1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 11:02:59 +02:00
llvm-mirror/lib/CodeGen/RDFGraph.cpp
Scott Constable 694f018415 Move RDF from Hexagon to Codegen
RDF is designed to be target agnostic. Therefore it would be useful to have it available for other targets, such as X86.

Based on a previous patch by Krzysztof Parzyszek

Differential Revision: https://reviews.llvm.org/D75932
2020-03-17 12:43:14 -07:00

1838 lines
58 KiB
C++

//===- RDFGraph.cpp -------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Target-independent, SSA-based data flow graph for register data flow (RDF).
//
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominanceFrontier.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RDFGraph.h"
#include "llvm/CodeGen/RDFRegisters.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <iterator>
#include <set>
#include <utility>
#include <vector>
using namespace llvm;
using namespace rdf;
// Printing functions. Have them here first, so that the rest of the code
// can use them.
namespace llvm {
namespace rdf {
raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P) {
if (!P.Mask.all())
OS << ':' << PrintLaneMask(P.Mask);
return OS;
}
raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) {
auto &TRI = P.G.getTRI();
if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs())
OS << TRI.getName(P.Obj.Reg);
else
OS << '#' << P.Obj.Reg;
OS << PrintLaneMaskOpt(P.Obj.Mask);
return OS;
}
raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) {
auto NA = P.G.addr<NodeBase*>(P.Obj);
uint16_t Attrs = NA.Addr->getAttrs();
uint16_t Kind = NodeAttrs::kind(Attrs);
uint16_t Flags = NodeAttrs::flags(Attrs);
switch (NodeAttrs::type(Attrs)) {
case NodeAttrs::Code:
switch (Kind) {
case NodeAttrs::Func: OS << 'f'; break;
case NodeAttrs::Block: OS << 'b'; break;
case NodeAttrs::Stmt: OS << 's'; break;
case NodeAttrs::Phi: OS << 'p'; break;
default: OS << "c?"; break;
}
break;
case NodeAttrs::Ref:
if (Flags & NodeAttrs::Undef)
OS << '/';
if (Flags & NodeAttrs::Dead)
OS << '\\';
if (Flags & NodeAttrs::Preserving)
OS << '+';
if (Flags & NodeAttrs::Clobbering)
OS << '~';
switch (Kind) {
case NodeAttrs::Use: OS << 'u'; break;
case NodeAttrs::Def: OS << 'd'; break;
case NodeAttrs::Block: OS << 'b'; break;
default: OS << "r?"; break;
}
break;
default:
OS << '?';
break;
}
OS << P.Obj;
if (Flags & NodeAttrs::Shadow)
OS << '"';
return OS;
}
static void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA,
const DataFlowGraph &G) {
OS << Print<NodeId>(RA.Id, G) << '<'
<< Print<RegisterRef>(RA.Addr->getRegRef(G), G) << '>';
if (RA.Addr->getFlags() & NodeAttrs::Fixed)
OS << '!';
}
raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) {
printRefHeader(OS, P.Obj, P.G);
OS << '(';
if (NodeId N = P.Obj.Addr->getReachingDef())
OS << Print<NodeId>(N, P.G);
OS << ',';
if (NodeId N = P.Obj.Addr->getReachedDef())
OS << Print<NodeId>(N, P.G);
OS << ',';
if (NodeId N = P.Obj.Addr->getReachedUse())
OS << Print<NodeId>(N, P.G);
OS << "):";
if (NodeId N = P.Obj.Addr->getSibling())
OS << Print<NodeId>(N, P.G);
return OS;
}
raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) {
printRefHeader(OS, P.Obj, P.G);
OS << '(';
if (NodeId N = P.Obj.Addr->getReachingDef())
OS << Print<NodeId>(N, P.G);
OS << "):";
if (NodeId N = P.Obj.Addr->getSibling())
OS << Print<NodeId>(N, P.G);
return OS;
}
raw_ostream &operator<< (raw_ostream &OS,
const Print<NodeAddr<PhiUseNode*>> &P) {
printRefHeader(OS, P.Obj, P.G);
OS << '(';
if (NodeId N = P.Obj.Addr->getReachingDef())
OS << Print<NodeId>(N, P.G);
OS << ',';
if (NodeId N = P.Obj.Addr->getPredecessor())
OS << Print<NodeId>(N, P.G);
OS << "):";
if (NodeId N = P.Obj.Addr->getSibling())
OS << Print<NodeId>(N, P.G);
return OS;
}
raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) {
switch (P.Obj.Addr->getKind()) {
case NodeAttrs::Def:
OS << PrintNode<DefNode*>(P.Obj, P.G);
break;
case NodeAttrs::Use:
if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef)
OS << PrintNode<PhiUseNode*>(P.Obj, P.G);
else
OS << PrintNode<UseNode*>(P.Obj, P.G);
break;
}
return OS;
}
raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) {
unsigned N = P.Obj.size();
for (auto I : P.Obj) {
OS << Print<NodeId>(I.Id, P.G);
if (--N)
OS << ' ';
}
return OS;
}
raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) {
unsigned N = P.Obj.size();
for (auto I : P.Obj) {
OS << Print<NodeId>(I, P.G);
if (--N)
OS << ' ';
}
return OS;
}
namespace {
template <typename T>
struct PrintListV {
PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {}
using Type = T;
const NodeList &List;
const DataFlowGraph &G;
};
template <typename T>
raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) {
unsigned N = P.List.size();
for (NodeAddr<T> A : P.List) {
OS << PrintNode<T>(A, P.G);
if (--N)
OS << ", ";
}
return OS;
}
} // end anonymous namespace
raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) {
OS << Print<NodeId>(P.Obj.Id, P.G) << ": phi ["
<< PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
return OS;
}
raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<StmtNode *>> &P) {
const MachineInstr &MI = *P.Obj.Addr->getCode();
unsigned Opc = MI.getOpcode();
OS << Print<NodeId>(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc);
// Print the target for calls and branches (for readability).
if (MI.isCall() || MI.isBranch()) {
MachineInstr::const_mop_iterator T =
llvm::find_if(MI.operands(),
[] (const MachineOperand &Op) -> bool {
return Op.isMBB() || Op.isGlobal() || Op.isSymbol();
});
if (T != MI.operands_end()) {
OS << ' ';
if (T->isMBB())
OS << printMBBReference(*T->getMBB());
else if (T->isGlobal())
OS << T->getGlobal()->getName();
else if (T->isSymbol())
OS << T->getSymbolName();
}
}
OS << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
return OS;
}
raw_ostream &operator<< (raw_ostream &OS,
const Print<NodeAddr<InstrNode*>> &P) {
switch (P.Obj.Addr->getKind()) {
case NodeAttrs::Phi:
OS << PrintNode<PhiNode*>(P.Obj, P.G);
break;
case NodeAttrs::Stmt:
OS << PrintNode<StmtNode*>(P.Obj, P.G);
break;
default:
OS << "instr? " << Print<NodeId>(P.Obj.Id, P.G);
break;
}
return OS;
}
raw_ostream &operator<< (raw_ostream &OS,
const Print<NodeAddr<BlockNode*>> &P) {
MachineBasicBlock *BB = P.Obj.Addr->getCode();
unsigned NP = BB->pred_size();
std::vector<int> Ns;
auto PrintBBs = [&OS] (std::vector<int> Ns) -> void {
unsigned N = Ns.size();
for (int I : Ns) {
OS << "%bb." << I;
if (--N)
OS << ", ";
}
};
OS << Print<NodeId>(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB)
<< " --- preds(" << NP << "): ";
for (MachineBasicBlock *B : BB->predecessors())
Ns.push_back(B->getNumber());
PrintBBs(Ns);
unsigned NS = BB->succ_size();
OS << " succs(" << NS << "): ";
Ns.clear();
for (MachineBasicBlock *B : BB->successors())
Ns.push_back(B->getNumber());
PrintBBs(Ns);
OS << '\n';
for (auto I : P.Obj.Addr->members(P.G))
OS << PrintNode<InstrNode*>(I, P.G) << '\n';
return OS;
}
raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<FuncNode *>> &P) {
OS << "DFG dump:[\n" << Print<NodeId>(P.Obj.Id, P.G) << ": Function: "
<< P.Obj.Addr->getCode()->getName() << '\n';
for (auto I : P.Obj.Addr->members(P.G))
OS << PrintNode<BlockNode*>(I, P.G) << '\n';
OS << "]\n";
return OS;
}
raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) {
OS << '{';
for (auto I : P.Obj)
OS << ' ' << Print<RegisterRef>(I, P.G);
OS << " }";
return OS;
}
raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterAggr> &P) {
P.Obj.print(OS);
return OS;
}
raw_ostream &operator<< (raw_ostream &OS,
const Print<DataFlowGraph::DefStack> &P) {
for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) {
OS << Print<NodeId>(I->Id, P.G)
<< '<' << Print<RegisterRef>(I->Addr->getRegRef(P.G), P.G) << '>';
I.down();
if (I != E)
OS << ' ';
}
return OS;
}
} // end namespace rdf
} // end namespace llvm
// Node allocation functions.
//
// Node allocator is like a slab memory allocator: it allocates blocks of
// memory in sizes that are multiples of the size of a node. Each block has
// the same size. Nodes are allocated from the currently active block, and
// when it becomes full, a new one is created.
// There is a mapping scheme between node id and its location in a block,
// and within that block is described in the header file.
//
void NodeAllocator::startNewBlock() {
void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize);
char *P = static_cast<char*>(T);
Blocks.push_back(P);
// Check if the block index is still within the allowed range, i.e. less
// than 2^N, where N is the number of bits in NodeId for the block index.
// BitsPerIndex is the number of bits per node index.
assert((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) &&
"Out of bits for block index");
ActiveEnd = P;
}
bool NodeAllocator::needNewBlock() {
if (Blocks.empty())
return true;
char *ActiveBegin = Blocks.back();
uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize;
return Index >= NodesPerBlock;
}
NodeAddr<NodeBase*> NodeAllocator::New() {
if (needNewBlock())
startNewBlock();
uint32_t ActiveB = Blocks.size()-1;
uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize;
NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd),
makeId(ActiveB, Index) };
ActiveEnd += NodeMemSize;
return NA;
}
NodeId NodeAllocator::id(const NodeBase *P) const {
uintptr_t A = reinterpret_cast<uintptr_t>(P);
for (unsigned i = 0, n = Blocks.size(); i != n; ++i) {
uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]);
if (A < B || A >= B + NodesPerBlock*NodeMemSize)
continue;
uint32_t Idx = (A-B)/NodeMemSize;
return makeId(i, Idx);
}
llvm_unreachable("Invalid node address");
}
void NodeAllocator::clear() {
MemPool.Reset();
Blocks.clear();
ActiveEnd = nullptr;
}
// Insert node NA after "this" in the circular chain.
void NodeBase::append(NodeAddr<NodeBase*> NA) {
NodeId Nx = Next;
// If NA is already "next", do nothing.
if (Next != NA.Id) {
Next = NA.Id;
NA.Addr->Next = Nx;
}
}
// Fundamental node manipulator functions.
// Obtain the register reference from a reference node.
RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const {
assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)
return G.unpack(Ref.PR);
assert(Ref.Op != nullptr);
return G.makeRegRef(*Ref.Op);
}
// Set the register reference in the reference node directly (for references
// in phi nodes).
void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) {
assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef);
Ref.PR = G.pack(RR);
}
// Set the register reference in the reference node based on a machine
// operand (for references in statement nodes).
void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) {
assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef));
(void)G;
Ref.Op = Op;
}
// Get the owner of a given reference node.
NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) {
NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
while (NA.Addr != this) {
if (NA.Addr->getType() == NodeAttrs::Code)
return NA;
NA = G.addr<NodeBase*>(NA.Addr->getNext());
}
llvm_unreachable("No owner in circular list");
}
// Connect the def node to the reaching def node.
void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
Ref.RD = DA.Id;
Ref.Sib = DA.Addr->getReachedDef();
DA.Addr->setReachedDef(Self);
}
// Connect the use node to the reaching def node.
void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
Ref.RD = DA.Id;
Ref.Sib = DA.Addr->getReachedUse();
DA.Addr->setReachedUse(Self);
}
// Get the first member of the code node.
NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const {
if (Code.FirstM == 0)
return NodeAddr<NodeBase*>();
return G.addr<NodeBase*>(Code.FirstM);
}
// Get the last member of the code node.
NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const {
if (Code.LastM == 0)
return NodeAddr<NodeBase*>();
return G.addr<NodeBase*>(Code.LastM);
}
// Add node NA at the end of the member list of the given code node.
void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
NodeAddr<NodeBase*> ML = getLastMember(G);
if (ML.Id != 0) {
ML.Addr->append(NA);
} else {
Code.FirstM = NA.Id;
NodeId Self = G.id(this);
NA.Addr->setNext(Self);
}
Code.LastM = NA.Id;
}
// Add node NA after member node MA in the given code node.
void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
const DataFlowGraph &G) {
MA.Addr->append(NA);
if (Code.LastM == MA.Id)
Code.LastM = NA.Id;
}
// Remove member node NA from the given code node.
void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
NodeAddr<NodeBase*> MA = getFirstMember(G);
assert(MA.Id != 0);
// Special handling if the member to remove is the first member.
if (MA.Id == NA.Id) {
if (Code.LastM == MA.Id) {
// If it is the only member, set both first and last to 0.
Code.FirstM = Code.LastM = 0;
} else {
// Otherwise, advance the first member.
Code.FirstM = MA.Addr->getNext();
}
return;
}
while (MA.Addr != this) {
NodeId MX = MA.Addr->getNext();
if (MX == NA.Id) {
MA.Addr->setNext(NA.Addr->getNext());
// If the member to remove happens to be the last one, update the
// LastM indicator.
if (Code.LastM == NA.Id)
Code.LastM = MA.Id;
return;
}
MA = G.addr<NodeBase*>(MX);
}
llvm_unreachable("No such member");
}
// Return the list of all members of the code node.
NodeList CodeNode::members(const DataFlowGraph &G) const {
static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; };
return members_if(True, G);
}
// Return the owner of the given instr node.
NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) {
NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
while (NA.Addr != this) {
assert(NA.Addr->getType() == NodeAttrs::Code);
if (NA.Addr->getKind() == NodeAttrs::Block)
return NA;
NA = G.addr<NodeBase*>(NA.Addr->getNext());
}
llvm_unreachable("No owner in circular list");
}
// Add the phi node PA to the given block node.
void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) {
NodeAddr<NodeBase*> M = getFirstMember(G);
if (M.Id == 0) {
addMember(PA, G);
return;
}
assert(M.Addr->getType() == NodeAttrs::Code);
if (M.Addr->getKind() == NodeAttrs::Stmt) {
// If the first member of the block is a statement, insert the phi as
// the first member.
Code.FirstM = PA.Id;
PA.Addr->setNext(M.Id);
} else {
// If the first member is a phi, find the last phi, and append PA to it.
assert(M.Addr->getKind() == NodeAttrs::Phi);
NodeAddr<NodeBase*> MN = M;
do {
M = MN;
MN = G.addr<NodeBase*>(M.Addr->getNext());
assert(MN.Addr->getType() == NodeAttrs::Code);
} while (MN.Addr->getKind() == NodeAttrs::Phi);
// M is the last phi.
addMemberAfter(M, PA, G);
}
}
// Find the block node corresponding to the machine basic block BB in the
// given func node.
NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB,
const DataFlowGraph &G) const {
auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool {
return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB;
};
NodeList Ms = members_if(EqBB, G);
if (!Ms.empty())
return Ms[0];
return NodeAddr<BlockNode*>();
}
// Get the block node for the entry block in the given function.
NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) {
MachineBasicBlock *EntryB = &getCode()->front();
return findBlock(EntryB, G);
}
// Target operand information.
//
// For a given instruction, check if there are any bits of RR that can remain
// unchanged across this def.
bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum)
const {
return TII.isPredicated(In);
}
// Check if the definition of RR produces an unspecified value.
bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum)
const {
const MachineOperand &Op = In.getOperand(OpNum);
if (Op.isRegMask())
return true;
assert(Op.isReg());
if (In.isCall())
if (Op.isDef() && Op.isDead())
return true;
return false;
}
// Check if the given instruction specifically requires
bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum)
const {
if (In.isCall() || In.isReturn() || In.isInlineAsm())
return true;
// Check for a tail call.
if (In.isBranch())
for (const MachineOperand &O : In.operands())
if (O.isGlobal() || O.isSymbol())
return true;
const MCInstrDesc &D = In.getDesc();
if (!D.getImplicitDefs() && !D.getImplicitUses())
return false;
const MachineOperand &Op = In.getOperand(OpNum);
// If there is a sub-register, treat the operand as non-fixed. Currently,
// fixed registers are those that are listed in the descriptor as implicit
// uses or defs, and those lists do not allow sub-registers.
if (Op.getSubReg() != 0)
return false;
Register Reg = Op.getReg();
const MCPhysReg *ImpR = Op.isDef() ? D.getImplicitDefs()
: D.getImplicitUses();
if (!ImpR)
return false;
while (*ImpR)
if (*ImpR++ == Reg)
return true;
return false;
}
//
// The data flow graph construction.
//
DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi)
: MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi),
LiveIns(PRI) {
}
// The implementation of the definition stack.
// Each register reference has its own definition stack. In particular,
// for a register references "Reg" and "Reg:subreg" will each have their
// own definition stacks.
// Construct a stack iterator.
DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S,
bool Top) : DS(S) {
if (!Top) {
// Initialize to bottom.
Pos = 0;
return;
}
// Initialize to the top, i.e. top-most non-delimiter (or 0, if empty).
Pos = DS.Stack.size();
while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1]))
Pos--;
}
// Return the size of the stack, including block delimiters.
unsigned DataFlowGraph::DefStack::size() const {
unsigned S = 0;
for (auto I = top(), E = bottom(); I != E; I.down())
S++;
return S;
}
// Remove the top entry from the stack. Remove all intervening delimiters
// so that after this, the stack is either empty, or the top of the stack
// is a non-delimiter.
void DataFlowGraph::DefStack::pop() {
assert(!empty());
unsigned P = nextDown(Stack.size());
Stack.resize(P);
}
// Push a delimiter for block node N on the stack.
void DataFlowGraph::DefStack::start_block(NodeId N) {
assert(N != 0);
Stack.push_back(NodeAddr<DefNode*>(nullptr, N));
}
// Remove all nodes from the top of the stack, until the delimited for
// block node N is encountered. Remove the delimiter as well. In effect,
// this will remove from the stack all definitions from block N.
void DataFlowGraph::DefStack::clear_block(NodeId N) {
assert(N != 0);
unsigned P = Stack.size();
while (P > 0) {
bool Found = isDelimiter(Stack[P-1], N);
P--;
if (Found)
break;
}
// This will also remove the delimiter, if found.
Stack.resize(P);
}
// Move the stack iterator up by one.
unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const {
// Get the next valid position after P (skipping all delimiters).
// The input position P does not have to point to a non-delimiter.
unsigned SS = Stack.size();
bool IsDelim;
assert(P < SS);
do {
P++;
IsDelim = isDelimiter(Stack[P-1]);
} while (P < SS && IsDelim);
assert(!IsDelim);
return P;
}
// Move the stack iterator down by one.
unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const {
// Get the preceding valid position before P (skipping all delimiters).
// The input position P does not have to point to a non-delimiter.
assert(P > 0 && P <= Stack.size());
bool IsDelim = isDelimiter(Stack[P-1]);
do {
if (--P == 0)
break;
IsDelim = isDelimiter(Stack[P-1]);
} while (P > 0 && IsDelim);
assert(!IsDelim);
return P;
}
// Register information.
RegisterSet DataFlowGraph::getLandingPadLiveIns() const {
RegisterSet LR;
const Function &F = MF.getFunction();
const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn()
: nullptr;
const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
if (RegisterId R = TLI.getExceptionPointerRegister(PF))
LR.insert(RegisterRef(R));
if (!isFuncletEHPersonality(classifyEHPersonality(PF))) {
if (RegisterId R = TLI.getExceptionSelectorRegister(PF))
LR.insert(RegisterRef(R));
}
return LR;
}
// Node management functions.
// Get the pointer to the node with the id N.
NodeBase *DataFlowGraph::ptr(NodeId N) const {
if (N == 0)
return nullptr;
return Memory.ptr(N);
}
// Get the id of the node at the address P.
NodeId DataFlowGraph::id(const NodeBase *P) const {
if (P == nullptr)
return 0;
return Memory.id(P);
}
// Allocate a new node and set the attributes to Attrs.
NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) {
NodeAddr<NodeBase*> P = Memory.New();
P.Addr->init();
P.Addr->setAttrs(Attrs);
return P;
}
// Make a copy of the given node B, except for the data-flow links, which
// are set to 0.
NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) {
NodeAddr<NodeBase*> NA = newNode(0);
memcpy(NA.Addr, B.Addr, sizeof(NodeBase));
// Ref nodes need to have the data-flow links reset.
if (NA.Addr->getType() == NodeAttrs::Ref) {
NodeAddr<RefNode*> RA = NA;
RA.Addr->setReachingDef(0);
RA.Addr->setSibling(0);
if (NA.Addr->getKind() == NodeAttrs::Def) {
NodeAddr<DefNode*> DA = NA;
DA.Addr->setReachedDef(0);
DA.Addr->setReachedUse(0);
}
}
return NA;
}
// Allocation routines for specific node types/kinds.
NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner,
MachineOperand &Op, uint16_t Flags) {
NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
UA.Addr->setRegRef(&Op, *this);
return UA;
}
NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner,
RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) {
NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
assert(Flags & NodeAttrs::PhiRef);
PUA.Addr->setRegRef(RR, *this);
PUA.Addr->setPredecessor(PredB.Id);
return PUA;
}
NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
MachineOperand &Op, uint16_t Flags) {
NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
DA.Addr->setRegRef(&Op, *this);
return DA;
}
NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
RegisterRef RR, uint16_t Flags) {
NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
assert(Flags & NodeAttrs::PhiRef);
DA.Addr->setRegRef(RR, *this);
return DA;
}
NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) {
NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi);
Owner.Addr->addPhi(PA, *this);
return PA;
}
NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner,
MachineInstr *MI) {
NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt);
SA.Addr->setCode(MI);
Owner.Addr->addMember(SA, *this);
return SA;
}
NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner,
MachineBasicBlock *BB) {
NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block);
BA.Addr->setCode(BB);
Owner.Addr->addMember(BA, *this);
return BA;
}
NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) {
NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func);
FA.Addr->setCode(MF);
return FA;
}
// Build the data flow graph.
void DataFlowGraph::build(unsigned Options) {
reset();
Func = newFunc(&MF);
if (MF.empty())
return;
for (MachineBasicBlock &B : MF) {
NodeAddr<BlockNode*> BA = newBlock(Func, &B);
BlockNodes.insert(std::make_pair(&B, BA));
for (MachineInstr &I : B) {
if (I.isDebugInstr())
continue;
buildStmt(BA, I);
}
}
NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this);
NodeList Blocks = Func.Addr->members(*this);
// Collect information about block references.
RegisterSet AllRefs;
for (NodeAddr<BlockNode*> BA : Blocks)
for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
for (NodeAddr<RefNode*> RA : IA.Addr->members(*this))
AllRefs.insert(RA.Addr->getRegRef(*this));
// Collect function live-ins and entry block live-ins.
MachineRegisterInfo &MRI = MF.getRegInfo();
MachineBasicBlock &EntryB = *EA.Addr->getCode();
assert(EntryB.pred_empty() && "Function entry block has predecessors");
for (std::pair<unsigned,unsigned> P : MRI.liveins())
LiveIns.insert(RegisterRef(P.first));
if (MRI.tracksLiveness()) {
for (auto I : EntryB.liveins())
LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask));
}
// Add function-entry phi nodes for the live-in registers.
//for (std::pair<RegisterId,LaneBitmask> P : LiveIns) {
for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
RegisterRef RR = *I;
NodeAddr<PhiNode*> PA = newPhi(EA);
uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
PA.Addr->addMember(DA, *this);
}
// Add phis for landing pads.
// Landing pads, unlike usual backs blocks, are not entered through
// branches in the program, or fall-throughs from other blocks. They
// are entered from the exception handling runtime and target's ABI
// may define certain registers as defined on entry to such a block.
RegisterSet EHRegs = getLandingPadLiveIns();
if (!EHRegs.empty()) {
for (NodeAddr<BlockNode*> BA : Blocks) {
const MachineBasicBlock &B = *BA.Addr->getCode();
if (!B.isEHPad())
continue;
// Prepare a list of NodeIds of the block's predecessors.
NodeList Preds;
for (MachineBasicBlock *PB : B.predecessors())
Preds.push_back(findBlock(PB));
// Build phi nodes for each live-in.
for (RegisterRef RR : EHRegs) {
NodeAddr<PhiNode*> PA = newPhi(BA);
uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
// Add def:
NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
PA.Addr->addMember(DA, *this);
// Add uses (no reaching defs for phi uses):
for (NodeAddr<BlockNode*> PBA : Preds) {
NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
PA.Addr->addMember(PUA, *this);
}
}
}
}
// Build a map "PhiM" which will contain, for each block, the set
// of references that will require phi definitions in that block.
BlockRefsMap PhiM;
for (NodeAddr<BlockNode*> BA : Blocks)
recordDefsForDF(PhiM, BA);
for (NodeAddr<BlockNode*> BA : Blocks)
buildPhis(PhiM, AllRefs, BA);
// Link all the refs. This will recursively traverse the dominator tree.
DefStackMap DM;
linkBlockRefs(DM, EA);
// Finally, remove all unused phi nodes.
if (!(Options & BuildOptions::KeepDeadPhis))
removeUnusedPhis();
}
RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const {
assert(PhysicalRegisterInfo::isRegMaskId(Reg) ||
Register::isPhysicalRegister(Reg));
assert(Reg != 0);
if (Sub != 0)
Reg = TRI.getSubReg(Reg, Sub);
return RegisterRef(Reg);
}
RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const {
assert(Op.isReg() || Op.isRegMask());
if (Op.isReg())
return makeRegRef(Op.getReg(), Op.getSubReg());
return RegisterRef(PRI.getRegMaskId(Op.getRegMask()), LaneBitmask::getAll());
}
RegisterRef DataFlowGraph::restrictRef(RegisterRef AR, RegisterRef BR) const {
if (AR.Reg == BR.Reg) {
LaneBitmask M = AR.Mask & BR.Mask;
return M.any() ? RegisterRef(AR.Reg, M) : RegisterRef();
}
#ifndef NDEBUG
// RegisterRef NAR = PRI.normalize(AR);
// RegisterRef NBR = PRI.normalize(BR);
// assert(NAR.Reg != NBR.Reg);
#endif
// This isn't strictly correct, because the overlap may happen in the
// part masked out.
if (PRI.alias(AR, BR))
return AR;
return RegisterRef();
}
// For each stack in the map DefM, push the delimiter for block B on it.
void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) {
// Push block delimiters.
for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
I->second.start_block(B);
}
// Remove all definitions coming from block B from each stack in DefM.
void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) {
// Pop all defs from this block from the definition stack. Defs that were
// added to the map during the traversal of instructions will not have a
// delimiter, but for those, the whole stack will be emptied.
for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
I->second.clear_block(B);
// Finally, remove empty stacks from the map.
for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) {
NextI = std::next(I);
// This preserves the validity of iterators other than I.
if (I->second.empty())
DefM.erase(I);
}
}
// Push all definitions from the instruction node IA to an appropriate
// stack in DefM.
void DataFlowGraph::pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
pushClobbers(IA, DefM);
pushDefs(IA, DefM);
}
// Push all definitions from the instruction node IA to an appropriate
// stack in DefM.
void DataFlowGraph::pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
NodeSet Visited;
std::set<RegisterId> Defined;
// The important objectives of this function are:
// - to be able to handle instructions both while the graph is being
// constructed, and after the graph has been constructed, and
// - maintain proper ordering of definitions on the stack for each
// register reference:
// - if there are two or more related defs in IA (i.e. coming from
// the same machine operand), then only push one def on the stack,
// - if there are multiple unrelated defs of non-overlapping
// subregisters of S, then the stack for S will have both (in an
// unspecified order), but the order does not matter from the data-
// -flow perspective.
for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
if (Visited.count(DA.Id))
continue;
if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering))
continue;
NodeList Rel = getRelatedRefs(IA, DA);
NodeAddr<DefNode*> PDA = Rel.front();
RegisterRef RR = PDA.Addr->getRegRef(*this);
// Push the definition on the stack for the register and all aliases.
// The def stack traversal in linkNodeUp will check the exact aliasing.
DefM[RR.Reg].push(DA);
Defined.insert(RR.Reg);
for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
// Check that we don't push the same def twice.
assert(A != RR.Reg);
if (!Defined.count(A))
DefM[A].push(DA);
}
// Mark all the related defs as visited.
for (NodeAddr<NodeBase*> T : Rel)
Visited.insert(T.Id);
}
}
// Push all definitions from the instruction node IA to an appropriate
// stack in DefM.
void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
NodeSet Visited;
#ifndef NDEBUG
std::set<RegisterId> Defined;
#endif
// The important objectives of this function are:
// - to be able to handle instructions both while the graph is being
// constructed, and after the graph has been constructed, and
// - maintain proper ordering of definitions on the stack for each
// register reference:
// - if there are two or more related defs in IA (i.e. coming from
// the same machine operand), then only push one def on the stack,
// - if there are multiple unrelated defs of non-overlapping
// subregisters of S, then the stack for S will have both (in an
// unspecified order), but the order does not matter from the data-
// -flow perspective.
for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
if (Visited.count(DA.Id))
continue;
if (DA.Addr->getFlags() & NodeAttrs::Clobbering)
continue;
NodeList Rel = getRelatedRefs(IA, DA);
NodeAddr<DefNode*> PDA = Rel.front();
RegisterRef RR = PDA.Addr->getRegRef(*this);
#ifndef NDEBUG
// Assert if the register is defined in two or more unrelated defs.
// This could happen if there are two or more def operands defining it.
if (!Defined.insert(RR.Reg).second) {
MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode();
dbgs() << "Multiple definitions of register: "
<< Print<RegisterRef>(RR, *this) << " in\n " << *MI << "in "
<< printMBBReference(*MI->getParent()) << '\n';
llvm_unreachable(nullptr);
}
#endif
// Push the definition on the stack for the register and all aliases.
// The def stack traversal in linkNodeUp will check the exact aliasing.
DefM[RR.Reg].push(DA);
for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
// Check that we don't push the same def twice.
assert(A != RR.Reg);
DefM[A].push(DA);
}
// Mark all the related defs as visited.
for (NodeAddr<NodeBase*> T : Rel)
Visited.insert(T.Id);
}
}
// Return the list of all reference nodes related to RA, including RA itself.
// See "getNextRelated" for the meaning of a "related reference".
NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA,
NodeAddr<RefNode*> RA) const {
assert(IA.Id != 0 && RA.Id != 0);
NodeList Refs;
NodeId Start = RA.Id;
do {
Refs.push_back(RA);
RA = getNextRelated(IA, RA);
} while (RA.Id != 0 && RA.Id != Start);
return Refs;
}
// Clear all information in the graph.
void DataFlowGraph::reset() {
Memory.clear();
BlockNodes.clear();
Func = NodeAddr<FuncNode*>();
}
// Return the next reference node in the instruction node IA that is related
// to RA. Conceptually, two reference nodes are related if they refer to the
// same instance of a register access, but differ in flags or other minor
// characteristics. Specific examples of related nodes are shadow reference
// nodes.
// Return the equivalent of nullptr if there are no more related references.
NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA,
NodeAddr<RefNode*> RA) const {
assert(IA.Id != 0 && RA.Id != 0);
auto Related = [this,RA](NodeAddr<RefNode*> TA) -> bool {
if (TA.Addr->getKind() != RA.Addr->getKind())
return false;
if (TA.Addr->getRegRef(*this) != RA.Addr->getRegRef(*this))
return false;
return true;
};
auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
return Related(TA) &&
&RA.Addr->getOp() == &TA.Addr->getOp();
};
auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
if (!Related(TA))
return false;
if (TA.Addr->getKind() != NodeAttrs::Use)
return true;
// For phi uses, compare predecessor blocks.
const NodeAddr<const PhiUseNode*> TUA = TA;
const NodeAddr<const PhiUseNode*> RUA = RA;
return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor();
};
RegisterRef RR = RA.Addr->getRegRef(*this);
if (IA.Addr->getKind() == NodeAttrs::Stmt)
return RA.Addr->getNextRef(RR, RelatedStmt, true, *this);
return RA.Addr->getNextRef(RR, RelatedPhi, true, *this);
}
// Find the next node related to RA in IA that satisfies condition P.
// If such a node was found, return a pair where the second element is the
// located node. If such a node does not exist, return a pair where the
// first element is the element after which such a node should be inserted,
// and the second element is a null-address.
template <typename Predicate>
std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
Predicate P) const {
assert(IA.Id != 0 && RA.Id != 0);
NodeAddr<RefNode*> NA;
NodeId Start = RA.Id;
while (true) {
NA = getNextRelated(IA, RA);
if (NA.Id == 0 || NA.Id == Start)
break;
if (P(NA))
break;
RA = NA;
}
if (NA.Id != 0 && NA.Id != Start)
return std::make_pair(RA, NA);
return std::make_pair(RA, NodeAddr<RefNode*>());
}
// Get the next shadow node in IA corresponding to RA, and optionally create
// such a node if it does not exist.
NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
NodeAddr<RefNode*> RA, bool Create) {
assert(IA.Id != 0 && RA.Id != 0);
uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
return TA.Addr->getFlags() == Flags;
};
auto Loc = locateNextRef(IA, RA, IsShadow);
if (Loc.second.Id != 0 || !Create)
return Loc.second;
// Create a copy of RA and mark is as shadow.
NodeAddr<RefNode*> NA = cloneNode(RA);
NA.Addr->setFlags(Flags | NodeAttrs::Shadow);
IA.Addr->addMemberAfter(Loc.first, NA, *this);
return NA;
}
// Get the next shadow node in IA corresponding to RA. Return null-address
// if such a node does not exist.
NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
NodeAddr<RefNode*> RA) const {
assert(IA.Id != 0 && RA.Id != 0);
uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
return TA.Addr->getFlags() == Flags;
};
return locateNextRef(IA, RA, IsShadow).second;
}
// Create a new statement node in the block node BA that corresponds to
// the machine instruction MI.
void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) {
NodeAddr<StmtNode*> SA = newStmt(BA, &In);
auto isCall = [] (const MachineInstr &In) -> bool {
if (In.isCall())
return true;
// Is tail call?
if (In.isBranch()) {
for (const MachineOperand &Op : In.operands())
if (Op.isGlobal() || Op.isSymbol())
return true;
// Assume indirect branches are calls. This is for the purpose of
// keeping implicit operands, and so it won't hurt on intra-function
// indirect branches.
if (In.isIndirectBranch())
return true;
}
return false;
};
auto isDefUndef = [this] (const MachineInstr &In, RegisterRef DR) -> bool {
// This instruction defines DR. Check if there is a use operand that
// would make DR live on entry to the instruction.
for (const MachineOperand &Op : In.operands()) {
if (!Op.isReg() || Op.getReg() == 0 || !Op.isUse() || Op.isUndef())
continue;
RegisterRef UR = makeRegRef(Op);
if (PRI.alias(DR, UR))
return false;
}
return true;
};
bool IsCall = isCall(In);
unsigned NumOps = In.getNumOperands();
// Avoid duplicate implicit defs. This will not detect cases of implicit
// defs that define registers that overlap, but it is not clear how to
// interpret that in the absence of explicit defs. Overlapping explicit
// defs are likely illegal already.
BitVector DoneDefs(TRI.getNumRegs());
// Process explicit defs first.
for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
MachineOperand &Op = In.getOperand(OpN);
if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
continue;
Register R = Op.getReg();
if (!R || !Register::isPhysicalRegister(R))
continue;
uint16_t Flags = NodeAttrs::None;
if (TOI.isPreserving(In, OpN)) {
Flags |= NodeAttrs::Preserving;
// If the def is preserving, check if it is also undefined.
if (isDefUndef(In, makeRegRef(Op)))
Flags |= NodeAttrs::Undef;
}
if (TOI.isClobbering(In, OpN))
Flags |= NodeAttrs::Clobbering;
if (TOI.isFixedReg(In, OpN))
Flags |= NodeAttrs::Fixed;
if (IsCall && Op.isDead())
Flags |= NodeAttrs::Dead;
NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
SA.Addr->addMember(DA, *this);
assert(!DoneDefs.test(R));
DoneDefs.set(R);
}
// Process reg-masks (as clobbers).
BitVector DoneClobbers(TRI.getNumRegs());
for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
MachineOperand &Op = In.getOperand(OpN);
if (!Op.isRegMask())
continue;
uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed |
NodeAttrs::Dead;
NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
SA.Addr->addMember(DA, *this);
// Record all clobbered registers in DoneDefs.
const uint32_t *RM = Op.getRegMask();
for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i)
if (!(RM[i/32] & (1u << (i%32))))
DoneClobbers.set(i);
}
// Process implicit defs, skipping those that have already been added
// as explicit.
for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
MachineOperand &Op = In.getOperand(OpN);
if (!Op.isReg() || !Op.isDef() || !Op.isImplicit())
continue;
Register R = Op.getReg();
if (!R || !Register::isPhysicalRegister(R) || DoneDefs.test(R))
continue;
RegisterRef RR = makeRegRef(Op);
uint16_t Flags = NodeAttrs::None;
if (TOI.isPreserving(In, OpN)) {
Flags |= NodeAttrs::Preserving;
// If the def is preserving, check if it is also undefined.
if (isDefUndef(In, RR))
Flags |= NodeAttrs::Undef;
}
if (TOI.isClobbering(In, OpN))
Flags |= NodeAttrs::Clobbering;
if (TOI.isFixedReg(In, OpN))
Flags |= NodeAttrs::Fixed;
if (IsCall && Op.isDead()) {
if (DoneClobbers.test(R))
continue;
Flags |= NodeAttrs::Dead;
}
NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
SA.Addr->addMember(DA, *this);
DoneDefs.set(R);
}
for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
MachineOperand &Op = In.getOperand(OpN);
if (!Op.isReg() || !Op.isUse())
continue;
Register R = Op.getReg();
if (!R || !Register::isPhysicalRegister(R))
continue;
uint16_t Flags = NodeAttrs::None;
if (Op.isUndef())
Flags |= NodeAttrs::Undef;
if (TOI.isFixedReg(In, OpN))
Flags |= NodeAttrs::Fixed;
NodeAddr<UseNode*> UA = newUse(SA, Op, Flags);
SA.Addr->addMember(UA, *this);
}
}
// Scan all defs in the block node BA and record in PhiM the locations of
// phi nodes corresponding to these defs.
void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM,
NodeAddr<BlockNode*> BA) {
// Check all defs from block BA and record them in each block in BA's
// iterated dominance frontier. This information will later be used to
// create phi nodes.
MachineBasicBlock *BB = BA.Addr->getCode();
assert(BB);
auto DFLoc = MDF.find(BB);
if (DFLoc == MDF.end() || DFLoc->second.empty())
return;
// Traverse all instructions in the block and collect the set of all
// defined references. For each reference there will be a phi created
// in the block's iterated dominance frontier.
// This is done to make sure that each defined reference gets only one
// phi node, even if it is defined multiple times.
RegisterSet Defs;
for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this))
Defs.insert(RA.Addr->getRegRef(*this));
// Calculate the iterated dominance frontier of BB.
const MachineDominanceFrontier::DomSetType &DF = DFLoc->second;
SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end());
for (unsigned i = 0; i < IDF.size(); ++i) {
auto F = MDF.find(IDF[i]);
if (F != MDF.end())
IDF.insert(F->second.begin(), F->second.end());
}
// Finally, add the set of defs to each block in the iterated dominance
// frontier.
for (auto DB : IDF) {
NodeAddr<BlockNode*> DBA = findBlock(DB);
PhiM[DBA.Id].insert(Defs.begin(), Defs.end());
}
}
// Given the locations of phi nodes in the map PhiM, create the phi nodes
// that are located in the block node BA.
void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs,
NodeAddr<BlockNode*> BA) {
// Check if this blocks has any DF defs, i.e. if there are any defs
// that this block is in the iterated dominance frontier of.
auto HasDF = PhiM.find(BA.Id);
if (HasDF == PhiM.end() || HasDF->second.empty())
return;
// First, remove all R in Refs in such that there exists T in Refs
// such that T covers R. In other words, only leave those refs that
// are not covered by another ref (i.e. maximal with respect to covering).
auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef {
for (RegisterRef I : RRs)
if (I != RR && RegisterAggr::isCoverOf(I, RR, PRI))
RR = I;
return RR;
};
RegisterSet MaxDF;
for (RegisterRef I : HasDF->second)
MaxDF.insert(MaxCoverIn(I, HasDF->second));
std::vector<RegisterRef> MaxRefs;
for (RegisterRef I : MaxDF)
MaxRefs.push_back(MaxCoverIn(I, AllRefs));
// Now, for each R in MaxRefs, get the alias closure of R. If the closure
// only has R in it, create a phi a def for R. Otherwise, create a phi,
// and add a def for each S in the closure.
// Sort the refs so that the phis will be created in a deterministic order.
llvm::sort(MaxRefs);
// Remove duplicates.
auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end());
MaxRefs.erase(NewEnd, MaxRefs.end());
auto Aliased = [this,&MaxRefs](RegisterRef RR,
std::vector<unsigned> &Closure) -> bool {
for (unsigned I : Closure)
if (PRI.alias(RR, MaxRefs[I]))
return true;
return false;
};
// Prepare a list of NodeIds of the block's predecessors.
NodeList Preds;
const MachineBasicBlock *MBB = BA.Addr->getCode();
for (MachineBasicBlock *PB : MBB->predecessors())
Preds.push_back(findBlock(PB));
while (!MaxRefs.empty()) {
// Put the first element in the closure, and then add all subsequent
// elements from MaxRefs to it, if they alias at least one element
// already in the closure.
// ClosureIdx: vector of indices in MaxRefs of members of the closure.
std::vector<unsigned> ClosureIdx = { 0 };
for (unsigned i = 1; i != MaxRefs.size(); ++i)
if (Aliased(MaxRefs[i], ClosureIdx))
ClosureIdx.push_back(i);
// Build a phi for the closure.
unsigned CS = ClosureIdx.size();
NodeAddr<PhiNode*> PA = newPhi(BA);
// Add defs.
for (unsigned X = 0; X != CS; ++X) {
RegisterRef RR = MaxRefs[ClosureIdx[X]];
uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
PA.Addr->addMember(DA, *this);
}
// Add phi uses.
for (NodeAddr<BlockNode*> PBA : Preds) {
for (unsigned X = 0; X != CS; ++X) {
RegisterRef RR = MaxRefs[ClosureIdx[X]];
NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
PA.Addr->addMember(PUA, *this);
}
}
// Erase from MaxRefs all elements in the closure.
auto Begin = MaxRefs.begin();
for (unsigned i = ClosureIdx.size(); i != 0; --i)
MaxRefs.erase(Begin + ClosureIdx[i-1]);
}
}
// Remove any unneeded phi nodes that were created during the build process.
void DataFlowGraph::removeUnusedPhis() {
// This will remove unused phis, i.e. phis where each def does not reach
// any uses or other defs. This will not detect or remove circular phi
// chains that are otherwise dead. Unused/dead phis are created during
// the build process and this function is intended to remove these cases
// that are easily determinable to be unnecessary.
SetVector<NodeId> PhiQ;
for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) {
for (auto P : BA.Addr->members_if(IsPhi, *this))
PhiQ.insert(P.Id);
}
static auto HasUsedDef = [](NodeList &Ms) -> bool {
for (NodeAddr<NodeBase*> M : Ms) {
if (M.Addr->getKind() != NodeAttrs::Def)
continue;
NodeAddr<DefNode*> DA = M;
if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0)
return true;
}
return false;
};
// Any phi, if it is removed, may affect other phis (make them dead).
// For each removed phi, collect the potentially affected phis and add
// them back to the queue.
while (!PhiQ.empty()) {
auto PA = addr<PhiNode*>(PhiQ[0]);
PhiQ.remove(PA.Id);
NodeList Refs = PA.Addr->members(*this);
if (HasUsedDef(Refs))
continue;
for (NodeAddr<RefNode*> RA : Refs) {
if (NodeId RD = RA.Addr->getReachingDef()) {
auto RDA = addr<DefNode*>(RD);
NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this);
if (IsPhi(OA))
PhiQ.insert(OA.Id);
}
if (RA.Addr->isDef())
unlinkDef(RA, true);
else
unlinkUse(RA, true);
}
NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this);
BA.Addr->removeMember(PA, *this);
}
}
// For a given reference node TA in an instruction node IA, connect the
// reaching def of TA to the appropriate def node. Create any shadow nodes
// as appropriate.
template <typename T>
void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA,
DefStack &DS) {
if (DS.empty())
return;
RegisterRef RR = TA.Addr->getRegRef(*this);
NodeAddr<T> TAP;
// References from the def stack that have been examined so far.
RegisterAggr Defs(PRI);
for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) {
RegisterRef QR = I->Addr->getRegRef(*this);
// Skip all defs that are aliased to any of the defs that we have already
// seen. If this completes a cover of RR, stop the stack traversal.
bool Alias = Defs.hasAliasOf(QR);
bool Cover = Defs.insert(QR).hasCoverOf(RR);
if (Alias) {
if (Cover)
break;
continue;
}
// The reaching def.
NodeAddr<DefNode*> RDA = *I;
// Pick the reached node.
if (TAP.Id == 0) {
TAP = TA;
} else {
// Mark the existing ref as "shadow" and create a new shadow.
TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow);
TAP = getNextShadow(IA, TAP, true);
}
// Create the link.
TAP.Addr->linkToDef(TAP.Id, RDA);
if (Cover)
break;
}
}
// Create data-flow links for all reference nodes in the statement node SA.
template <typename Predicate>
void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA,
Predicate P) {
#ifndef NDEBUG
RegisterSet Defs;
#endif
// Link all nodes (upwards in the data-flow) with their reaching defs.
for (NodeAddr<RefNode*> RA : SA.Addr->members_if(P, *this)) {
uint16_t Kind = RA.Addr->getKind();
assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use);
RegisterRef RR = RA.Addr->getRegRef(*this);
#ifndef NDEBUG
// Do not expect multiple defs of the same reference.
assert(Kind != NodeAttrs::Def || !Defs.count(RR));
Defs.insert(RR);
#endif
auto F = DefM.find(RR.Reg);
if (F == DefM.end())
continue;
DefStack &DS = F->second;
if (Kind == NodeAttrs::Use)
linkRefUp<UseNode*>(SA, RA, DS);
else if (Kind == NodeAttrs::Def)
linkRefUp<DefNode*>(SA, RA, DS);
else
llvm_unreachable("Unexpected node in instruction");
}
}
// Create data-flow links for all instructions in the block node BA. This
// will include updating any phi nodes in BA.
void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) {
// Push block delimiters.
markBlock(BA.Id, DefM);
auto IsClobber = [] (NodeAddr<RefNode*> RA) -> bool {
return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering);
};
auto IsNoClobber = [] (NodeAddr<RefNode*> RA) -> bool {
return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering);
};
assert(BA.Addr && "block node address is needed to create a data-flow link");
// For each non-phi instruction in the block, link all the defs and uses
// to their reaching defs. For any member of the block (including phis),
// push the defs on the corresponding stacks.
for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) {
// Ignore phi nodes here. They will be linked part by part from the
// predecessors.
if (IA.Addr->getKind() == NodeAttrs::Stmt) {
linkStmtRefs(DefM, IA, IsUse);
linkStmtRefs(DefM, IA, IsClobber);
}
// Push the definitions on the stack.
pushClobbers(IA, DefM);
if (IA.Addr->getKind() == NodeAttrs::Stmt)
linkStmtRefs(DefM, IA, IsNoClobber);
pushDefs(IA, DefM);
}
// Recursively process all children in the dominator tree.
MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode());
for (auto I : *N) {
MachineBasicBlock *SB = I->getBlock();
NodeAddr<BlockNode*> SBA = findBlock(SB);
linkBlockRefs(DefM, SBA);
}
// Link the phi uses from the successor blocks.
auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool {
if (NA.Addr->getKind() != NodeAttrs::Use)
return false;
assert(NA.Addr->getFlags() & NodeAttrs::PhiRef);
NodeAddr<PhiUseNode*> PUA = NA;
return PUA.Addr->getPredecessor() == BA.Id;
};
RegisterSet EHLiveIns = getLandingPadLiveIns();
MachineBasicBlock *MBB = BA.Addr->getCode();
for (MachineBasicBlock *SB : MBB->successors()) {
bool IsEHPad = SB->isEHPad();
NodeAddr<BlockNode*> SBA = findBlock(SB);
for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) {
// Do not link phi uses for landing pad live-ins.
if (IsEHPad) {
// Find what register this phi is for.
NodeAddr<RefNode*> RA = IA.Addr->getFirstMember(*this);
assert(RA.Id != 0);
if (EHLiveIns.count(RA.Addr->getRegRef(*this)))
continue;
}
// Go over each phi use associated with MBB, and link it.
for (auto U : IA.Addr->members_if(IsUseForBA, *this)) {
NodeAddr<PhiUseNode*> PUA = U;
RegisterRef RR = PUA.Addr->getRegRef(*this);
linkRefUp<UseNode*>(IA, PUA, DefM[RR.Reg]);
}
}
}
// Pop all defs from this block from the definition stacks.
releaseBlock(BA.Id, DefM);
}
// Remove the use node UA from any data-flow and structural links.
void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode*> UA) {
NodeId RD = UA.Addr->getReachingDef();
NodeId Sib = UA.Addr->getSibling();
if (RD == 0) {
assert(Sib == 0);
return;
}
auto RDA = addr<DefNode*>(RD);
auto TA = addr<UseNode*>(RDA.Addr->getReachedUse());
if (TA.Id == UA.Id) {
RDA.Addr->setReachedUse(Sib);
return;
}
while (TA.Id != 0) {
NodeId S = TA.Addr->getSibling();
if (S == UA.Id) {
TA.Addr->setSibling(UA.Addr->getSibling());
return;
}
TA = addr<UseNode*>(S);
}
}
// Remove the def node DA from any data-flow and structural links.
void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode*> DA) {
//
// RD
// | reached
// | def
// :
// .
// +----+
// ... -- | DA | -- ... -- 0 : sibling chain of DA
// +----+
// | | reached
// | : def
// | .
// | ... : Siblings (defs)
// |
// : reached
// . use
// ... : sibling chain of reached uses
NodeId RD = DA.Addr->getReachingDef();
// Visit all siblings of the reached def and reset their reaching defs.
// Also, defs reached by DA are now "promoted" to being reached by RD,
// so all of them will need to be spliced into the sibling chain where
// DA belongs.
auto getAllNodes = [this] (NodeId N) -> NodeList {
NodeList Res;
while (N) {
auto RA = addr<RefNode*>(N);
// Keep the nodes in the exact sibling order.
Res.push_back(RA);
N = RA.Addr->getSibling();
}
return Res;
};
NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef());
NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse());
if (RD == 0) {
for (NodeAddr<RefNode*> I : ReachedDefs)
I.Addr->setSibling(0);
for (NodeAddr<RefNode*> I : ReachedUses)
I.Addr->setSibling(0);
}
for (NodeAddr<DefNode*> I : ReachedDefs)
I.Addr->setReachingDef(RD);
for (NodeAddr<UseNode*> I : ReachedUses)
I.Addr->setReachingDef(RD);
NodeId Sib = DA.Addr->getSibling();
if (RD == 0) {
assert(Sib == 0);
return;
}
// Update the reaching def node and remove DA from the sibling list.
auto RDA = addr<DefNode*>(RD);
auto TA = addr<DefNode*>(RDA.Addr->getReachedDef());
if (TA.Id == DA.Id) {
// If DA is the first reached def, just update the RD's reached def
// to the DA's sibling.
RDA.Addr->setReachedDef(Sib);
} else {
// Otherwise, traverse the sibling list of the reached defs and remove
// DA from it.
while (TA.Id != 0) {
NodeId S = TA.Addr->getSibling();
if (S == DA.Id) {
TA.Addr->setSibling(Sib);
break;
}
TA = addr<DefNode*>(S);
}
}
// Splice the DA's reached defs into the RDA's reached def chain.
if (!ReachedDefs.empty()) {
auto Last = NodeAddr<DefNode*>(ReachedDefs.back());
Last.Addr->setSibling(RDA.Addr->getReachedDef());
RDA.Addr->setReachedDef(ReachedDefs.front().Id);
}
// Splice the DA's reached uses into the RDA's reached use chain.
if (!ReachedUses.empty()) {
auto Last = NodeAddr<UseNode*>(ReachedUses.back());
Last.Addr->setSibling(RDA.Addr->getReachedUse());
RDA.Addr->setReachedUse(ReachedUses.front().Id);
}
}