();
|
|
}
|
|
|
|
unsigned ISel::getGlobalBaseReg();
|
|
unsigned SelectExpr(SDOperand N);
|
|
unsigned SelectExprFP(SDOperand N, unsigned Result);
|
|
void Select(SDOperand N);
|
|
|
|
void SelectAddr(SDOperand N, unsigned& Reg, int& offset);
|
|
void SelectBranchCC(SDOperand N);
|
|
};
|
|
|
|
/// canUseAsImmediateForOpcode - This method returns a value indicating whether
|
|
/// the ConstantSDNode N can be used as an immediate to Opcode. The return
|
|
/// values are either 0, 1 or 2. 0 indicates that either N is not a
|
|
/// ConstantSDNode, or is not suitable for use by that opcode. A return value
|
|
/// of 1 indicates that the constant may be used in normal immediate form. A
|
|
/// return value of 2 indicates that the constant may be used in shifted
|
|
/// immediate form. If the return value is nonzero, the constant value is
|
|
/// placed in Imm.
|
|
///
|
|
static unsigned canUseAsImmediateForOpcode(SDOperand N, unsigned Opcode,
|
|
unsigned& Imm) {
|
|
if (N.getOpcode() != ISD::Constant) return 0;
|
|
|
|
int v = (int)cast<ConstantSDNode>(N)->getSignExtended();
|
|
|
|
switch(Opcode) {
|
|
default: return 0;
|
|
case ISD::ADD:
|
|
if (v <= 32767 && v >= -32768) { Imm = v & 0xFFFF; return 1; }
|
|
if ((v & 0x0000FFFF) == 0) { Imm = v >> 16; return 2; }
|
|
break;
|
|
case ISD::AND:
|
|
case ISD::XOR:
|
|
case ISD::OR:
|
|
if (v >= 0 && v <= 65535) { Imm = v & 0xFFFF; return 1; }
|
|
if ((v & 0x0000FFFF) == 0) { Imm = v >> 16; return 2; }
|
|
break;
|
|
case ISD::MUL:
|
|
if (v <= 32767 && v >= -32768) { Imm = v & 0xFFFF; return 1; }
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/// getGlobalBaseReg - Output the instructions required to put the
|
|
/// base address to use for accessing globals into a register.
|
|
///
|
|
unsigned ISel::getGlobalBaseReg() {
|
|
if (!GlobalBaseInitialized) {
|
|
// Insert the set of GlobalBaseReg into the first MBB of the function
|
|
MachineBasicBlock &FirstMBB = BB->getParent()->front();
|
|
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
|
|
GlobalBaseReg = MakeReg(MVT::i32);
|
|
BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR);
|
|
BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg).addReg(PPC::LR);
|
|
GlobalBaseInitialized = true;
|
|
}
|
|
return GlobalBaseReg;
|
|
}
|
|
|
|
//Check to see if the load is a constant offset from a base register
|
|
void ISel::SelectAddr(SDOperand N, unsigned& Reg, int& offset)
|
|
{
|
|
Reg = SelectExpr(N);
|
|
offset = 0;
|
|
return;
|
|
}
|
|
|
|
void ISel::SelectBranchCC(SDOperand N)
|
|
{
|
|
assert(N.getOpcode() == ISD::BRCOND && "Not a BranchCC???");
|
|
MachineBasicBlock *Dest =
|
|
cast<BasicBlockSDNode>(N.getOperand(2))->getBasicBlock();
|
|
unsigned Opc;
|
|
|
|
Select(N.getOperand(0)); //chain
|
|
SDOperand CC = N.getOperand(1);
|
|
|
|
//Giveup and do the stupid thing
|
|
unsigned Tmp1 = SelectExpr(CC);
|
|
BuildMI(BB, PPC::BNE, 2).addReg(Tmp1).addMBB(Dest);
|
|
return;
|
|
}
|
|
|
|
unsigned ISel::SelectExprFP(SDOperand N, unsigned Result)
|
|
{
|
|
unsigned Tmp1, Tmp2, Tmp3;
|
|
unsigned Opc = 0;
|
|
SDNode *Node = N.Val;
|
|
MVT::ValueType DestType = N.getValueType();
|
|
unsigned opcode = N.getOpcode();
|
|
|
|
switch (opcode) {
|
|
default:
|
|
Node->dump();
|
|
assert(0 && "Node not handled!\n");
|
|
|
|
case ISD::SELECT:
|
|
abort();
|
|
|
|
case ISD::FP_ROUND:
|
|
assert (DestType == MVT::f32 &&
|
|
N.getOperand(0).getValueType() == MVT::f64 &&
|
|
"only f64 to f32 conversion supported here");
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
BuildMI(BB, PPC::FRSP, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
|
|
case ISD::FP_EXTEND:
|
|
assert (DestType == MVT::f64 &&
|
|
N.getOperand(0).getValueType() == MVT::f32 &&
|
|
"only f32 to f64 conversion supported here");
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
BuildMI(BB, PPC::FMR, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
|
|
case ISD::CopyFromReg:
|
|
// FIXME: Handle copy from physregs!
|
|
// Just use the specified register as our input.
|
|
return dyn_cast<RegSDNode>(Node)->getReg();
|
|
|
|
case ISD::LOAD:
|
|
case ISD::EXTLOAD:
|
|
abort();
|
|
|
|
case ISD::ConstantFP:
|
|
abort();
|
|
|
|
case ISD::MUL:
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
case ISD::SDIV:
|
|
switch( opcode ) {
|
|
case ISD::MUL: Opc = DestType == MVT::f64 ? PPC::FMUL : PPC::FMULS; break;
|
|
case ISD::ADD: Opc = DestType == MVT::f64 ? PPC::FADD : PPC::FADDS; break;
|
|
case ISD::SUB: Opc = DestType == MVT::f64 ? PPC::FSUB : PPC::FSUBS; break;
|
|
case ISD::SDIV: Opc = DestType == MVT::f64 ? PPC::FDIV : PPC::FDIVS; break;
|
|
};
|
|
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
return Result;
|
|
|
|
case ISD::UINT_TO_FP:
|
|
case ISD::SINT_TO_FP:
|
|
abort();
|
|
}
|
|
assert(0 && "should not get here");
|
|
return 0;
|
|
}
|
|
|
|
unsigned ISel::SelectExpr(SDOperand N) {
|
|
unsigned Result;
|
|
unsigned Tmp1, Tmp2, Tmp3;
|
|
unsigned Opc = 0;
|
|
unsigned opcode = N.getOpcode();
|
|
|
|
SDNode *Node = N.Val;
|
|
MVT::ValueType DestType = N.getValueType();
|
|
|
|
unsigned &Reg = ExprMap[N];
|
|
if (Reg) return Reg;
|
|
|
|
if (N.getOpcode() != ISD::CALL && N.getOpcode() != ISD::ADD_PARTS &&
|
|
N.getOpcode() != ISD::SUB_PARTS)
|
|
Reg = Result = (N.getValueType() != MVT::Other) ?
|
|
MakeReg(N.getValueType()) : 1;
|
|
else {
|
|
// If this is a call instruction, make sure to prepare ALL of the result
|
|
// values as well as the chain.
|
|
if (N.getOpcode() == ISD::CALL) {
|
|
if (Node->getNumValues() == 1)
|
|
Reg = Result = 1; // Void call, just a chain.
|
|
else {
|
|
Result = MakeReg(Node->getValueType(0));
|
|
ExprMap[N.getValue(0)] = Result;
|
|
for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i)
|
|
ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i));
|
|
ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1;
|
|
}
|
|
} else {
|
|
Result = MakeReg(Node->getValueType(0));
|
|
ExprMap[N.getValue(0)] = Result;
|
|
for (unsigned i = 1, e = N.Val->getNumValues(); i != e; ++i)
|
|
ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i));
|
|
}
|
|
}
|
|
|
|
if (DestType == MVT::f64 || DestType == MVT::f32)
|
|
return SelectExprFP(N, Result);
|
|
|
|
switch (opcode) {
|
|
default:
|
|
Node->dump();
|
|
assert(0 && "Node not handled!\n");
|
|
|
|
case ISD::DYNAMIC_STACKALLOC:
|
|
// Generate both result values. FIXME: Need a better commment here?
|
|
if (Result != 1)
|
|
ExprMap[N.getValue(1)] = 1;
|
|
else
|
|
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
|
|
|
|
// FIXME: We are currently ignoring the requested alignment for handling
|
|
// greater than the stack alignment. This will need to be revisited at some
|
|
// point. Align = N.getOperand(2);
|
|
if (!isa<ConstantSDNode>(N.getOperand(2)) ||
|
|
cast<ConstantSDNode>(N.getOperand(2))->getValue() != 0) {
|
|
std::cerr << "Cannot allocate stack object with greater alignment than"
|
|
<< " the stack alignment yet!";
|
|
abort();
|
|
}
|
|
Select(N.getOperand(0));
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
// Subtract size from stack pointer, thereby allocating some space.
|
|
BuildMI(BB, PPC::SUBF, 2, PPC::R1).addReg(Tmp1).addReg(PPC::R1);
|
|
// Put a pointer to the space into the result register by copying the SP
|
|
BuildMI(BB, PPC::OR, 2, Result).addReg(PPC::R1).addReg(PPC::R1);
|
|
return Result;
|
|
|
|
case ISD::ConstantPool:
|
|
abort();
|
|
|
|
case ISD::FrameIndex:
|
|
abort();
|
|
|
|
case ISD::GlobalAddress: {
|
|
GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
|
|
unsigned Tmp1 = MakeReg(MVT::i32);
|
|
BuildMI(BB, PPC::LOADHiAddr, 2, Tmp1).addReg(getGlobalBaseReg())
|
|
.addGlobalAddress(GV);
|
|
if (GV->hasWeakLinkage() || GV->isExternal()) {
|
|
BuildMI(BB, PPC::LWZ, 2, Result).addGlobalAddress(GV).addReg(Tmp1);
|
|
} else {
|
|
BuildMI(BB, PPC::LA, 2, Result).addReg(Tmp1).addGlobalAddress(GV);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
case ISD::LOAD:
|
|
case ISD::EXTLOAD:
|
|
case ISD::ZEXTLOAD:
|
|
case ISD::SEXTLOAD: {
|
|
// Make sure we generate both values.
|
|
if (Result != 1)
|
|
ExprMap[N.getValue(1)] = 1; // Generate the token
|
|
else
|
|
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
|
|
|
|
SDOperand Chain = N.getOperand(0);
|
|
SDOperand Address = N.getOperand(1);
|
|
Select(Chain);
|
|
|
|
switch (Node->getValueType(0)) {
|
|
default: assert(0 && "Cannot load this type!");
|
|
case MVT::i1: Opc = PPC::LBZ; Tmp3 = 0; break;
|
|
case MVT::i8: Opc = PPC::LBZ; Tmp3 = 1; break;
|
|
case MVT::i16: Opc = PPC::LHZ; Tmp3 = 0; break;
|
|
case MVT::i32: Opc = PPC::LWZ; Tmp3 = 0; break;
|
|
}
|
|
|
|
if(Address.getOpcode() == ISD::FrameIndex) {
|
|
BuildMI(BB, Opc, 2, Result)
|
|
.addFrameIndex(cast<FrameIndexSDNode>(Address)->getIndex())
|
|
.addReg(PPC::R1);
|
|
} else {
|
|
int offset;
|
|
SelectAddr(Address, Tmp1, offset);
|
|
BuildMI(BB, Opc, 2, Result).addSImm(offset).addReg(Tmp1);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
case ISD::CALL: {
|
|
// Lower the chain for this call.
|
|
Select(N.getOperand(0));
|
|
ExprMap[N.getValue(Node->getNumValues()-1)] = 1;
|
|
|
|
// get the virtual reg for each argument
|
|
std::vector<unsigned> VRegs;
|
|
for(int i = 2, e = Node->getNumOperands(); i < e; ++i)
|
|
VRegs.push_back(SelectExpr(N.getOperand(i)));
|
|
|
|
// The ABI specifies that the first 32 bytes of args may be passed in GPRs,
|
|
// and that 13 FPRs may also be used for passing any floating point args.
|
|
int GPR_remaining = 8, FPR_remaining = 13;
|
|
unsigned GPR_idx = 0, FPR_idx = 0;
|
|
static const unsigned GPR[] = {
|
|
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
|
|
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
|
|
};
|
|
static const unsigned FPR[] = {
|
|
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6,
|
|
PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12,
|
|
PPC::F13
|
|
};
|
|
|
|
// move the vregs into the appropriate architected register or stack slot
|
|
for(int i = 0, e = VRegs.size(); i < e; ++i) {
|
|
unsigned OperandType = N.getOperand(i+2).getValueType();
|
|
switch(OperandType) {
|
|
default:
|
|
Node->dump();
|
|
N.getOperand(i).Val->dump();
|
|
std::cerr << "Type for " << i << " is: " <<
|
|
N.getOperand(i+2).getValueType() << "\n";
|
|
assert(0 && "Unknown value type for call");
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
if (GPR_remaining > 0)
|
|
BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(VRegs[i])
|
|
.addReg(VRegs[i]);
|
|
break;
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
if (FPR_remaining > 0) {
|
|
BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(VRegs[i]);
|
|
--FPR_remaining;
|
|
}
|
|
break;
|
|
}
|
|
// All arguments consume GPRs available for argument passing
|
|
if (GPR_remaining > 0) --GPR_remaining;
|
|
if (MVT::f64 == OperandType && GPR_remaining > 0) --GPR_remaining;
|
|
}
|
|
|
|
// Emit the correct call instruction based on the type of symbol called.
|
|
if (GlobalAddressSDNode *GASD =
|
|
dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) {
|
|
BuildMI(BB, PPC::CALLpcrel, 1).addGlobalAddress(GASD->getGlobal(), true);
|
|
} else if (ExternalSymbolSDNode *ESSDN =
|
|
dyn_cast<ExternalSymbolSDNode>(N.getOperand(1))) {
|
|
BuildMI(BB, PPC::CALLpcrel, 1).addExternalSymbol(ESSDN->getSymbol(), true);
|
|
} else {
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, PPC::OR, 2, PPC::R12).addReg(Tmp1).addReg(Tmp1);
|
|
BuildMI(BB, PPC::MTCTR, 1).addReg(PPC::R12);
|
|
BuildMI(BB, PPC::CALLindirect, 3).addImm(20).addImm(0).addReg(PPC::R12);
|
|
}
|
|
|
|
switch (Node->getValueType(0)) {
|
|
default: assert(0 && "Unknown value type for call result!");
|
|
case MVT::Other: return 1;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
BuildMI(BB, PPC::OR, 2, Result).addReg(PPC::R3).addReg(PPC::R3);
|
|
if (Node->getValueType(1) == MVT::i32)
|
|
BuildMI(BB, PPC::OR, 2, Result+1).addReg(PPC::R4).addReg(PPC::R4);
|
|
break;
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
BuildMI(BB, PPC::FMR, 1, Result).addReg(PPC::F1);
|
|
break;
|
|
}
|
|
return Result+N.ResNo;
|
|
}
|
|
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
BuildMI(BB, PPC::EXTSH, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
|
|
case ISD::ZERO_EXTEND_INREG:
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
switch(cast<MVTSDNode>(Node)->getExtraValueType()) {
|
|
default:
|
|
Node->dump();
|
|
assert(0 && "Zero Extend InReg not there yet");
|
|
break;
|
|
case MVT::i16: Tmp2 = 16; break;
|
|
case MVT::i8: Tmp2 = 24; break;
|
|
case MVT::i1: Tmp2 = 31; break;
|
|
}
|
|
BuildMI(BB, PPC::RLWINM, 5, Result).addReg(Tmp1).addImm(0).addImm(0)
|
|
.addImm(Tmp2).addImm(31);
|
|
return Result;
|
|
|
|
case ISD::CopyFromReg:
|
|
if (Result == 1)
|
|
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
|
|
Tmp1 = dyn_cast<RegSDNode>(Node)->getReg();
|
|
BuildMI(BB, PPC::OR, 2, Result).addReg(Tmp1).addReg(Tmp1);
|
|
return Result;
|
|
|
|
case ISD::SHL:
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
Tmp2 = CN->getValue() & 0x1F;
|
|
BuildMI(BB, PPC::RLWINM, 5, Result).addReg(Tmp1).addImm(Tmp2).addImm(0)
|
|
.addImm(31-Tmp2);
|
|
} else {
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, PPC::SLW, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
}
|
|
return Result;
|
|
|
|
case ISD::SRL:
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
Tmp2 = CN->getValue() & 0x1F;
|
|
BuildMI(BB, PPC::RLWINM, 5, Result).addReg(Tmp1).addImm(32-Tmp2)
|
|
.addImm(Tmp2).addImm(31);
|
|
} else {
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, PPC::SRW, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
}
|
|
return Result;
|
|
|
|
case ISD::SRA:
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
Tmp2 = CN->getValue() & 0x1F;
|
|
BuildMI(BB, PPC::SRAWI, 2, Result).addReg(Tmp1).addImm(Tmp2);
|
|
} else {
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, PPC::SRAW, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
}
|
|
return Result;
|
|
|
|
case ISD::ADD:
|
|
assert (DestType == MVT::i32 && "Only do arithmetic on i32s!");
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
switch(canUseAsImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) {
|
|
default: assert(0 && "unhandled result code");
|
|
case 0: // No immediate
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, PPC::ADD, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case 1: // Low immediate
|
|
BuildMI(BB, PPC::ADDI, 2, Result).addReg(Tmp1).addSImm(Tmp2);
|
|
break;
|
|
case 2: // Shifted immediate
|
|
BuildMI(BB, PPC::ADDIS, 2, Result).addReg(Tmp1).addSImm(Tmp2);
|
|
break;
|
|
}
|
|
return Result;
|
|
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
assert (DestType == MVT::i32 && "Only do arithmetic on i32s!");
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
switch(canUseAsImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) {
|
|
default: assert(0 && "unhandled result code");
|
|
case 0: // No immediate
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
switch (opcode) {
|
|
case ISD::AND: Opc = PPC::AND; break;
|
|
case ISD::OR: Opc = PPC::OR; break;
|
|
case ISD::XOR: Opc = PPC::XOR; break;
|
|
}
|
|
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case 1: // Low immediate
|
|
switch (opcode) {
|
|
case ISD::AND: Opc = PPC::ANDIo; break;
|
|
case ISD::OR: Opc = PPC::ORI; break;
|
|
case ISD::XOR: Opc = PPC::XORI; break;
|
|
}
|
|
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(Tmp2);
|
|
break;
|
|
case 2: // Shifted immediate
|
|
switch (opcode) {
|
|
case ISD::AND: Opc = PPC::ANDISo; break;
|
|
case ISD::OR: Opc = PPC::ORIS; break;
|
|
case ISD::XOR: Opc = PPC::XORIS; break;
|
|
}
|
|
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(Tmp2);
|
|
break;
|
|
}
|
|
return Result;
|
|
|
|
case ISD::SUB:
|
|
assert (DestType == MVT::i32 && "Only do arithmetic on i32s!");
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, PPC::SUBF, 2, Result).addReg(Tmp2).addReg(Tmp1);
|
|
return Result;
|
|
|
|
case ISD::MUL:
|
|
assert (DestType == MVT::i32 && "Only do arithmetic on i32s!");
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
if (1 == canUseAsImmediateForOpcode(N.getOperand(1), opcode, Tmp2))
|
|
BuildMI(BB, PPC::MULLI, 2, Result).addReg(Tmp1).addSImm(Tmp2);
|
|
else {
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, PPC::MULLW, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
}
|
|
return Result;
|
|
|
|
case ISD::ADD_PARTS:
|
|
case ISD::SUB_PARTS:
|
|
case ISD::UREM:
|
|
case ISD::SREM:
|
|
case ISD::SDIV:
|
|
case ISD::UDIV:
|
|
abort();
|
|
|
|
case ISD::FP_TO_UINT:
|
|
case ISD::FP_TO_SINT:
|
|
abort();
|
|
|
|
case ISD::SETCC:
|
|
abort();
|
|
|
|
case ISD::SELECT:
|
|
abort();
|
|
|
|
case ISD::Constant:
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot use constants of this type!");
|
|
case MVT::i1:
|
|
BuildMI(BB, PPC::LI, 1, Result)
|
|
.addSImm(!cast<ConstantSDNode>(N)->isNullValue());
|
|
break;
|
|
case MVT::i32:
|
|
{
|
|
int v = (int)cast<ConstantSDNode>(N)->getSignExtended();
|
|
if (v < 32768 && v >= -32768) {
|
|
BuildMI(BB, PPC::LI, 1, Result).addSImm(v);
|
|
} else {
|
|
Tmp1 = MakeReg(MVT::i32);
|
|
BuildMI(BB, PPC::LIS, 1, Tmp1).addSImm(v >> 16);
|
|
BuildMI(BB, PPC::ORI, 2, Result).addReg(Tmp1).addImm(v & 0xFFFF);
|
|
}
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ISel::Select(SDOperand N) {
|
|
unsigned Tmp1, Tmp2, Opc;
|
|
unsigned opcode = N.getOpcode();
|
|
|
|
if (!ExprMap.insert(std::make_pair(N, 1)).second)
|
|
return; // Already selected.
|
|
|
|
SDNode *Node = N.Val;
|
|
|
|
switch (Node->getOpcode()) {
|
|
default:
|
|
Node->dump(); std::cerr << "\n";
|
|
assert(0 && "Node not handled yet!");
|
|
case ISD::EntryToken: return; // Noop
|
|
case ISD::TokenFactor:
|
|
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
|
|
Select(Node->getOperand(i));
|
|
return;
|
|
case ISD::ADJCALLSTACKDOWN:
|
|
case ISD::ADJCALLSTACKUP:
|
|
Select(N.getOperand(0));
|
|
Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue();
|
|
Opc = N.getOpcode() == ISD::ADJCALLSTACKDOWN ? PPC::ADJCALLSTACKDOWN :
|
|
PPC::ADJCALLSTACKUP;
|
|
BuildMI(BB, Opc, 1).addImm(Tmp1);
|
|
return;
|
|
case ISD::BR: {
|
|
MachineBasicBlock *Dest =
|
|
cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock();
|
|
Select(N.getOperand(0));
|
|
BuildMI(BB, PPC::B, 1).addMBB(Dest);
|
|
return;
|
|
}
|
|
case ISD::BRCOND:
|
|
SelectBranchCC(N);
|
|
return;
|
|
case ISD::CopyToReg:
|
|
Select(N.getOperand(0));
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
Tmp2 = cast<RegSDNode>(N)->getReg();
|
|
|
|
if (Tmp1 != Tmp2) {
|
|
if (N.getOperand(1).getValueType() == MVT::f64 ||
|
|
N.getOperand(1).getValueType() == MVT::f32)
|
|
BuildMI(BB, PPC::FMR, 1, Tmp2).addReg(Tmp1);
|
|
else
|
|
BuildMI(BB, PPC::OR, 2, Tmp2).addReg(Tmp1).addReg(Tmp1);
|
|
}
|
|
return;
|
|
case ISD::ImplicitDef:
|
|
Select(N.getOperand(0));
|
|
BuildMI(BB, PPC::IMPLICIT_DEF, 0, cast<RegSDNode>(N)->getReg());
|
|
return;
|
|
case ISD::RET:
|
|
switch (N.getNumOperands()) {
|
|
default:
|
|
assert(0 && "Unknown return instruction!");
|
|
case 3:
|
|
assert(N.getOperand(1).getValueType() == MVT::i32 &&
|
|
N.getOperand(2).getValueType() == MVT::i32 &&
|
|
"Unknown two-register value!");
|
|
Select(N.getOperand(0));
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
Tmp2 = SelectExpr(N.getOperand(2));
|
|
BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(Tmp1).addReg(Tmp1);
|
|
BuildMI(BB, PPC::OR, 2, PPC::R4).addReg(Tmp2).addReg(Tmp2);
|
|
break;
|
|
case 2:
|
|
Select(N.getOperand(0));
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
switch (N.getOperand(1).getValueType()) {
|
|
default:
|
|
assert(0 && "Unknown return type!");
|
|
case MVT::f64:
|
|
case MVT::f32:
|
|
BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(Tmp1);
|
|
break;
|
|
case MVT::i32:
|
|
BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(Tmp1).addReg(Tmp1);
|
|
break;
|
|
}
|
|
case 1:
|
|
Select(N.getOperand(0));
|
|
break;
|
|
}
|
|
BuildMI(BB, PPC::BLR, 0); // Just emit a 'ret' instruction
|
|
return;
|
|
case ISD::TRUNCSTORE:
|
|
case ISD::STORE:
|
|
{
|
|
SDOperand Chain = N.getOperand(0);
|
|
SDOperand Value = N.getOperand(1);
|
|
SDOperand Address = N.getOperand(2);
|
|
Select(Chain);
|
|
|
|
Tmp1 = SelectExpr(Value); //value
|
|
|
|
if (opcode == ISD::STORE) {
|
|
switch(Value.getValueType()) {
|
|
default: assert(0 && "unknown Type in store");
|
|
case MVT::i32: Opc = PPC::STW; break;
|
|
case MVT::f64: Opc = PPC::STFD; break;
|
|
case MVT::f32: Opc = PPC::STFS; break;
|
|
}
|
|
} else { //ISD::TRUNCSTORE
|
|
switch(cast<MVTSDNode>(Node)->getExtraValueType()) {
|
|
default: assert(0 && "unknown Type in store");
|
|
case MVT::i1: //FIXME: DAG does not promote this load
|
|
case MVT::i8: Opc = PPC::STB; break;
|
|
case MVT::i16: Opc = PPC::STH; break;
|
|
}
|
|
}
|
|
|
|
if (Address.getOpcode() == ISD::GlobalAddress)
|
|
{
|
|
BuildMI(BB, Opc, 2).addReg(Tmp1)
|
|
.addGlobalAddress(cast<GlobalAddressSDNode>(Address)->getGlobal());
|
|
}
|
|
else if(Address.getOpcode() == ISD::FrameIndex)
|
|
{
|
|
BuildMI(BB, Opc, 2).addReg(Tmp1)
|
|
.addFrameIndex(cast<FrameIndexSDNode>(Address)->getIndex());
|
|
}
|
|
else
|
|
{
|
|
int offset;
|
|
SelectAddr(Address, Tmp2, offset);
|
|
BuildMI(BB, Opc, 3).addReg(Tmp1).addImm(offset).addReg(Tmp2);
|
|
}
|
|
return;
|
|
}
|
|
case ISD::EXTLOAD:
|
|
case ISD::SEXTLOAD:
|
|
case ISD::ZEXTLOAD:
|
|
case ISD::LOAD:
|
|
case ISD::CopyFromReg:
|
|
case ISD::CALL:
|
|
case ISD::DYNAMIC_STACKALLOC:
|
|
ExprMap.erase(N);
|
|
SelectExpr(N);
|
|
return;
|
|
}
|
|
assert(0 && "Should not be reached!");
|
|
}
|
|
|
|
|
|
/// createPPC32PatternInstructionSelector - This pass converts an LLVM function
|
|
/// into a machine code representation using pattern matching and a machine
|
|
/// description file.
|
|
///
|
|
FunctionPass *llvm::createPPC32ISelPattern(TargetMachine &TM) {
|
|
return new ISel(TM);
|
|
}
|
|
|