1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/lib/CodeGen/ImplicitNullChecks.cpp
dfukalov cb0d7fd331 [NFC][AA] Prepare to convert AliasResult to class with PartialAlias offset.
Main reason is preparation to transform AliasResult to class that contains
offset for PartialAlias case.

Reviewed By: asbirlea

Differential Revision: https://reviews.llvm.org/D98027
2021-04-09 12:54:22 +03:00

823 lines
29 KiB
C++

//===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass turns explicit null checks of the form
//
// test %r10, %r10
// je throw_npe
// movl (%r10), %esi
// ...
//
// to
//
// faulting_load_op("movl (%r10), %esi", throw_npe)
// ...
//
// With the help of a runtime that understands the .fault_maps section,
// faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
// a page fault.
// Store and LoadStore are also supported.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/CodeGen/FaultMaps.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include <cassert>
#include <cstdint>
#include <iterator>
using namespace llvm;
static cl::opt<int> PageSize("imp-null-check-page-size",
cl::desc("The page size of the target in bytes"),
cl::init(4096), cl::Hidden);
static cl::opt<unsigned> MaxInstsToConsider(
"imp-null-max-insts-to-consider",
cl::desc("The max number of instructions to consider hoisting loads over "
"(the algorithm is quadratic over this number)"),
cl::Hidden, cl::init(8));
#define DEBUG_TYPE "implicit-null-checks"
STATISTIC(NumImplicitNullChecks,
"Number of explicit null checks made implicit");
namespace {
class ImplicitNullChecks : public MachineFunctionPass {
/// Return true if \c computeDependence can process \p MI.
static bool canHandle(const MachineInstr *MI);
/// Helper function for \c computeDependence. Return true if \p A
/// and \p B do not have any dependences between them, and can be
/// re-ordered without changing program semantics.
bool canReorder(const MachineInstr *A, const MachineInstr *B);
/// A data type for representing the result computed by \c
/// computeDependence. States whether it is okay to reorder the
/// instruction passed to \c computeDependence with at most one
/// dependency.
struct DependenceResult {
/// Can we actually re-order \p MI with \p Insts (see \c
/// computeDependence).
bool CanReorder;
/// If non-None, then an instruction in \p Insts that also must be
/// hoisted.
Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence;
/*implicit*/ DependenceResult(
bool CanReorder,
Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence)
: CanReorder(CanReorder), PotentialDependence(PotentialDependence) {
assert((!PotentialDependence || CanReorder) &&
"!CanReorder && PotentialDependence.hasValue() not allowed!");
}
};
/// Compute a result for the following question: can \p MI be
/// re-ordered from after \p Insts to before it.
///
/// \c canHandle should return true for all instructions in \p
/// Insts.
DependenceResult computeDependence(const MachineInstr *MI,
ArrayRef<MachineInstr *> Block);
/// Represents one null check that can be made implicit.
class NullCheck {
// The memory operation the null check can be folded into.
MachineInstr *MemOperation;
// The instruction actually doing the null check (Ptr != 0).
MachineInstr *CheckOperation;
// The block the check resides in.
MachineBasicBlock *CheckBlock;
// The block branched to if the pointer is non-null.
MachineBasicBlock *NotNullSucc;
// The block branched to if the pointer is null.
MachineBasicBlock *NullSucc;
// If this is non-null, then MemOperation has a dependency on this
// instruction; and it needs to be hoisted to execute before MemOperation.
MachineInstr *OnlyDependency;
public:
explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
MachineBasicBlock *checkBlock,
MachineBasicBlock *notNullSucc,
MachineBasicBlock *nullSucc,
MachineInstr *onlyDependency)
: MemOperation(memOperation), CheckOperation(checkOperation),
CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc),
OnlyDependency(onlyDependency) {}
MachineInstr *getMemOperation() const { return MemOperation; }
MachineInstr *getCheckOperation() const { return CheckOperation; }
MachineBasicBlock *getCheckBlock() const { return CheckBlock; }
MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; }
MachineBasicBlock *getNullSucc() const { return NullSucc; }
MachineInstr *getOnlyDependency() const { return OnlyDependency; }
};
const TargetInstrInfo *TII = nullptr;
const TargetRegisterInfo *TRI = nullptr;
AliasAnalysis *AA = nullptr;
MachineFrameInfo *MFI = nullptr;
bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
SmallVectorImpl<NullCheck> &NullCheckList);
MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB,
MachineBasicBlock *HandlerMBB);
void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
enum AliasResult {
AR_NoAlias,
AR_MayAlias,
AR_WillAliasEverything
};
/// Returns AR_NoAlias if \p MI memory operation does not alias with
/// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if
/// they may alias and any further memory operation may alias with \p PrevMI.
AliasResult areMemoryOpsAliased(const MachineInstr &MI,
const MachineInstr *PrevMI) const;
enum SuitabilityResult {
SR_Suitable,
SR_Unsuitable,
SR_Impossible
};
/// Return SR_Suitable if \p MI a memory operation that can be used to
/// implicitly null check the value in \p PointerReg, SR_Unsuitable if
/// \p MI cannot be used to null check and SR_Impossible if there is
/// no sense to continue lookup due to any other instruction will not be able
/// to be used. \p PrevInsts is the set of instruction seen since
/// the explicit null check on \p PointerReg.
SuitabilityResult isSuitableMemoryOp(const MachineInstr &MI,
unsigned PointerReg,
ArrayRef<MachineInstr *> PrevInsts);
/// Returns true if \p DependenceMI can clobber the liveIns in NullSucc block
/// if it was hoisted to the NullCheck block. This is used by caller
/// canHoistInst to decide if DependenceMI can be hoisted safely.
bool canDependenceHoistingClobberLiveIns(MachineInstr *DependenceMI,
MachineBasicBlock *NullSucc);
/// Return true if \p FaultingMI can be hoisted from after the
/// instructions in \p InstsSeenSoFar to before them. Set \p Dependence to a
/// non-null value if we also need to (and legally can) hoist a dependency.
bool canHoistInst(MachineInstr *FaultingMI,
ArrayRef<MachineInstr *> InstsSeenSoFar,
MachineBasicBlock *NullSucc, MachineInstr *&Dependence);
public:
static char ID;
ImplicitNullChecks() : MachineFunctionPass(ID) {
initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AAResultsWrapperPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
};
} // end anonymous namespace
bool ImplicitNullChecks::canHandle(const MachineInstr *MI) {
if (MI->isCall() || MI->mayRaiseFPException() ||
MI->hasUnmodeledSideEffects())
return false;
auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); };
(void)IsRegMask;
assert(!llvm::any_of(MI->operands(), IsRegMask) &&
"Calls were filtered out above!");
auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); };
return llvm::all_of(MI->memoperands(), IsUnordered);
}
ImplicitNullChecks::DependenceResult
ImplicitNullChecks::computeDependence(const MachineInstr *MI,
ArrayRef<MachineInstr *> Block) {
assert(llvm::all_of(Block, canHandle) && "Check this first!");
assert(!is_contained(Block, MI) && "Block must be exclusive of MI!");
Optional<ArrayRef<MachineInstr *>::iterator> Dep;
for (auto I = Block.begin(), E = Block.end(); I != E; ++I) {
if (canReorder(*I, MI))
continue;
if (Dep == None) {
// Found one possible dependency, keep track of it.
Dep = I;
} else {
// We found two dependencies, so bail out.
return {false, None};
}
}
return {true, Dep};
}
bool ImplicitNullChecks::canReorder(const MachineInstr *A,
const MachineInstr *B) {
assert(canHandle(A) && canHandle(B) && "Precondition!");
// canHandle makes sure that we _can_ correctly analyze the dependencies
// between A and B here -- for instance, we should not be dealing with heap
// load-store dependencies here.
for (const auto &MOA : A->operands()) {
if (!(MOA.isReg() && MOA.getReg()))
continue;
Register RegA = MOA.getReg();
for (const auto &MOB : B->operands()) {
if (!(MOB.isReg() && MOB.getReg()))
continue;
Register RegB = MOB.getReg();
if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef()))
return false;
}
}
return true;
}
bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
TII = MF.getSubtarget().getInstrInfo();
TRI = MF.getRegInfo().getTargetRegisterInfo();
MFI = &MF.getFrameInfo();
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
SmallVector<NullCheck, 16> NullCheckList;
for (auto &MBB : MF)
analyzeBlockForNullChecks(MBB, NullCheckList);
if (!NullCheckList.empty())
rewriteNullChecks(NullCheckList);
return !NullCheckList.empty();
}
// Return true if any register aliasing \p Reg is live-in into \p MBB.
static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI,
MachineBasicBlock *MBB, unsigned Reg) {
for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid();
++AR)
if (MBB->isLiveIn(*AR))
return true;
return false;
}
ImplicitNullChecks::AliasResult
ImplicitNullChecks::areMemoryOpsAliased(const MachineInstr &MI,
const MachineInstr *PrevMI) const {
// If it is not memory access, skip the check.
if (!(PrevMI->mayStore() || PrevMI->mayLoad()))
return AR_NoAlias;
// Load-Load may alias
if (!(MI.mayStore() || PrevMI->mayStore()))
return AR_NoAlias;
// We lost info, conservatively alias. If it was store then no sense to
// continue because we won't be able to check against it further.
if (MI.memoperands_empty())
return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias;
if (PrevMI->memoperands_empty())
return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias;
for (MachineMemOperand *MMO1 : MI.memoperands()) {
// MMO1 should have a value due it comes from operation we'd like to use
// as implicit null check.
assert(MMO1->getValue() && "MMO1 should have a Value!");
for (MachineMemOperand *MMO2 : PrevMI->memoperands()) {
if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) {
if (PSV->mayAlias(MFI))
return AR_MayAlias;
continue;
}
if (!AA->isNoAlias(
MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()),
MemoryLocation::getAfter(MMO2->getValue(), MMO2->getAAInfo())))
return AR_MayAlias;
}
}
return AR_NoAlias;
}
ImplicitNullChecks::SuitabilityResult
ImplicitNullChecks::isSuitableMemoryOp(const MachineInstr &MI,
unsigned PointerReg,
ArrayRef<MachineInstr *> PrevInsts) {
// Implementation restriction for faulting_op insertion
// TODO: This could be relaxed if we find a test case which warrants it.
if (MI.getDesc().getNumDefs() > 1)
return SR_Unsuitable;
if (!MI.mayLoadOrStore() || MI.isPredicable())
return SR_Unsuitable;
auto AM = TII->getAddrModeFromMemoryOp(MI, TRI);
if (!AM)
return SR_Unsuitable;
auto AddrMode = *AM;
const Register BaseReg = AddrMode.BaseReg, ScaledReg = AddrMode.ScaledReg;
int64_t Displacement = AddrMode.Displacement;
// We need the base of the memory instruction to be same as the register
// where the null check is performed (i.e. PointerReg).
if (BaseReg != PointerReg && ScaledReg != PointerReg)
return SR_Unsuitable;
const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
unsigned PointerRegSizeInBits = TRI->getRegSizeInBits(PointerReg, MRI);
// Bail out of the sizes of BaseReg, ScaledReg and PointerReg are not the
// same.
if ((BaseReg &&
TRI->getRegSizeInBits(BaseReg, MRI) != PointerRegSizeInBits) ||
(ScaledReg &&
TRI->getRegSizeInBits(ScaledReg, MRI) != PointerRegSizeInBits))
return SR_Unsuitable;
// Returns true if RegUsedInAddr is used for calculating the displacement
// depending on addressing mode. Also calculates the Displacement.
auto CalculateDisplacementFromAddrMode = [&](Register RegUsedInAddr,
int64_t Multiplier) {
// The register can be NoRegister, which is defined as zero for all targets.
// Consider instruction of interest as `movq 8(,%rdi,8), %rax`. Here the
// ScaledReg is %rdi, while there is no BaseReg.
if (!RegUsedInAddr)
return false;
assert(Multiplier && "expected to be non-zero!");
MachineInstr *ModifyingMI = nullptr;
for (auto It = std::next(MachineBasicBlock::const_reverse_iterator(&MI));
It != MI.getParent()->rend(); It++) {
const MachineInstr *CurrMI = &*It;
if (CurrMI->modifiesRegister(RegUsedInAddr, TRI)) {
ModifyingMI = const_cast<MachineInstr *>(CurrMI);
break;
}
}
if (!ModifyingMI)
return false;
// Check for the const value defined in register by ModifyingMI. This means
// all other previous values for that register has been invalidated.
int64_t ImmVal;
if (!TII->getConstValDefinedInReg(*ModifyingMI, RegUsedInAddr, ImmVal))
return false;
// Calculate the reg size in bits, since this is needed for bailing out in
// case of overflow.
int32_t RegSizeInBits = TRI->getRegSizeInBits(RegUsedInAddr, MRI);
APInt ImmValC(RegSizeInBits, ImmVal, true /*IsSigned*/);
APInt MultiplierC(RegSizeInBits, Multiplier);
assert(MultiplierC.isStrictlyPositive() &&
"expected to be a positive value!");
bool IsOverflow;
// Sign of the product depends on the sign of the ImmVal, since Multiplier
// is always positive.
APInt Product = ImmValC.smul_ov(MultiplierC, IsOverflow);
if (IsOverflow)
return false;
APInt DisplacementC(64, Displacement, true /*isSigned*/);
DisplacementC = Product.sadd_ov(DisplacementC, IsOverflow);
if (IsOverflow)
return false;
// We only handle diplacements upto 64 bits wide.
if (DisplacementC.getActiveBits() > 64)
return false;
Displacement = DisplacementC.getSExtValue();
return true;
};
// If a register used in the address is constant, fold it's effect into the
// displacement for ease of analysis.
bool BaseRegIsConstVal = false, ScaledRegIsConstVal = false;
if (CalculateDisplacementFromAddrMode(BaseReg, 1))
BaseRegIsConstVal = true;
if (CalculateDisplacementFromAddrMode(ScaledReg, AddrMode.Scale))
ScaledRegIsConstVal = true;
// The register which is not null checked should be part of the Displacement
// calculation, otherwise we do not know whether the Displacement is made up
// by some symbolic values.
// This matters because we do not want to incorrectly assume that load from
// falls in the zeroth faulting page in the "sane offset check" below.
if ((BaseReg && BaseReg != PointerReg && !BaseRegIsConstVal) ||
(ScaledReg && ScaledReg != PointerReg && !ScaledRegIsConstVal))
return SR_Unsuitable;
// We want the mem access to be issued at a sane offset from PointerReg,
// so that if PointerReg is null then the access reliably page faults.
if (!(-PageSize < Displacement && Displacement < PageSize))
return SR_Unsuitable;
// Finally, check whether the current memory access aliases with previous one.
for (auto *PrevMI : PrevInsts) {
AliasResult AR = areMemoryOpsAliased(MI, PrevMI);
if (AR == AR_WillAliasEverything)
return SR_Impossible;
if (AR == AR_MayAlias)
return SR_Unsuitable;
}
return SR_Suitable;
}
bool ImplicitNullChecks::canDependenceHoistingClobberLiveIns(
MachineInstr *DependenceMI, MachineBasicBlock *NullSucc) {
for (const auto &DependenceMO : DependenceMI->operands()) {
if (!(DependenceMO.isReg() && DependenceMO.getReg()))
continue;
// Make sure that we won't clobber any live ins to the sibling block by
// hoisting Dependency. For instance, we can't hoist INST to before the
// null check (even if it safe, and does not violate any dependencies in
// the non_null_block) if %rdx is live in to _null_block.
//
// test %rcx, %rcx
// je _null_block
// _non_null_block:
// %rdx = INST
// ...
//
// This restriction does not apply to the faulting load inst because in
// case the pointer loaded from is in the null page, the load will not
// semantically execute, and affect machine state. That is, if the load
// was loading into %rax and it faults, the value of %rax should stay the
// same as it would have been had the load not have executed and we'd have
// branched to NullSucc directly.
if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg()))
return true;
}
// The dependence does not clobber live-ins in NullSucc block.
return false;
}
bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI,
ArrayRef<MachineInstr *> InstsSeenSoFar,
MachineBasicBlock *NullSucc,
MachineInstr *&Dependence) {
auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar);
if (!DepResult.CanReorder)
return false;
if (!DepResult.PotentialDependence) {
Dependence = nullptr;
return true;
}
auto DependenceItr = *DepResult.PotentialDependence;
auto *DependenceMI = *DependenceItr;
// We don't want to reason about speculating loads. Note -- at this point
// we should have already filtered out all of the other non-speculatable
// things, like calls and stores.
// We also do not want to hoist stores because it might change the memory
// while the FaultingMI may result in faulting.
assert(canHandle(DependenceMI) && "Should never have reached here!");
if (DependenceMI->mayLoadOrStore())
return false;
if (canDependenceHoistingClobberLiveIns(DependenceMI, NullSucc))
return false;
auto DepDepResult =
computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr});
if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence)
return false;
Dependence = DependenceMI;
return true;
}
/// Analyze MBB to check if its terminating branch can be turned into an
/// implicit null check. If yes, append a description of the said null check to
/// NullCheckList and return true, else return false.
bool ImplicitNullChecks::analyzeBlockForNullChecks(
MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
MDNode *BranchMD = nullptr;
if (auto *BB = MBB.getBasicBlock())
BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);
if (!BranchMD)
return false;
MachineBranchPredicate MBP;
if (TII->analyzeBranchPredicate(MBB, MBP, true))
return false;
// Is the predicate comparing an integer to zero?
if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
(MBP.Predicate == MachineBranchPredicate::PRED_NE ||
MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
return false;
// If there is a separate condition generation instruction, we chose not to
// transform unless we can remove both condition and consuming branch.
if (MBP.ConditionDef && !MBP.SingleUseCondition)
return false;
MachineBasicBlock *NotNullSucc, *NullSucc;
if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
NotNullSucc = MBP.TrueDest;
NullSucc = MBP.FalseDest;
} else {
NotNullSucc = MBP.FalseDest;
NullSucc = MBP.TrueDest;
}
// We handle the simplest case for now. We can potentially do better by using
// the machine dominator tree.
if (NotNullSucc->pred_size() != 1)
return false;
const Register PointerReg = MBP.LHS.getReg();
if (MBP.ConditionDef) {
// To prevent the invalid transformation of the following code:
//
// mov %rax, %rcx
// test %rax, %rax
// %rax = ...
// je throw_npe
// mov(%rcx), %r9
// mov(%rax), %r10
//
// into:
//
// mov %rax, %rcx
// %rax = ....
// faulting_load_op("movl (%rax), %r10", throw_npe)
// mov(%rcx), %r9
//
// we must ensure that there are no instructions between the 'test' and
// conditional jump that modify %rax.
assert(MBP.ConditionDef->getParent() == &MBB &&
"Should be in basic block");
for (auto I = MBB.rbegin(); MBP.ConditionDef != &*I; ++I)
if (I->modifiesRegister(PointerReg, TRI))
return false;
}
// Starting with a code fragment like:
//
// test %rax, %rax
// jne LblNotNull
//
// LblNull:
// callq throw_NullPointerException
//
// LblNotNull:
// Inst0
// Inst1
// ...
// Def = Load (%rax + <offset>)
// ...
//
//
// we want to end up with
//
// Def = FaultingLoad (%rax + <offset>), LblNull
// jmp LblNotNull ;; explicit or fallthrough
//
// LblNotNull:
// Inst0
// Inst1
// ...
//
// LblNull:
// callq throw_NullPointerException
//
//
// To see why this is legal, consider the two possibilities:
//
// 1. %rax is null: since we constrain <offset> to be less than PageSize, the
// load instruction dereferences the null page, causing a segmentation
// fault.
//
// 2. %rax is not null: in this case we know that the load cannot fault, as
// otherwise the load would've faulted in the original program too and the
// original program would've been undefined.
//
// This reasoning cannot be extended to justify hoisting through arbitrary
// control flow. For instance, in the example below (in pseudo-C)
//
// if (ptr == null) { throw_npe(); unreachable; }
// if (some_cond) { return 42; }
// v = ptr->field; // LD
// ...
//
// we cannot (without code duplication) use the load marked "LD" to null check
// ptr -- clause (2) above does not apply in this case. In the above program
// the safety of ptr->field can be dependent on some_cond; and, for instance,
// ptr could be some non-null invalid reference that never gets loaded from
// because some_cond is always true.
SmallVector<MachineInstr *, 8> InstsSeenSoFar;
for (auto &MI : *NotNullSucc) {
if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider)
return false;
MachineInstr *Dependence;
SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar);
if (SR == SR_Impossible)
return false;
if (SR == SR_Suitable &&
canHoistInst(&MI, InstsSeenSoFar, NullSucc, Dependence)) {
NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
NullSucc, Dependence);
return true;
}
// If MI re-defines the PointerReg in a way that changes the value of
// PointerReg if it was null, then we cannot move further.
if (!TII->preservesZeroValueInReg(&MI, PointerReg, TRI))
return false;
InstsSeenSoFar.push_back(&MI);
}
return false;
}
/// Wrap a machine instruction, MI, into a FAULTING machine instruction.
/// The FAULTING instruction does the same load/store as MI
/// (defining the same register), and branches to HandlerMBB if the mem access
/// faults. The FAULTING instruction is inserted at the end of MBB.
MachineInstr *ImplicitNullChecks::insertFaultingInstr(
MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) {
const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
// all targets.
DebugLoc DL;
unsigned NumDefs = MI->getDesc().getNumDefs();
assert(NumDefs <= 1 && "other cases unhandled!");
unsigned DefReg = NoRegister;
if (NumDefs != 0) {
DefReg = MI->getOperand(0).getReg();
assert(NumDefs == 1 && "expected exactly one def!");
}
FaultMaps::FaultKind FK;
if (MI->mayLoad())
FK =
MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad;
else
FK = FaultMaps::FaultingStore;
auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg)
.addImm(FK)
.addMBB(HandlerMBB)
.addImm(MI->getOpcode());
for (auto &MO : MI->uses()) {
if (MO.isReg()) {
MachineOperand NewMO = MO;
if (MO.isUse()) {
NewMO.setIsKill(false);
} else {
assert(MO.isDef() && "Expected def or use");
NewMO.setIsDead(false);
}
MIB.add(NewMO);
} else {
MIB.add(MO);
}
}
MIB.setMemRefs(MI->memoperands());
return MIB;
}
/// Rewrite the null checks in NullCheckList into implicit null checks.
void ImplicitNullChecks::rewriteNullChecks(
ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) {
DebugLoc DL;
for (auto &NC : NullCheckList) {
// Remove the conditional branch dependent on the null check.
unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock());
(void)BranchesRemoved;
assert(BranchesRemoved > 0 && "expected at least one branch!");
if (auto *DepMI = NC.getOnlyDependency()) {
DepMI->removeFromParent();
NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI);
}
// Insert a faulting instruction where the conditional branch was
// originally. We check earlier ensures that this bit of code motion
// is legal. We do not touch the successors list for any basic block
// since we haven't changed control flow, we've just made it implicit.
MachineInstr *FaultingInstr = insertFaultingInstr(
NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc());
// Now the values defined by MemOperation, if any, are live-in of
// the block of MemOperation.
// The original operation may define implicit-defs alongside
// the value.
MachineBasicBlock *MBB = NC.getMemOperation()->getParent();
for (const MachineOperand &MO : FaultingInstr->operands()) {
if (!MO.isReg() || !MO.isDef())
continue;
Register Reg = MO.getReg();
if (!Reg || MBB->isLiveIn(Reg))
continue;
MBB->addLiveIn(Reg);
}
if (auto *DepMI = NC.getOnlyDependency()) {
for (auto &MO : DepMI->operands()) {
if (!MO.isReg() || !MO.getReg() || !MO.isDef() || MO.isDead())
continue;
if (!NC.getNotNullSucc()->isLiveIn(MO.getReg()))
NC.getNotNullSucc()->addLiveIn(MO.getReg());
}
}
NC.getMemOperation()->eraseFromParent();
if (auto *CheckOp = NC.getCheckOperation())
CheckOp->eraseFromParent();
// Insert an *unconditional* branch to not-null successor - we expect
// block placement to remove fallthroughs later.
TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
/*Cond=*/None, DL);
NumImplicitNullChecks++;
}
}
char ImplicitNullChecks::ID = 0;
char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;
INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE,
"Implicit null checks", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE,
"Implicit null checks", false, false)